二輪復(fù)習(xí)數(shù)學(xué)理普通生通用版講義:第一部分 第三層級(jí) 難點(diǎn)自選專題三 “圓錐曲線”壓軸大題的搶分策略 Word版含解析
《二輪復(fù)習(xí)數(shù)學(xué)理普通生通用版講義:第一部分 第三層級(jí) 難點(diǎn)自選專題三 “圓錐曲線”壓軸大題的搶分策略 Word版含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《二輪復(fù)習(xí)數(shù)學(xué)理普通生通用版講義:第一部分 第三層級(jí) 難點(diǎn)自選專題三 “圓錐曲線”壓軸大題的搶分策略 Word版含解析(14頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、難點(diǎn)自選專題三難點(diǎn)自選專題三“圓錐曲線圓錐曲線”壓軸大題的搶分策略壓軸大題的搶分策略全國(guó)卷全國(guó)卷 3 年考情分析年考情分析年份年份全國(guó)卷全國(guó)卷全國(guó)卷全國(guó)卷全國(guó)卷全國(guó)卷2018直線的方程、直線與橢圓直線的方程、直線與橢圓的位置關(guān)系的位置關(guān)系、 證明問(wèn)題證明問(wèn)題T19直線的方程、直線與拋物直線的方程、直線與拋物線的位置關(guān)系、圓的方線的位置關(guān)系、圓的方程程T19直線與橢圓的位置關(guān)系、直線與橢圓的位置關(guān)系、等差數(shù)列的證明等差數(shù)列的證明T202017橢圓的標(biāo)準(zhǔn)方程、直線與橢圓的標(biāo)準(zhǔn)方程、直線與橢圓的位置關(guān)系、定點(diǎn)問(wèn)橢圓的位置關(guān)系、定點(diǎn)問(wèn)題題T20點(diǎn)的軌跡方程點(diǎn)的軌跡方程、橢圓方程橢圓方程、向量的數(shù)量積等
2、向量的數(shù)量積等T20直線與拋物線的位置關(guān)直線與拋物線的位置關(guān)系、直線的方程、圓的方系、直線的方程、圓的方程程T202016軌跡方程求法、直線與橢軌跡方程求法、直線與橢圓位置關(guān)系及范圍問(wèn)圓位置關(guān)系及范圍問(wèn)題題T20直線與橢圓的位置關(guān)系、直線與橢圓的位置關(guān)系、面積問(wèn)題、范圍問(wèn)題面積問(wèn)題、范圍問(wèn)題T20證明問(wèn)題、軌跡問(wèn)題、直證明問(wèn)題、軌跡問(wèn)題、直線與拋物線的位置關(guān)線與拋物線的位置關(guān)系系T20解析幾何是數(shù)形結(jié)合的典范,是高中數(shù)學(xué)的主要知識(shí)板塊,是高考考查的重點(diǎn)知識(shí)之解析幾何是數(shù)形結(jié)合的典范,是高中數(shù)學(xué)的主要知識(shí)板塊,是高考考查的重點(diǎn)知識(shí)之一一,在解答題中一般會(huì)綜合考查直線在解答題中一般會(huì)綜合考查直線、
3、圓圓、圓錐曲線等圓錐曲線等試題難度較大試題難度較大,多以壓軸題出現(xiàn)多以壓軸題出現(xiàn)解答題的熱點(diǎn)題型有:解答題的熱點(diǎn)題型有:(1)直線與圓錐曲線位置關(guān)系直線與圓錐曲線位置關(guān)系;(2)圓錐曲線中定點(diǎn)圓錐曲線中定點(diǎn)、定值定值、最值及范圍的求解最值及范圍的求解;(3)圓錐圓錐曲線中的判斷與證明曲線中的判斷與證明考法考法策略策略(一一)依據(jù)關(guān)系來(lái)證明依據(jù)關(guān)系來(lái)證明典例典例(2018全國(guó)卷全國(guó)卷)設(shè)橢圓設(shè)橢圓 C:x22y21 的右焦點(diǎn)為的右焦點(diǎn)為 F,過(guò),過(guò) F 的直線的直線 l 與與 C 交交于于A,B 兩點(diǎn),點(diǎn)兩點(diǎn),點(diǎn) M 的坐標(biāo)為的坐標(biāo)為(2,0)(1)當(dāng)當(dāng) l 與與 x 軸垂直時(shí),求直線軸垂直時(shí),
