《2020屆高考數(shù)學(xué)一輪復(fù)習(xí) 綜合檢測一(標(biāo)準(zhǔn)卷)文(含解析) 新人教A版.docx》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020屆高考數(shù)學(xué)一輪復(fù)習(xí) 綜合檢測一(標(biāo)準(zhǔn)卷)文(含解析) 新人教A版.docx(11頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
綜合檢測一(標(biāo)準(zhǔn)卷)
考生注意:
1.本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,共4頁.
2.答卷前,考生務(wù)必用藍(lán)、黑色字跡的鋼筆或圓珠筆將自己的姓名、班級(jí)、學(xué)號(hào)填寫在相應(yīng)位置上.
3.本次考試時(shí)間120分鐘,滿分150分.
4.請(qǐng)?jiān)诿芊饩€內(nèi)作答,保持試卷清潔完整.
第Ⅰ卷(選擇題 共60分)
一、選擇題(本題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)
1.已知集合M={2,3,4,5},N={x|x2-5x+4<0},則M∩N為( )
A.{2,3,4,5} B.{2,3}
C.{3,4,5} D.{2,3,4}
答案 B
解析 ∵N={x|x2-5x+4<0}={x|1
0)的焦點(diǎn)為F,已知點(diǎn)A和B分別為拋物線上的兩個(gè)動(dòng)點(diǎn).且滿足∠AFB=120,過弦AB的中點(diǎn)M作拋物線準(zhǔn)線的垂線MN,垂足為N,則的最大值為( )
A.B.1C.D.
答案 D
解析 如圖所示,過A,B分別作準(zhǔn)線的垂線AQ,BP,垂足分別為Q,P,設(shè)|AF|=a,|BF|=b,由拋物線的定義,得|AF|=|AQ|,|BF|=|BP|,在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b,由余弦定理得:|AB|2=a2+b2-2abcos120=a2+b2+ab,整理得|AB|2=(a+b)2-ab,因?yàn)閍b≤2,則(a+b)2-ab≥(a+b)2-2=(a+b)2,即|AB|2≥(a+b)2,所以≥=3,所以≥,即≤,當(dāng)且僅當(dāng)a=b,即|AF|=|BF|時(shí)取等號(hào),故選D.
12.已知函數(shù)f(x)=,t∈R,若對(duì)任意的x∈[1,2],f(x)>-xf′(x)恒成立,則實(shí)數(shù)t的取值范圍是( )
A.(-∞,) B.
C.(-∞,3) D.
答案 B
解析 ∵f′(x)=,
∴對(duì)任意的x∈[1,2],f′(x)x+f(x)>0恒成立?對(duì)任意的x∈[1,2],>0恒成立
?對(duì)任意的x∈[1,2],2x2-2tx+1>0恒成立?t<=x+=x+恒成立,令g(x)=x+,
又g(x)=x+在[1,2]上單調(diào)遞增,∴g(x)min=g(1)=,
∴t<.
第Ⅱ卷(非選擇題 共90分)
二、填空題(本題共4小題,每小題5分,共20分.把答案填在題中橫線上)
13.已知向量a=(1,),b=(3,m),且b在a上的投影為3,則a與b的夾角為________.
答案
解析 ∵b在a上的投影為3,∴|b|cos〈a,b〉=|b|==3,m=,cos〈a,b〉===,∵0≤〈a,b〉≤π,∴向量a與b的夾角為.
14.定義在R上函數(shù)f(x)=則不等式f(x)<-的解集為________.
答案
解析 當(dāng)x≤1時(shí),f(x)=2x-1<-,∴2x1時(shí),f(x)=|x-3|-1<-?0),若函數(shù)f(x)在[1,2]上為單調(diào)函數(shù),則a的取值范圍是____________.
答案 ∪[1,+∞)
解析 f′(x)=-4x+,
若函數(shù)f(x)在[1,2]上為單調(diào)函數(shù),
即f′(x)=-4x+≥0或f′(x)=-4x+≤0
在[1,2]上恒成立,
即≥4x-或≤4x-在[1,2]上恒成立.
令h(x)=4x-,則h(x)在[1,2]上單調(diào)遞增,
所以≥h(2)或≤h(1),
即≥或≤3,
又a>0,所以0<a≤或a≥1.
三、解答題(本題共6小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟)
17.(12分)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且滿足b2+c2=bc+a2.
(1)求角A的大小;
(2)若等差數(shù)列{an}的公差不為零,a1cosA=1,且a2,a4,a8成等比數(shù)列,求的前n項(xiàng)和Sn.
解 (1)∵b2+c2=bc+a2,
∴cosA===,
又A∈(0,π),∴A=.
(2)設(shè){an}的公差為d,由已知得a1==2,且a=a2a8,
∴(2+3d)2=(2+d)(2+7d).又d不為零,∴d=2,
∴an=2n,
∴==-,
∴Sn=++…+
=1-=.
18.(12分)為選拔選手參加“全市高中數(shù)學(xué)競賽”,某中學(xué)舉行了一次“數(shù)學(xué)競賽”活動(dòng),為了了解本次競賽學(xué)生的成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計(jì).按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).
(1)求樣本容量n和頻率分布直方圖中的x,y的值;
(2)在選取的樣本中,從競賽成績在80分以上(含80分)的學(xué)生中隨機(jī)抽取2名學(xué)生參加“全市高中數(shù)學(xué)競賽”,求所抽取的2名學(xué)生中至少有一人得分在[90,100]內(nèi)的概率.
解 (1)由題意可知,樣本容量n==50,
y==0.004,x=0.100-0.004-0.010-0.016-0.040=0.030.
