2015年蘇教版必修二第2章平面解析幾何初步作業(yè)題及答案解析20套.rar,2015,年蘇教版,必修,平面,解析幾何,初步,作業(yè)題,答案,解析,20
習題課
【課時目標】 1.鞏固圓的方程的兩種形式,并熟練應用圓的方程解決有關(guān)問題.2.熟練掌握直線與圓、圓與圓的位置關(guān)系的判定及應用.
1.
圓的方程
2.直線與圓的位置關(guān)系的判定(d表示圓心到直線的距離,r表示圓半徑)
3.圓與圓的位置關(guān)系(d表示兩圓圓心距,R、r表示兩圓半徑且R≥r)
一、填空題
1.圓x2+y2+2x-4y=0的圓心坐標和半徑分別是________和________.
2.以線段AB:x+y-2=0(0≤x≤2)為直徑的圓的方程為____________.
3.直線x-y=0繞原點按逆時針方向旋轉(zhuǎn)30°所得直線與圓x2+y2-4x+1=0的位置關(guān)系是________.
4.若圓x2+y2-2ax+3by=0的圓心位于第三象限,則直線x+ay+b=0一定不經(jīng)過第________象限.
5.直線l與直線3x+4y-15=0垂直,與圓x2+y2-18x+45=0相切,則直線l的方程是____________.
6.方程=k(x-2)+3有兩個不等實根,則k的取值范圍為__________.
7.過點M(0,4),且被圓(x-1)2+y2=4截得的線段長為2的直線方程為______________.
8.一束光線從點A(-1,1)出發(fā)經(jīng)x軸反射到圓(x-2)2+(y-3)2=1上的最短路程為________.
9.集合A={(x,y)|x2+y2=4},B={(x,y)|(x-3)2+(y-4)2=r2},其中r>0,若A∩B中有且僅有一個元素,則r的值是________.
二、解答題
10.有一圓C與直線l:4x-3y+6=0相切于點A(3,6),且經(jīng)過點B(5,2),求此圓的標準方程.
11.已知圓C:x2+y2-2x-4y-20=0及直線l:(2m+1)x+(m+1)y=7m+4(m∈R).
(1)證明:不論m取什么實數(shù),直線l與圓C總相交;
(2)求直線l被圓C截得的弦長的最小值及此時的直線方程.
能力提升
12.已知曲線C:(x-1)2+y2=1,點A(-1,0)及點B(2,a),從點A觀察點B,要使視線不被曲線C攔住,則a的取值范圍是______________.
13.已知P是直線3x+4y+8=0上的動點,PA、PB是圓x2+y2-2x-2y+1=0的兩條切線,A、B是切點,C是圓心,求四邊形PACB面積的最小值.
初中我們從平面幾何的角度研究過圓的問題,本章則主要是利用圓的方程從代數(shù)角度研究了圓的性質(zhì),如果我們能夠?qū)烧哂袡C地結(jié)合起來解決圓的問題,將在處理圓有關(guān)問題時收到意想不到的效果.
圓是非常特殊的幾何圖形,它既是中心對稱圖形又是軸對稱圖形,它的許多幾何性質(zhì)在解決圓的問題時往往起到事半功倍的作用,所以在實際解題中常用幾何法,充分結(jié)合圓的平面幾何性質(zhì).那么,我們來看經(jīng)常使用圓的哪些幾何性質(zhì):
(1)圓的切線的性質(zhì):圓心到切線的距離等于半徑;切點與圓心的連線垂直于切線;切線在切點處的垂線一定經(jīng)過圓心;圓心、圓外一點及該點所引切線的切點構(gòu)成直角三角形的三個頂點等等.
(2)直線與圓相交的弦的有關(guān)性質(zhì):相交弦的中點與圓心的連線垂直于弦所在直線;弦的垂直平分線(中垂線)一定經(jīng)過圓心;弦心距、半徑、弦長的一半構(gòu)成直角三角形的三邊,滿足勾股定理.
(3)與直徑有關(guān)的幾何性質(zhì):直徑是圓的最長的弦;圓的對稱軸一定經(jīng)過圓心;直徑所對的圓周角是直角.
習題課 答案
知識梳理
1.①(x-a)2+(y-b)2=r2 (a,b) ②x2+y2+Dx+Ey+F=0 D2+E2-4F
2.d>r d=r
作業(yè)設計
1.(-1,2)
2.(x-1)2+(y-1)2=2
解析 線段AB兩端點為(0,2)、(2,0),∴圓心為(1,1),半徑r=.
3.相切
解析 直線旋轉(zhuǎn)后為y=x,圓心(2,0)到該直線距離d=r.
4.四
解析 圓的標準方程為(x-a)2+2=a2+b2.圓心為.∴a<0,b>0.
∴y=-x-不過第四象限.
5.4x-3y-6=0或4x-3y-66=0
解析 設直線方程為4x-3y+m=0,由直線與圓相切得m=-6或-66.
6.
解析
在同一平面直角坐標系中分別畫出y=(就是x2+y2=4,y≥0)和y=k(x-2)+3的圖象.如圖所示,問題就轉(zhuǎn)化為兩條曲線有兩個交點的問題,需kPA
收藏