臥式加工中心換刀機械手的設計.doc
《臥式加工中心換刀機械手的設計.doc》由會員分享,可在線閱讀,更多相關《臥式加工中心換刀機械手的設計.doc(36頁珍藏版)》請在裝配圖網(wǎng)上搜索。
摘要 機械手是自動換刀裝置中交換刀具的主要工具,它擔負著把刀庫上的刀具送到主軸上,再把主軸上已用過的刀具返回刀庫上的任務。 設計思路是用機械手的動作來實現(xiàn)對加工中心的換刀,機械手的轉(zhuǎn)動有回轉(zhuǎn)液壓缸運來實現(xiàn),其動力則由驅(qū)動系統(tǒng)實現(xiàn)。 加工中心的自動換刀裝置,通常是由刀庫和機械手組成,它是加工中心的象征,又是加工中心成敗的關鍵環(huán)節(jié)。因此各加工中心制造廠家都在下大力研制動作迅速、可靠性高的自動換刀裝置,以求在激烈的競爭中取得好效益,自動換刀裝置是加工中心的核心內(nèi)容,各廠家都在保密,極少公開有關資料,尤其機械手部分更是如此。 這種機械手的拔刀、插刀動作,大都由油缸動作來完成。根據(jù)結(jié)構要求,可以采用油缸動,活塞固定;或活塞動,油缸固定的結(jié)構形式。 整個機械手由機械臂伸縮機構,機械爪開合機構,回轉(zhuǎn)機構及裝卸刀具直線運動機構組成。 Summary The machine hand changes the knife automatically to exchanges the main tool that knife have in the device, it carry to have the knife the knife on the sends to the principal axis last, useses again the principal axis the top already over of the knife has to return the knife the mission on the . Designing the way of thinking is to uses the action of the machine hand realizes centrally to process to change the knife, the machine turns to move the turn-over liquid presses the urn carries realize, its motive is then from drive the system realizes. Process the central changing the knife the device automatically, usually constitute with the machine from the knife , it is a key to process the central symbol, again is process the center success or failure link.Therefore each process the center manufactory house to all obtain the performance in descend strongly research to manufacture action quickly, dependable highly automatically change the knife device, in order to in the vigorous competition, change the knife automatically the device is to process the central core contents, each factory house is all at keep secret, minimum amount public relevant