4、求直線 AM 的方程;的方程;(2)設(shè)設(shè) O 為坐標(biāo)原點(diǎn),證明:為坐標(biāo)原點(diǎn),證明:OMAOMB.解解(1)由已知得由已知得 F(1,0),l 的方程為的方程為 x1.則點(diǎn)則點(diǎn) A 的坐標(biāo)為的坐標(biāo)為1,22 或或1,22 .又又 M(2,0),所以直線所以直線 AM 的方程為的方程為 y22x 2或或 y22x 2,即即 x 2y20 或或 x 2y20.(2)證明:當(dāng)證明:當(dāng) l 與與 x 軸重合時(shí),軸重合時(shí),OMAOMB0 .當(dāng)當(dāng) l 與與 x 軸垂直時(shí),軸垂直時(shí),OM 為為 AB 的垂直平分線,的垂直平分線,所以所以O(shè)MAOMB.當(dāng)當(dāng) l 與與 x 軸不重合也不垂直時(shí),設(shè)軸不重合也不垂直時(shí)
5、,設(shè) l 的方程為的方程為yk(x1)(k0),A(x1,y1),B(x2,y2),則則 x1 2,x2b0),點(diǎn),點(diǎn) O 為坐標(biāo)原點(diǎn),點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn) A 的坐標(biāo)為的坐標(biāo)為(a,0),點(diǎn),點(diǎn) B的坐標(biāo)為的坐標(biāo)為(0,b),點(diǎn),點(diǎn) M 在線段在線段 AB 上,滿足上,滿足|BM|2|MA|,直線,直線 OM 的斜率為的斜率為510.(1)求求 E 的離心率的離心率 e;(2)設(shè)點(diǎn)設(shè)點(diǎn) C 的坐標(biāo)為的坐標(biāo)為(0,b),N 為線段為線段 AC 的中點(diǎn),證明:的中點(diǎn),證明:MNAB.解:解:(1)由題設(shè)條件知,點(diǎn)由題設(shè)條件知,點(diǎn) M 的坐標(biāo)為的坐標(biāo)為23a,13b,又又 kOM510,從而,從而b2
6、a510.進(jìn)而得進(jìn)而得 a 5b,c a2b22b,故,故 eca2 55.(2)證明證明:由由 N 是是 AC 的中點(diǎn)知的中點(diǎn)知,點(diǎn)點(diǎn) N 的坐標(biāo)為的坐標(biāo)為a2,b2 ,可得可得NMa6,5b6 .又又 AB(a,b),從而有從而有 ABNM16a256b216(5b2a2)由由(1)可知可知 a25b2,所以所以 ABNM0,故,故 MNAB.考法考法策略策略(二二)巧妙消元證定值巧妙消元證定值典例典例已知橢圓已知橢圓 C:x2a2y2b21(ab0),過(guò),過(guò) A(2,0),B(0,1)兩點(diǎn)兩點(diǎn)(1)求橢圓求橢圓 C 的方程及離心率;的方程及離心率;(2)設(shè)設(shè) P 為第三象限內(nèi)一點(diǎn)且在橢圓
7、為第三象限內(nèi)一點(diǎn)且在橢圓 C 上,直線上,直線 PA 與與 y 軸交于點(diǎn)軸交于點(diǎn) M,直線,直線 PB 與與 x 軸軸交于點(diǎn)交于點(diǎn) N,求證:四邊形,求證:四邊形 ABNM 的面積為定值的面積為定值解解(1)由題意得,由題意得,a2,b1,所以橢圓所以橢圓 C 的方程為的方程為x24y21.又又 c a2b2 3,所以離心率,所以離心率 eca32.(2)證明:設(shè)證明:設(shè) P(x0,y0)(x00,y00),則,則 x204y204.又又 A(2,0),B(0,1),所以直線所以直線 PA 的方程為的方程為 yy0 x02(x2)令令 x0,得,得 yM2y0 x02,從而從而|BM|1yM1
