階段三。r=0。統(tǒng)計案例。1.通過對具體問題的分析。了解回歸分析的必要性和回歸分析的一般步驟. 2.會求線性回歸方程。并會運用所學(xué)習(xí)的知識對實際問題進行回歸分析.。1 回歸分析 1.1 回歸分析。越弱。第三章統(tǒng)計案例 1回歸分析 1 1回歸分析 1234 1234 1234 1234 1234 1234。
回歸分析課件Tag內(nèi)容描述:
1、第一章,統(tǒng)計案例,學(xué)習(xí)目標,1.通過對具體問題的分析,了解回歸分析的必要性和回歸分析的一般步驟. 2.會求線性回歸方程,作散點圖,并會運用所學(xué)習(xí)的知識對實際問題進行回歸分析.,1 回歸分析 1.1 回歸分析,1,知識。
2、第三章統(tǒng)計案例 1回歸分析 探究一 探究二 探究三 探究四 探究一 探究二 探究三 探究四 探究一 探究二 探究三 探究四 探究一 探究二 探究三 探究四 探究一 探究二 探究三 探究四 探究一 探究二 探究三 探究四 探究一。
3、第1章 統(tǒng)計案例 1 2回歸分析 學(xué)習(xí)目標 1 會建立線性回歸模型分析兩個變量間的相關(guān)關(guān)系 2 能通過相關(guān)系數(shù)判斷兩個變量間的線性相關(guān)程度 3 了解回歸分析的基本思想和初步應(yīng)用 1 預(yù)習(xí)導(dǎo)學(xué)挑戰(zhàn)自我 點點落實 2 課堂講義。
4、第三章 統(tǒng)計案例 1回歸分析 課前預(yù)習(xí)學(xué)案 提示 選取身高 cm 為自變量x 體重 kg 為因變量y 作散點圖如圖 兩個變量間的關(guān)系可分為確定性關(guān)系和 關(guān)系 前者又稱為 關(guān)系 后者又稱為相關(guān)關(guān)系 1 相關(guān)關(guān)系的概念 非確定性 函數(shù) 2 相關(guān)系數(shù) 2 線性相關(guān)系數(shù)r與相關(guān)關(guān)系的強弱 當(dāng) 時 兩個變量正相關(guān) 當(dāng) 時 兩個變量負相關(guān) 當(dāng) 時 稱兩個變量線性不相關(guān) r的取值在 之間 值越大 變量之間的線。
5、1.2回歸分析,第1章統(tǒng)計案例,學(xué)習(xí)目標1.會建立線性回歸模型分析兩個變量間的相關(guān)關(guān)系.2.能通過相關(guān)系數(shù)判斷兩個變量間的線性相關(guān)程度.3.了解非線性回歸分析.,問題導(dǎo)學(xué),達標檢測,題型探究,內(nèi)容索引,問題導(dǎo)學(xué),思考某電腦公司有5名產(chǎn)品推銷員,其工作年限與年推銷金額數(shù)據(jù)如下表:,請問如何表示年推銷金額y與工作年限x之間的相關(guān)關(guān)系?y關(guān)于x的線性回歸方程是什么?,知識點一線性回歸模。
6、第三章統(tǒng)計案例,1回歸分析,1.1回歸分析,1.通過實例掌握回歸分析的基本思想方法.2.利用最小二乘法會求線性回歸直線方程,并能用線性回歸直線方程進行預(yù)報.,1,2,1.線性回歸方程假設(shè)樣本點為(x1,y1),(x2,y2),(xn,yn),設(shè)線性回歸直線方程為y=a+bx,要使這n個點與直線y=a+bx的“距離”平方之和最小,即使得Q(a,b)=(y1-a-bx1)2+(y2-a-bx2)2。
7、3.2 回歸分析,第3章 統(tǒng)計案例,學(xué)習(xí)目標 1.會建立線性回歸模型分析兩個變量間的相關(guān)關(guān)系. 2.能通過相關(guān)系數(shù)判斷兩個變量間的線性相關(guān)程度. 3.了解非線性回歸分析,題型探究,問題導(dǎo)學(xué),內(nèi)容索引,當(dāng)堂訓(xùn)練,問題導(dǎo)學(xué),請問如何表示推銷金額y與工作年限x之間的相關(guān)關(guān)系?y關(guān)于x的線性回歸方程是什么?,知識點一 線性回歸模型,思考,某電腦公司有5名產(chǎn)品推銷員,其工作年限與年推銷金額數(shù)據(jù)。
8、第三章,統(tǒng)計案例,3.2回歸分析,學(xué)習(xí)目標 1.會建立線性回歸模型分析兩個變量間的相關(guān)關(guān)系. 2.能通過相關(guān)系數(shù)判斷兩個變量間的線性相關(guān)程度.,1,預(yù)習(xí)導(dǎo)學(xué) 挑戰(zhàn)自我,點點落實,2,課堂講義 重點難點,個個擊破,3,當(dāng)堂檢測 當(dāng)堂訓(xùn)練,體驗成功,知識鏈接 1.什么叫回歸分析? 答回歸分析是對具有相關(guān)關(guān)系的兩個變量進行統(tǒng)計分析的一種方法.,2.回歸分析中,利用線性回歸方程求出的函數(shù)值。
9、1.1回歸分析,第一章1回歸分析,1.會建立線性回歸模型分析兩個變量間的相關(guān)關(guān)系. 2.掌握建立線性回歸模型的步驟.,學(xué)習(xí)目標,問題導(dǎo)學(xué),達標檢測,題型探究,內(nèi)容索引,問題導(dǎo)學(xué),思考(1)什么叫回歸分析?,答案回歸分析是對具有相關(guān)關(guān)系的兩個變量進行統(tǒng)計分析的一種方法.,知識點線性回歸方程,(2)回歸分析中,利用線性回歸方程求出的函數(shù)值一定是真實值嗎?,答案不一定是真實值,利用線性。
10、第 三 章,統(tǒng)計案例,1回歸分析,課前預(yù)習(xí)學(xué)案,提示:選取身高(cm)為自變量x,體重(kg)為因變量y,作散點圖如圖,兩個變量間的關(guān)系可分為確定性關(guān)系和__________關(guān)系,前者又稱為________關(guān)系,后者又稱為相關(guān)關(guān)系,1相關(guān)關(guān)系的概念,非確定性,函數(shù),2相關(guān)系數(shù),(2)線性相關(guān)系數(shù)r與相關(guān)關(guān)系的強弱: 當(dāng)__________時,兩個變量正相關(guān); 當(dāng)__________時。