data, particularly the cent of machine hand is also such. This kind of machine pulls out the knife and put the knife acts, mostly from oil an action to complete.Request according to the construction, can adopt the oil urn move, the piston fixs;Or the piston moves, oil a fixed construction form. Whole machine hand from flexible organization in machine arm, the machine claw opens to match the organization, turning round the organization and packing to unload the knife have the straight line the sport the organization constitutes. 引言 本次設計的題目是加工中心的自動換刀裝置中的核心部件---機械手的設計。機械手是自動換刀裝置中交換刀具的主要工具,它擔負著把刀庫上的刀具送到主軸上,再把主軸上已用過的刀具返回刀庫上的任務。 設計此機械手的目的是為了使加工中心能夠更快的的工作,使加工中心能夠得到更加充分的利用,以實現(xiàn)其的價值所在;再者,由于使用了機械手,減少由于人工換刀帶來的生產(chǎn)效率低,并且容易出事故的弊端。 本次設計的內(nèi)容主要有回轉(zhuǎn)液壓缸裝置和機械運動的驅(qū)動系統(tǒng),對于其中動作的實現(xiàn)則由電氣控制來實現(xiàn)。 由于本人能力及學識有限,在設計中存在有很多缺陷,望老師們能多加指導。 加工中心的總體布局 盤式刀庫的臥式加工中心 臥式加工中心的主軸是水平設置的,臥式加工中心刀庫容量一般較大,有的刀庫可存放幾百把刀具,臥式加工中心的結(jié)構較立式加工中心復雜,占地面積大,價格也較高,臥式加工中心較適用于加工箱體之類的零件,特別對箱體零件上的一些孔和孔系,以及孔和型腔與基準面有嚴格要求的箱體,容易得到保證,適合于批量加工。 臥式加工中心的功能較立式加工中心多,在立式加工中心上加工不了的工件,在臥式加工中心上一般都能加工。 2.1 技術條件 我們所設計的加工中心的主要的技術參數(shù)有: ⑴ 刀庫容量: 24把刀 ⑵ 刀柄型號: 40號刀柄 ⑶ 刀具最大直徑: 120㎜ ⑷ 刀具重量: 11㎏ ⑸ 換刀時間: 5s ⑹ 選刀方式: 任選 2.2 總體布局 我們設計的加工中心的總體布局如圖1.1所示: 圖1.1 臥式加工中心的總體布局 2.3 臥式加工中心的機械結(jié)構: ⑴主軸組件 對加工中心主軸組件的基本要求是具有足夠的剛度,精度,傳遞足夠的功率和轉(zhuǎn)矩,以及高速運轉(zhuǎn)和適應自動換刀的條件。主軸軸承多采用高精度,高剛度,高速滾動軸承。 臥式加工中心的主軸組件按進給功能分有鏜軸進給,滑枕進給及非進給主軸等類型,大多數(shù)采用非進給型主軸。 ⑵立柱 立柱有側(cè)面導軌型與正面導軌型。側(cè)面導軌型立柱便于機床的總體設計,制造成本也較低,并抑易于與非數(shù)控臥式鏜銑床建立模塊化系列關系,但這類立柱在機床工作時受力狀況較差,且熱變形的對稱性差,因而對機床加工精度影響較大。正面導軌型立柱多采用門式結(jié)構,有較好的熱對稱結(jié)構和受力條件,多數(shù)加工中心采用這種立柱形式。 3 工作臺 臥式加工中心可采用自動分度工作臺,數(shù)控回轉(zhuǎn)工作臺。 換刀機械手的設計 3.1 刀具的交換裝置 3.1.1 自動換刀裝置 加工中心區(qū)別于NC鏜銑床的主要特點就在于它具有根據(jù)工藝要求自動更換所需刀具的功能,即自動換刀(ATC)機能。 