8、2y0 x02.直線直線 PB 的方程為的方程為 yy01x0 x1.令令 y0,得,得 xNx0y01,從而從而|AN|2xN2x0y01.所以四邊形所以四邊形 ABNM 的面積的面積 S12|AN|BM|122x0y0112y0 x02x204y204x0y04x08y042 x0y0 x02y02 2x0y02x04y04x0y0 x02y022.從而四邊形從而四邊形 ABNM 的面積為定值的面積為定值 題后悟通題后悟通 解答圓錐曲線的定值問(wèn)題的策略解答圓錐曲線的定值問(wèn)題的策略(1)從特殊情形開始,求出定值,再證明該值與變量無(wú)關(guān);從特殊情形開始,求出定值,再證明該值與變量無(wú)關(guān);(2)采用
9、推理采用推理、計(jì)算計(jì)算、消元得定值消元得定值消元的常用方法為整體消元消元的常用方法為整體消元(如本例如本例)、選擇消元選擇消元、對(duì)對(duì)稱消元等稱消元等應(yīng)用體驗(yàn)應(yīng)用體驗(yàn)2(2019 屆高三屆高三湘東五校聯(lián)考湘東五校聯(lián)考)已知橢圓已知橢圓 C 的中心在原點(diǎn),離心率等于的中心在原點(diǎn),離心率等于12,它的一個(gè)短,它的一個(gè)短軸端點(diǎn)恰好是拋物線軸端點(diǎn)恰好是拋物線 x28 3y 的焦點(diǎn)的焦點(diǎn)(1)求橢圓求橢圓 C 的方程;的方程;(2)如圖如圖,已知已知 P(2,3),Q Q(2,3)是橢圓上的兩點(diǎn)是橢圓上的兩點(diǎn),A,B 是橢圓是橢圓上位于直線上位于直線 PQ Q 兩側(cè)的動(dòng)點(diǎn)兩側(cè)的動(dòng)點(diǎn)當(dāng)當(dāng) A,B 運(yùn)動(dòng)時(shí)運(yùn)動(dòng)
10、時(shí),滿足滿足APQ QBPQ Q,試問(wèn)直線試問(wèn)直線 AB 的斜率是否為定值?請(qǐng)說(shuō)明理由的斜率是否為定值?請(qǐng)說(shuō)明理由解:解:(1)由題意知橢圓的焦點(diǎn)在由題意知橢圓的焦點(diǎn)在 x 軸上,軸上,設(shè)橢圓設(shè)橢圓 C 的方程為的方程為x2a2y2b21(ab0),則則 b2 3.由由ca12,a2c2b2,得,得 a4,橢圓橢圓 C 的方程為的方程為x216y2121.(2)直線直線 AB 的斜率是定值,理由如下:的斜率是定值,理由如下:設(shè)設(shè) A(x1,y1),B(x2,y2)APQ QBPQ Q,直線直線 PA,PB 的斜率之和為的斜率之和為 0,設(shè)直線設(shè)直線 PA 的斜率為的斜率為 k,則直線,則直線
11、PB 的斜率為的斜率為k,直線,直線 PA 的方程為的方程為 y3k(x2),由由y3k x2 ,x216y2121,得得(34k2)x28k(32k)x4(32k)2480,x128k 2k3 34k2,將將 k 換成換成k 可得可得 x228k 2k3 34k28k 2k3 34k2,x1x216k21234k2,x1x248k34k2,kABy1y2x1x2k x12 3k x22 3x1x2k x1x2 4kx1x212,直線直線 AB 的斜率為定值的斜率為定值12.考法考法策略策略(三三)構(gòu)造函數(shù)求最值構(gòu)造函數(shù)求最值典例典例在在 RtABC 中,中,BAC90 ,A(0,2 2),B
12、(0,2 2),SABC2 23.動(dòng)點(diǎn)動(dòng)點(diǎn) P的軌跡為曲線的軌跡為曲線 E,曲線,曲線 E 過(guò)點(diǎn)過(guò)點(diǎn) C 且滿足且滿足|PA|PB|的值為常數(shù)的值為常數(shù)(1)求曲線求曲線 E 的方程的方程(2)過(guò)點(diǎn)過(guò)點(diǎn) Q Q(2,0)的直線與曲線的直線與曲線 E 總有公共點(diǎn)總有公共點(diǎn),以點(diǎn)以點(diǎn) M(0,3)為圓心的圓為圓心的圓 M 與該直線與該直線總相切,求圓總相切,求圓 M 的最大面積的最大面積解解(1)由已知由已知|AB|4 2,SABC12|AB|AC|2 23,所以所以|AC|13.因?yàn)橐驗(yàn)閨PA|PB|CA|CB|6|AB|4 2,所以曲線所以曲線 E 是以點(diǎn)是以點(diǎn) A,B 為焦點(diǎn)的橢圓且為焦點(diǎn)的