(2)由題意可知,分?jǐn)?shù)在[80,90)內(nèi)的學(xué)生有5人,記這5人分別為a1,a2,a3,a4,a5,分?jǐn)?shù)在[90,100]內(nèi)的學(xué)生有2人,記這2人分別為b1,b2.抽取的2名學(xué)生的所有情況有21種,分別為:
(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a1,b1),(a1,b2),(a2,a3),(a2,a4),(a2,a5),(a2,b1),(a2,b2),(a3,a4),(a3,a5),(a3,b1),(a3,b2),(a4,a5),(a4,b1),(a4,b2),(a5,b1),(a5,b2),(b1,b2).
其中2名同學(xué)的分?jǐn)?shù)都不在[90,100]內(nèi)的情況有10種,分別為:
(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a2,a3),(a2,a4),(a2,a5),(a3,a4),(a3,a5),(a4,a5).
∴所抽取的2名學(xué)生中至少有一人得分在[90,100]內(nèi)的概率P=1-=.
19.(12分)如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,AB=2AD=2,PD=BD=AD,且PD⊥底面ABCD.
(1)證明:BC⊥平面PBD;
(2)若Q為PC的中點(diǎn),求三棱錐A-PBQ的體積.
(1)證明 ∵AD2+BD2=AB2,∴AD⊥BD,
∵AD∥BC,∴BC⊥BD.
又∵PD⊥底面ABCD,∴PD⊥BC.
∵PD∩BD=D,PD,BD?平面PBD,
∴BC⊥平面PBD.
(2)解 三棱錐A-PBQ的體積VA-PBQ與三棱錐A-QBC的體積相等,
而VA-QBC=VQ-ABC=VP-ABC=VP-ABCD=1=.
∴三棱錐A-PBQ的體積VA-PBQ=.
20.(12分)已知橢圓C1:+=1(a>b>0)和橢圓C2:+y2=1的離心率相同,且點(diǎn)(,1)在橢圓C1上.
(1)求橢圓C1的方程;
(2)設(shè)P為橢圓C2上一點(diǎn),過點(diǎn)P作直線交橢圓C1于A,C兩點(diǎn),且P恰為弦AC的中點(diǎn),則當(dāng)點(diǎn)P變化時(shí),試問△AOC的面積是否為常數(shù),若是,請(qǐng)求出此常數(shù),若不是,請(qǐng)說明理由.
解 (1)由題知,+=1,且=,即a2=4,b2=2,
橢圓C1的方程為+=1.
(2)是.?、佼?dāng)直線AC的斜率不存在時(shí),必有P(,0),此時(shí)|AC|=2,S△AOC=.
②當(dāng)直線AC的斜率存在時(shí),設(shè)其斜率為k,點(diǎn)P(x0,y0),則AC:y-y0=k(x-x0),直線AC與橢圓C1聯(lián)立,得(1+2k2)x2+4k(y0-kx0)x+2(y0-kx0)2-4=0,設(shè)A(x1,y1),C(x2,y2),
則x0==-,即x0=-2ky0,
又x+2y=2,∴y=,
S△AOC=
=
=
=|y0|=.
綜上,△AOC的面積為常數(shù).
21.(12分)已知函數(shù)f(x)=lnx+ax,a∈R.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)的兩個(gè)零點(diǎn)為x1,x2,且≥e2,求證:(x1-x2)f′(x1+x2)>.
(1)解 函數(shù)f(x)=lnx+ax,a∈R的定義域?yàn)閧x|x>0},f′(x)=+a,
①當(dāng)a≥0時(shí),f′(x)>0,∴f(x)在(0,+∞)上單調(diào)遞增;
②當(dāng)a<0時(shí),令f′(x)=+a>0,0-,∴f(x)在上單調(diào)遞減.
(2)證明 ∵lnx1+ax1=0,lnx2+ax2=0,
∴l(xiāng)nx2-lnx1=a(x1-x2),
(x1-x2)f′(x1+x2)=(x1-x2)=+a(x1-x2)
=+ln=+ln,
令=t(t≥e2),令φ(t)=+lnt,則φ′(t)=>0,
∴φ(t)在[e2,+∞)上單調(diào)遞增,φ(t)≥φ(e2)=1+>1+=.
請(qǐng)?jiān)诘?2~23題中任選一題作答.
22.(10分)在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=,直線l的參數(shù)方程是(t為參數(shù),0≤α<π).
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C交于兩點(diǎn)A,B,且線段AB的中點(diǎn)為M(2,2),求α.
解 (1)曲線C:ρ=,即ρsin2θ=4cosθ,
于是有ρ2sin2θ=4ρcosθ,
化為直角坐標(biāo)方程為y2=4x.
(2)方法一 ?(2+tsinα)2=4(2+tcosα),
即t2sin2α+(4sinα-4cosα)t-4=0.
由AB的中點(diǎn)為M(2,2),得t1+t2=0,有4sinα-4cosα=0,所以k=tanα=1,
由0≤α<π得α=.
方法二 設(shè)A(x1,y1),B(x2,y2),則
?(y1+y2)(y1-y2)=4(x1-x2),
∵y1+y2=4,∴k=tanα==1,
由0≤α<π得α=.
方法三 設(shè)A,B(y10),且f(x-2)≥0的解集為[-3,-1].
(1)求m的值;
(2)若a,b,c都是正實(shí)數(shù),且++=m,求證:a+2b+3c≥9.
(1)解 依題意f(x-2)=m-|x+2|≥0,即|x+2|≤m?-m-2≤x≤-2+m,
∴m=1.
(2)證明 ∵++=1(a,b,c>0),
∴a+2b+3c=(a+2b+3c)
=3+++≥9,
當(dāng)且僅當(dāng)a=2b=3c,即a=3,b=,c=1時(shí)取等號(hào).
鏈接地址:http://m.szxfmmzy.com/p-6301714.html