機械手是自動換刀裝置中交換刀具的主要工具,它擔負著把刀庫上的刀具送到主軸上,再把主軸上已用過的刀具返回刀庫上的任務。 加工中心的自動換刀形式,可分為有機械手換刀方式和無機械手換刀方式兩類。無機械手換刀方式,適用于采用40號以下刀柄的小型加工中心或換刀次數(shù)少的用量型刀具的重型機床,這種換刀方式?jīng)]有機械手,因而結(jié)構簡單。另外,刀庫回轉(zhuǎn)是在工步與工步之間,即非切削時進行的。因此,雖然刀庫設置在立柱頂面,卻免去了刀庫回轉(zhuǎn)時的震動對加工精度的影響。 無機械手換刀方式中,刀庫可以是圓盤型、直線排列式,也可以是格子箱式等。無機械手換刀方式中特別需要注意的是刀庫轉(zhuǎn)位定位的準確度,為保證轉(zhuǎn)位準確,就要盡力消除刀庫驅(qū)動傳動鏈的間隙,為此可采用雙導程蝸桿蝸輪副,或采用可以相互錯位的兩片齒輪結(jié)構形式,或采用插銷定位、反靠定位等方法來準確定位。圓盤型刀庫可設在立柱頂上、立柱主軸箱的側(cè)面,也可設在橫梁一端,或設在主軸箱上,由主軸箱和刀庫配合運動完成自動換刀動作。直線排列式刀庫可設在工作臺上方,也可設在工作臺的一端或兩端,由主軸箱或工作臺配合運動完成自動換刀動作。格子箱式刀庫可設在雙工作臺的中間,換刀時,小直徑刀具可軸向取刀,大直徑刀具可徑向取刀。 加工中心的自動換刀裝置,通常是由刀庫和機械手組成,它是加工中心的象征,又是加工中心成敗的關鍵環(huán)節(jié)。因此各加工中心制造廠家都在下大力研制動作迅速、可靠性高的自動換刀裝置,以求在激烈的競爭中取得好效益,自動換刀裝置是加工中心的核心內(nèi)容,各廠家都在保密,極少公開有關資料,尤其機械手部分更是如此。 無機械手換刀方式中特別需要注意的是刀庫轉(zhuǎn)位定位的準確度。為保證轉(zhuǎn)位準確,就要盡力消除刀庫驅(qū)動傳動鏈的間隙,為此可采用雙導程蝸桿蝸輪副,或采用可以相互錯位的兩片齒輪結(jié)構形式;或采用插銷定位、反靠定位等方法來準確定位。 采用機械手進行刀具交換的方式應用的最為廣泛,這是因為機械手換刀有很大的靈活性,而且可以減少換刀時間。 圖見零號圖自動換刀機械手。換刀動作如表3.1所示: 表3.1 機械手的換刀動作 3.1.2 機械手的種類 加工中心換刀機械手的種類繁多,可以說每個廠家都推出自己的獨特的換刀機械手,在加工中心的自動換刀系統(tǒng)中,是機械手具體執(zhí)行刀具的自動更換,對其要求是迅速可靠、準確協(xié)調(diào)。由于加工中心機床的刀庫和主軸,其相對位置距離不同,相應的換刀機械手的運動過程也不盡相同,它們由各種形式的機械手來完成。常見的機械手有: ⑴單臂單爪回轉(zhuǎn)式機械手 機械手擺動的軸線與刀具主軸平行,機械手的手臂可以回轉(zhuǎn)不同的角度來進行自動換刀,換刀具的所花費的時間長,用于刀庫換刀位置的刀座的軸線相平行的場合。如圖所示: 圖3.1 單臂單爪回轉(zhuǎn)式機械手 ⑵單臂雙爪回轉(zhuǎn)式機械手 圖3.2 單臂雙爪回轉(zhuǎn)式機械手 這種機械手的手臂上有兩個卡爪,兩個卡爪有所分工,一個卡爪只執(zhí)行從主軸上取下“舊刀”送回刀庫的任務,另一個卡爪則執(zhí)行由刀庫取出“新刀”送到主軸的任務,其換刀時間較上述單爪回轉(zhuǎn)式機械手要短,如圖3.2 所示。 ⑶雙臂回轉(zhuǎn)式機械手(俗稱扁擔式) 這種機械手的兩臂各有一個卡爪,可同時抓取刀庫及主軸上的刀具,在回轉(zhuǎn)180之后有同時將刀具歸回刀庫及裝入主軸,是目前加工中心機床上最為常用的一種形式,換刀時間要比前兩種都短,如圖3.3-a)所示。 圖3.3-a) 雙臂回轉(zhuǎn)式機械手 這種機械手在有的設計中還采用了可伸縮的臂,如圖3.3-b)所示: 圖3.3-b) 雙臂回轉(zhuǎn)式機械手 ⑷雙機械手 這種機械手相當與兩個單臂單爪機械手,相互配合起來進行自動換刀。