13、橢圓且 2a6,2c4 2.所以所以 a3,c2 2b1,所以曲線所以曲線 E 的方程為的方程為 x2y291.(2)由題意可設(shè)直線方程為由題意可設(shè)直線方程為 yk(x2),聯(lián)立聯(lián)立x2y291,yk x2 消去消去 y,得,得(9k2)x24k2x4k290,則則(4k2)24(9k2)(4k29)0,解得,解得 k23.因?yàn)橐渣c(diǎn)因?yàn)橐渣c(diǎn) M(0,3)為圓心的圓為圓心的圓 M 與該直線總相切,與該直線總相切,所以半徑所以半徑 r|2k3|1k2.令令 r2f(k) 2k3 21k2,則則 f(k)4 2k3 1k2 2k 2k3 2 1k2 2 2k3 46k 1k2 2.由由 f(k)0,
14、得,得 k23或或 k32,當(dāng)當(dāng) k23時(shí)符合題意,此時(shí)可得時(shí)符合題意,此時(shí)可得 r|2k3|1k2 13.即所求圓的面積的最大值是即所求圓的面積的最大值是 13. 題后悟通題后悟通 最值問(wèn)題的最值問(wèn)題的 2 2 種基本解法種基本解法幾何法幾何法根據(jù)已知的幾何量之間的相互關(guān)系根據(jù)已知的幾何量之間的相互關(guān)系、 平面幾何和解析幾何知識(shí)加以解決的平面幾何和解析幾何知識(shí)加以解決的(如如拋物線上的點(diǎn)到某個(gè)定點(diǎn)和焦點(diǎn)的距離之和拋物線上的點(diǎn)到某個(gè)定點(diǎn)和焦點(diǎn)的距離之和、光線反射問(wèn)題等在選擇題光線反射問(wèn)題等在選擇題、填填空題中經(jīng)??疾榭疹}中經(jīng)??疾?代數(shù)法代數(shù)法建立求解目標(biāo)關(guān)于某個(gè)建立求解目標(biāo)關(guān)于某個(gè)(或兩個(gè)或
15、兩個(gè))變量的函數(shù)變量的函數(shù),通過(guò)求解函數(shù)的最值解決的通過(guò)求解函數(shù)的最值解決的(普普通方法、基本不等式方法、導(dǎo)數(shù)方法通方法、基本不等式方法、導(dǎo)數(shù)方法(如本例如本例)等等)應(yīng)用體驗(yàn)應(yīng)用體驗(yàn)3(2018合肥一檢合肥一檢)在平面直角坐標(biāo)系中,圓在平面直角坐標(biāo)系中,圓 O 交交 x 軸于點(diǎn)軸于點(diǎn) F1,F(xiàn)2,交,交 y 軸于點(diǎn)軸于點(diǎn) B1,B2.以以 B1,B2為頂點(diǎn),為頂點(diǎn),F(xiàn)1,F(xiàn)2分別為左、右焦點(diǎn)的橢圓分別為左、右焦點(diǎn)的橢圓 E 恰好經(jīng)過(guò)點(diǎn)恰好經(jīng)過(guò)點(diǎn)1,22 .(1)求橢圓求橢圓 E 的方程;的方程;(2)設(shè)經(jīng)過(guò)點(diǎn)設(shè)經(jīng)過(guò)點(diǎn)(2,0)的直線的直線 l 與橢圓與橢圓 E 交于交于 M,N 兩點(diǎn),求兩點(diǎn)
16、,求F2MN 面積的最大值面積的最大值解:解:(1)由已知可得,橢圓由已知可得,橢圓 E 的焦點(diǎn)在的焦點(diǎn)在 x 軸上軸上設(shè)橢圓設(shè)橢圓 E 的標(biāo)準(zhǔn)方程為的標(biāo)準(zhǔn)方程為x2a2y2b21(ab0),焦距為焦距為 2c,則,則 bc,a2b2c22b2,橢圓橢圓 E 的方程為的方程為x22b2y2b21.又橢圓又橢圓 E 過(guò)點(diǎn)過(guò)點(diǎn)1,22 ,12b212b21,解得,解得 b21.橢圓橢圓 E 的方程為的方程為x22y21.(2)點(diǎn)點(diǎn)(2,0)在橢圓在橢圓 E 外,外,直線直線 l 的斜率存在的斜率存在設(shè)直線設(shè)直線 l 的方程為的方程為 yk(x2),M(x1,y1),N(x2,y2)由由yk x2
17、,x22y21消去消去 y 得,得,(12k2)x28k2x8k220.由由0,得,得 0b0),四點(diǎn),四點(diǎn) P1(1,1),P2(0,1),P31,32 ,P41,32 中恰有三點(diǎn)在橢圓中恰有三點(diǎn)在橢圓 C 上上(1)求求 C 的方程;的方程;(2)設(shè)直線設(shè)直線 l 不經(jīng)過(guò)不經(jīng)過(guò) P2點(diǎn)且與點(diǎn)且與 C 相交于相交于 A,B 兩點(diǎn)兩點(diǎn)若直線若直線 P2A 與直線與直線 P2B 的斜率的和的斜率的和為為1,證明:,證明:l 過(guò)定點(diǎn)過(guò)定點(diǎn)解解(1)由于由于 P3,P4兩點(diǎn)關(guān)于兩點(diǎn)關(guān)于 y 軸對(duì)稱,軸對(duì)稱,故由題設(shè)知橢圓故由題設(shè)知橢圓 C 經(jīng)過(guò)經(jīng)過(guò) P3,P4兩點(diǎn)兩點(diǎn)又由又由1a21b21a234b
18、2知,橢圓知,橢圓 C 不經(jīng)過(guò)點(diǎn)不經(jīng)過(guò)點(diǎn) P1,所以點(diǎn)所以點(diǎn) P2在橢圓在橢圓 C 上上因此因此1b21,1a234b21,解得解得a24,b21.故橢圓故橢圓 C 的方程為的方程為x24y21.(2)證明:設(shè)直線證明:設(shè)直線 P2A 與直線與直線 P2B 的斜率分別為的斜率分別為 k1,k2.如如果果l與與x軸垂直軸垂直, 設(shè)設(shè)l: xt, 由題設(shè)由題設(shè)知知t0, 且且|t|0.設(shè)設(shè) A(x1,y1),B(x2,y2),則則 x1x28km4k21,x1x24m244k21.而而 k1k2y11x1y21x2kx1m1x1kx2m1x22kx1x2 m1 x1x2 x1x2.由題設(shè)由題設(shè) k
19、1k21,故故(2k1)x1x2(m1)(x1x2)0.即即(2k1)4m244k21(m1)8km4k210.解得解得 m2k1.當(dāng)且僅當(dāng)當(dāng)且僅當(dāng) m1 時(shí),時(shí),0,于是,于是 l:ykx2k1k(x2)1,所以所以 l 過(guò)定點(diǎn)過(guò)定點(diǎn)(2,1)題后悟通題后悟通直線過(guò)定點(diǎn)問(wèn)題的解題模型直線過(guò)定點(diǎn)問(wèn)題的解題模型應(yīng)用體驗(yàn)應(yīng)用體驗(yàn)5(2018貴陽(yáng)摸底考試貴陽(yáng)摸底考試)過(guò)拋物線過(guò)拋物線 C:y24x 的焦點(diǎn)的焦點(diǎn) F 且斜率為且斜率為 k 的直線的直線 l 交拋物線交拋物線 C于于 A,B 兩點(diǎn),且兩點(diǎn),且|AB|8.(1)求求 l 的方程;的方程;(2)若若 A 關(guān)于關(guān)于 x 軸的對(duì)稱點(diǎn)為軸的對(duì)稱點(diǎn)
20、為 D,求證:直線,求證:直線 BD 過(guò)定點(diǎn),并求出該點(diǎn)的坐標(biāo)過(guò)定點(diǎn),并求出該點(diǎn)的坐標(biāo)解解:(1)易知點(diǎn)易知點(diǎn) F 的坐標(biāo)為的坐標(biāo)為(1,0),則直線則直線 l 的方程為的方程為 yk(x1),代入拋物線方程代入拋物線方程 y24x得得 k2x2(2k24)xk20,由題意知由題意知 k0,且,且(2k24)24k2k216(k21)0,設(shè)設(shè) A(x1,y1),B(x2,y2),x1x22k24k2,x1x21,由拋物線的定義知由拋物線的定義知|AB|x1x228,2k24k26,k21,即,即 k1,直線直線 l 的方程為的方程為 y(x1),即即 xy10 或或 xy10.(2)證明證明:
21、由拋物線的對(duì)稱性知由拋物線的對(duì)稱性知,D 點(diǎn)的坐標(biāo)為點(diǎn)的坐標(biāo)為(x1,y1),直線直線 BD 的斜率的斜率 kBDy2y1x2x1y2y1y224y2144y2y1,直線直線 BD 的方程為的方程為 yy14y2y1(xx1),即即(y2y1)yy2y1y214x4x1,y214x1,y224x2,x1x21,(y1y2)216x1x216,即即 y1y24(y1,y2異號(hào)異號(hào)),直線直線 BD 的方程為的方程為 4(x1)(y1y2)y0,恒過(guò)點(diǎn)恒過(guò)點(diǎn)(1,0)考法考法策略策略(六六)假設(shè)存在定結(jié)論假設(shè)存在定結(jié)論(探索性問(wèn)題探索性問(wèn)題)典例典例已知橢圓已知橢圓 C:x2a2y2b21(ab0
22、)的左的左、右焦點(diǎn)分別為右焦點(diǎn)分別為 F1,F(xiàn)2,其離心率為其離心率為12,短軸長(zhǎng)為短軸長(zhǎng)為 2 3.(1)求橢圓求橢圓 C 的標(biāo)準(zhǔn)方程;的標(biāo)準(zhǔn)方程;(2)過(guò)定點(diǎn)過(guò)定點(diǎn) M(0,2)的直線的直線 l 與橢圓與橢圓 C 交于交于 G,H 兩點(diǎn)兩點(diǎn)(G 在在 M,H 之間之間),設(shè)直線設(shè)直線 l 的斜的斜率率k0,在,在 x 軸上是否存在點(diǎn)軸上是否存在點(diǎn) P(m,0),使得以,使得以 PG,PH 為鄰邊的平行四邊形為菱形?如果存為鄰邊的平行四邊形為菱形?如果存在,求出在,求出 m 的取值范圍;如果不存在,請(qǐng)說(shuō)明理由的取值范圍;如果不存在,請(qǐng)說(shuō)明理由解解(1)由已知,得由已知,得ca12,b 3,c
23、2a2b2,解得解得a2,b 3,c1,所以橢圓所以橢圓 C 的標(biāo)準(zhǔn)方程為的標(biāo)準(zhǔn)方程為x24y231.(2)設(shè)直線設(shè)直線 l 的方程為的方程為 ykx2(k0),聯(lián)立聯(lián)立ykx2,x24y231消去消去 y 并整理得,并整理得,(34k2)x216kx40,由,由0,解得,解得 k12.設(shè)設(shè) G(x1,y1),H(x2,y2),則,則 y1kx12,y2kx22,x1x216k4k23.假設(shè)存在點(diǎn)假設(shè)存在點(diǎn) P(m,0),使得以,使得以 PG,PH 為鄰邊的平行四邊形為菱形,為鄰邊的平行四邊形為菱形,則則 PG PH(x1x22m,k(x1x2)4),GH(x2x1,y2y1)(x2x1,k(
24、x2x1),( PG PH)GH0,即即(1k2)(x1x2)4k2m0,所以所以(1k2)16k4k234k2m0,解得解得 m2k4k2324k3k.因?yàn)橐驗(yàn)?k12,所以,所以36m0,當(dāng)且僅當(dāng),當(dāng)且僅當(dāng)3k4k 時(shí)等號(hào)成立,時(shí)等號(hào)成立,故存在滿足題意的點(diǎn)故存在滿足題意的點(diǎn) P,且,且 m 的取值范圍是的取值范圍是36,0.題后悟通題后悟通探索性問(wèn)題的解題策略探索性問(wèn)題的解題策略探索性問(wèn)題,先假設(shè)存在,推證滿足條件的結(jié)論,若結(jié)論正確,則存在,若結(jié)論不正探索性問(wèn)題,先假設(shè)存在,推證滿足條件的結(jié)論,若結(jié)論正確,則存在,若結(jié)論不正確,則不存在確,則不存在(1)當(dāng)條件和結(jié)論不唯一時(shí),要分類討論當(dāng)