其中一個機械手執(zhí)行拔“舊刀”歸回刀庫,另一個機械手執(zhí)行從刀庫取“新刀”插入機床主軸上,如圖3.4所示: 圖3.4 雙機械手 ⑸雙臂往復交叉式機械手 圖3.5 雙臂往復交叉式機械手 這種機械手兩臂可往復運動,并交叉成一定角度。兩個手臂分別稱作裝刀手和卸刀手。卸刀手完成往主軸上取下“舊刀”歸回刀庫,裝刀機械手執(zhí)行從刀庫取出“新刀”裝入主軸。整個機械手可沿導軌或絲杠作直線移動或 繞某個轉(zhuǎn)軸回轉(zhuǎn),以實現(xiàn)刀庫與主軸之間的運送刀具工作,如圖3.5所示。 ⑹雙臂端面夾緊式機械手 這種機械手只是在夾緊部位上和前幾種不同,上述幾種機械手均靠夾緊刀柄的外圓表面來抓住刀具,而此種機械手則是夾緊刀柄的兩個端面,如圖3.6所示: 圖3.6 雙臂端面夾緊式機械手 由于雙臂回轉(zhuǎn)式機械手的動作比較簡單,而且能夠同時抓取和裝卸機床主軸和刀庫集中的刀具,換刀時間較短,我們本次設計所要求的換刀時間為5秒,故我們選用雙臂回轉(zhuǎn)式機械手。 如果我們采用不能伸縮的機械手,由于機械手回轉(zhuǎn)時其手部回轉(zhuǎn)半徑較大,如刀庫中刀具排得較密,可能碰撞刀具,且用這種類型的機械手直接在刀庫與主軸之間換刀,只宜采用順序換刀或刀具編碼式任意選刀,不然,換刀時間將增加。故我們采用可伸縮式的雙臂回轉(zhuǎn)機械手。 3.1.3 手爪的選擇 1.單臂雙爪式機械手的手爪 這種機械手的手爪,大都采用機械鎖刀方式,有些大型加工中心,亦有采用機械加液壓鎖刀方式,以保證大而重的刀具在換刀中不被甩出,較普通采用的機械鎖刀方式手爪——彈簧銷式手爪。如圖,A-A放大圖。 它是目前加工中心上用較多的一種,手臂的兩端個有一個手爪,刀具被彈簧2推著的活動銷4(類似于人的手指)頂靠在固定爪5中,鎖緊銷3被彈簧1頂起,使活動銷4被鎖住,不能后退,這就是保證了機械手在換刀過程中手爪中的刀具不會被甩出,當手臂處于抓刀位置時,鎖緊銷2被設置在主軸伸出端或刀庫上的撞塊壓下,活動銷4就可以活動,使得機械手可以抓?。ɑ蚍砰_)主軸或刀庫刀套中的刀具。 此外,鉗形手的杠桿手,用得也較普遍。 鎖銷2在彈簧作用下,其大直徑外圓頂著止退銷3,杠桿手爪6就不能擺動張開,手爪中的刀具就不會被甩出,當抓刀或還刀時,鎖銷2被裝在刀庫或主軸端處的撞塊壓回,止退銷3和杠桿手爪6就能擺動、張開。刀具就能裝入或取出。 鉗型手和杠桿手均為直線運動抓手。 機械手的手爪在抓住刀具后,還必須具有鎖刀功能,以防止在換刀過程中掉刀或刀具被甩出。當機械手松刀時,刀庫的夾爪既起著刀套的作用,又起著手爪的作用。對于雙臂回轉(zhuǎn)式機械手的手爪,大都采用機械鎖刀方式,有些大型加工中心,亦有采用機械液壓鎖刀方式,以保證大而重的刀具在換刀中不被甩出。手爪的形式有: ⑴機械鎖刀手爪——彈簧銷式手爪,使用這種形式的抓持機構,手爪不需要設置專門的傳遞裝置,因而結(jié)構簡單,使用廣泛。但在機械手有旋轉(zhuǎn)運動時,為避免刀具甩脫,手爪就必須有自鎖夾持機構,其結(jié)構較復雜。 ⑵鉗形杠桿機械手。這種機械手手爪的張合需要動力傳遞裝置,傳動較復雜,但手爪的結(jié)構可較簡單。使用也較普遍。 ⑶虎鉗形指。在手爪中設有定位銷,使刀具在手爪中定位。用這種形式的夾持機構時,刀具需經(jīng)特殊補充加工,不能使用標準刀具,所以使用者較少。 我們在這里采用第一種手爪。 3.1.4 刀具的夾持 在刀具自動交換裝置上,機械手抓刀具的方法大體上可以分為下列兩類: ⑴柄式夾持(軸向夾持)。 ⑵發(fā)蘭式夾持。 這種夾持方式,在刀具夾頭的前端,有供機械手用的發(fā)蘭盤。采用發(fā)蘭式夾持,當應用中間搬運裝置時,可以很方便地從一個機械手將刀具夾頭過渡到另一個輔助機械手上去,刀具夾頭采用帶洼形的法蘭盤夾持刀夾。 在這里,我們采用第一種夾持方式,刀柄型號為BT40。 圖3.7所示為標準刀具夾頭的錐柄柄部,由圖可見,刀柄圓柱部分的V形槽是供機械手夾持之用。帶V形槽圓柱右端,按所裝刀具(例如鉆頭、銑刀、鉸刀及鏜桿等)不同,根據(jù)標準可設計成不同形式。 圖3.7 刀柄的型式 表3-1為日本BT標準刀柄的尺寸: 表3-1 日本BT標準刀柄的尺寸: 柄部 型號 錐 體 螺 紋 孔 凸 緣 D1 L r l1 l2 l3 d1 g d2 t b BT40 44.45 65.4 1 9 30 70 17 M16 19 22.5 16.1 BT45 57.15 82.8 1.2 11 38 70 21 M20 23 29 19.3 BT50 69.85 101.8 1.5 13 45 90 25 M24 27 35.3 25.7 柄部 型號 凸 緣 參考尺寸 L1 W D2 D3 T Y Y1 V d D4 BT40 21 0.12 53 63 25 1.6 1.6 16.6 10 75.679 BT45 26 0.12 68 80 30 3.2 3.2 21.2 12 95.215 BT50 31 0.20 85 100 35 3.2 3.2 23.2 15 119.019 3.2 機械手的驅(qū)動裝置 這種機械手的拔刀、插刀動作,大都由油缸動作來完成。根據(jù)結(jié)構要求,可以采用油缸動,活塞固定;或活塞動,油缸固定的結(jié)構形式。 整個機械手由機械臂伸縮機構,機械爪開合機構,回轉(zhuǎn)機構及裝卸刀具直線運動機構組成。圖見自動換刀機械手的驅(qū)動裝置和驅(qū)動裝置外形。 3.2.1 手臂的伸縮運動: 回轉(zhuǎn)頭的兩端對稱分布著兩個機械臂,可以同時伸出抓刀。機械臂伸縮機構由回轉(zhuǎn)液壓缸1(見驅(qū)動外形圖),輸出軸47,齒輪44以及齒條39和45組成(見自動換刀機械手圖)。當壓力油通過支架28和貫穿花鍵軸30的通孔(見換刀機械手驅(qū)動裝置圖)進入回轉(zhuǎn)液壓缸1時,推動輸出軸47轉(zhuǎn)動,軸上的齒輪44便帶動齒條39和44作直線運動,使兩只機械臂同時伸出,通過齒條39及44上的擋塊52壓向調(diào)整螺釘53來限制終點位置。同時由左視圖中的微動開關30發(fā)出信號,以進行下一個動作。當回轉(zhuǎn)液壓缸改變油路時,機械臂便縮回。 3.2.2 手爪的開合(見自動換刀機械手圖) 機械臂的頭部帶有固定手爪14與活動手爪18,用來夾持刀柄之用?;顒邮肿?8可繞小軸15轉(zhuǎn)動,其一端由彈簧桿19作用支靠在小軸20上。當彈簧頂桿3未碰到擋塊13而自由伸出時,擋桿22在彈簧作用下,其一端的斜面與活動手爪18的端部斜面臺階相靠,從而將活動手爪18鎖死。當擋塊13左移,將彈簧頂桿3壓入時,頂桿3的一端迫使杠桿21順時針轉(zhuǎn)動。這樣,杠桿21的一端將擋桿22的斜面自活動手爪18的端部斜面滑開。因此,當活動手爪18伸向刀柄拔刀或插刀后收回時,刀柄表面可使活動手爪18壓縮彈簧而稍微張開,這樣機械爪即可將刀柄抱住或退出。與此同時,齒條44(或39)上的擋桿壓于調(diào)整螺釘而限位,同時微動行程開關動作發(fā)出下一動作的信號。由于機械爪伸向刀柄拔刀,或插刀后收回,都是當機械手處于軸向向左移動后的位置上進行的。為了使機械手的活動手爪18在這時能從自鎖狀態(tài)下松開,在機床床身立柱上設有固定桿35,在機械臂的一側(cè)有擋塊裝置。擋塊13、錐孔盤4(在端面上周向均勻分布有4個錐孔)和軸9固定相連,軸9裝于支架12內(nèi),其右端又與一端蓋10用螺紋固定。當擋塊13未與固定桿35相碰時,錐孔盤4處于與鋼球5相對位置,彈簧銷11頂著端蓋10,使錐孔盤4緊靠于支架12的端面上,此時機械臂的彈簧頂桿3自由伸出,活動手爪1處8于鎖死狀態(tài)。當機械手軸向向右移動后,固定桿35迫使擋塊13轉(zhuǎn)動,由于此時錐孔盤4端面上的錐孔與鋼球5錯開,這樣錐孔盤4即連同擋塊13、軸9、端蓋11、壓縮彈簧銷11向左移動。擋塊13即將機械臂上的彈簧頂桿3壓入,將活動手爪18自鎖緊狀態(tài)下松開。 當機械爪伸出抓住刀柄后,機械手軸向向左伸出,此時擋塊13亦同時離開固定桿35,借彈簧1的作用,將擋塊13拉回原來的錐孔盤4上錐孔與鋼球5相對的原始位置,由彈簧銷11的作用,使擋塊13又向右移動至錐孔盤4與支架12端面壓緊的位置。