25、條件和結(jié)論不唯一時(shí),要分類討論(2)當(dāng)給出結(jié)論而要推導(dǎo)出存在的條件時(shí),先假設(shè)成立,再推出條件當(dāng)給出結(jié)論而要推導(dǎo)出存在的條件時(shí),先假設(shè)成立,再推出條件(3)當(dāng)條件和結(jié)論都不知,按常規(guī)方法解題很難時(shí),要思維開放,采取另外的途徑當(dāng)條件和結(jié)論都不知,按常規(guī)方法解題很難時(shí),要思維開放,采取另外的途徑應(yīng)用體驗(yàn)應(yīng)用體驗(yàn)6 已知橢圓已知橢圓 C:x2a2y2b21(ab0)的左的左、右焦點(diǎn)分別為右焦點(diǎn)分別為 F1(1,0), F2(1,0), 點(diǎn)點(diǎn) A1,22在橢圓在橢圓 C 上上(1)求橢圓求橢圓 C 的標(biāo)準(zhǔn)方程;的標(biāo)準(zhǔn)方程;(2)是否存在斜率為是否存在斜率為 2 的直線的直線,使得當(dāng)直線與橢圓使得當(dāng)直線與
26、橢圓 C 有兩個(gè)不同交點(diǎn)有兩個(gè)不同交點(diǎn) M,N 時(shí)時(shí),能在直能在直線線 y53上找到一點(diǎn)上找到一點(diǎn) P,在橢圓,在橢圓 C 上找到一點(diǎn)上找到一點(diǎn) Q Q,滿足,滿足 PM NQ Q?若存在,求出直線的方?若存在,求出直線的方程;若不存在,說(shuō)明理由程;若不存在,說(shuō)明理由解:解:(1)設(shè)橢圓設(shè)橢圓 C 的焦距為的焦距為 2c,則,則 c1,因?yàn)橐驗(yàn)?A1,22 在橢圓在橢圓 C 上上, 所以所以 2a|AF1|AF2|2 2, 因此因此 a 2, b2a2c21,故橢圓故橢圓 C 的方程為的方程為x22y21.(2)不存在滿足條件的直線,證明如下:不存在滿足條件的直線,證明如下:假設(shè)存在斜率為假設(shè)
27、存在斜率為 2 的直線的直線, 滿足條件滿足條件, 則設(shè)直線的方程為則設(shè)直線的方程為 y2xt, 設(shè)設(shè) M(x1, y1), N(x2,y2),Px3,53 ,Q Q(x4,y4),MN 的中點(diǎn)為的中點(diǎn)為 D(x0,y0),由由y2xt,x22y21消去消去 x,得,得 9y22tyt280,所以所以 y1y22t9,且,且4t236(t28)0,故故 y0y1y22t9,且,且3t3.由由PMNQ Q,得,得x1x3,y153 (x4x2,y4y2),所以有所以有 y153y4y2,y4y1y25329t53.也可由也可由 PMNQ Q,知四邊形知四邊形 PMQ QN 為平行四邊形為平行四邊形,而而 D 為線段為線段 MN 的中點(diǎn)的中點(diǎn),因此因此,D 也為線段也為線段 PQ Q 的中點(diǎn),所以的中點(diǎn),所以 y053y42t9,可得可得 y42t159又又3t3,所以,所以73y41,與橢圓上點(diǎn)的縱坐標(biāo)的取值范圍是與橢圓上點(diǎn)的縱坐標(biāo)的取值范圍是1,1矛盾矛盾因此不存在滿足條件的直線因此不存在滿足條件的直線
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)管理制度:常見突發(fā)緊急事件應(yīng)急處置程序和方法
- 某物業(yè)公司冬季除雪工作應(yīng)急預(yù)案范文
- 物業(yè)管理制度:小區(qū)日常巡查工作規(guī)程
- 物業(yè)管理制度:設(shè)備設(shè)施故障應(yīng)急預(yù)案
- 某物業(yè)公司小區(qū)地下停車場(chǎng)管理制度
- 某物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 物業(yè)管理制度:安全防范十大應(yīng)急處理預(yù)案
- 物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 某物業(yè)公司保潔部門領(lǐng)班總結(jié)
- 某公司安全生產(chǎn)舉報(bào)獎(jiǎng)勵(lì)制度
- 物業(yè)管理:火情火災(zāi)應(yīng)急預(yù)案
- 某物業(yè)安保崗位職責(zé)
- 物業(yè)管理制度:節(jié)前工作重點(diǎn)總結(jié)
- 物業(yè)管理:某小區(qū)消防演習(xí)方案
- 某物業(yè)公司客服部工作職責(zé)