這時機械臂上的彈簧頂桿3又自由伸出,將活動手爪18鎖死,保證機械手將刀具拔出后,機械手能將刀具可靠地夾緊。 3.2.3 回轉(zhuǎn)運動(見驅(qū)動裝置圖) 回轉(zhuǎn)機械用來實現(xiàn)刀具的交換動作,由圖驅(qū)動外形裝置圖可見它由手臂14,回轉(zhuǎn)座51組成的。手臂14與花鍵軸50固定連接,花鍵軸與兩個花鍵套筒49相連,后者則由固定在機床立柱上回轉(zhuǎn)座51上的兩個滾動軸承支撐。齒輪41通過花鍵軸套筒安裝在花鍵軸的右端?;剞D(zhuǎn)液壓缸的結(jié)構見第三張圖,回轉(zhuǎn)缸殼體79和上端蓋86、下端蓋74、定片93間均用螺釘聯(lián)接,并將它們作為一體通過上端蓋與固定在立柱上。轉(zhuǎn)軸2支承在上、下端蓋上,與動片90固定聯(lián)接,其伸出端通過花鍵軸部分與中間座的齒輪聯(lián)接,向手臂傳遞運動,當液壓缸通入高壓油而使轉(zhuǎn)軸轉(zhuǎn)動時,通過傳動齒輪99帶動齒輪41回轉(zhuǎn),這樣,由花鍵軸50帶動手臂14轉(zhuǎn)動,其轉(zhuǎn)角兩相對180的極限位置,可由螺釘67及53限定,同時由螺釘65及68壓下微動開關69及52發(fā)出到位信號,以進行下一個動作。 3.2.4 直線運動 回轉(zhuǎn)頭14的向左或向右(拔刀或插刀)的直線運動是由液壓缸來實現(xiàn)。液壓缸座系固定于機床立柱上,活塞桿端部有聯(lián)接件與花鍵軸相連。當活塞桿因液壓缸進入高壓油而向左或向右運動時,通過聯(lián)接件即可帶動花鍵軸作直線運動,從而帶動回轉(zhuǎn)頭及機械手臂作向左或向右運動。在液壓缸兩端設有緩沖裝置,可防止活塞與液壓缸端面的撞擊。當活塞在左右兩極限位置時,都設有可調(diào)擋塊,由微動開關作用發(fā)出到位信號。 需要提醒的是,既要保證不漏油,又要保證機械手動作靈活。過緊的密封,往往影響機械手的正常動作。 這種液壓缸活塞驅(qū)動的機械手,每個動作結(jié)束之前均需設置緩沖機構,以保證機械手的工作平穩(wěn)、可靠。緩沖結(jié)構可以是小孔節(jié)流,可以外接節(jié)流閥或是緩沖閥等。 為了使機械手工作平穩(wěn)可靠,除了要設有緩沖機構外,還要考慮盡可能減小機械手的慣量。圓柱體圍繞旋轉(zhuǎn)中心的運動慣量可由下式確定: J=J0+WR2/9.8 (N.m.s^2) 式中 J0——圓柱體繞其自身中心的慣量(Nms2) W——圓柱體的重量(N) R——旋轉(zhuǎn)半徑(m) 由上式可見,慣量與物體重量成正比,與旋轉(zhuǎn)半徑的平方成正比。因此要盡可能采用密度小質(zhì)量請的材料制造有關的零件,要盡可能的減小機械手的回轉(zhuǎn)半徑。 由于液壓驅(qū)動的機械手需要采用嚴格的密封,因此還需要緩沖機構。 3.3 設計計算 3.3.1 手指夾緊力的計算: 手指對工件的夾緊力可按下式計算: N≥k1k2k3G kgf 式中k1——安全系數(shù),通常取1.2~2,我們?nèi)1=1.8; k2——動載系數(shù),主要考慮慣性力的影響,可按k2=1+a/g估算; a為機械手在搬運過程中的加速度,單位為m/s2,a=9.8m/s2,g為重力加速度,所以這里k2=1; k3——方位系數(shù),按《機械工程手冊》(第10卷)表56.2-3選取k3=0.9~1.1,我們?nèi)3=1.0; G——被夾持工件的重量,單位kg,這里G=11kg。 則我們設計的機械手手指的夾緊力為: N≥1.811.011 kgf = 19.8 kgf 3.3.2 齒輪的設計 齒輪傳動按照兩齒輪軸在機構中相對位置的不同分為:兩軸相互平行,兩軸相交和兩軸交錯(即不平行也不相交)三類。 用與平行軸傳動的有;直齒、斜齒、圓柱齒輪、直齒、斜齒內(nèi)齒輪、直齒、斜齒緣,這些齒輪有稱為平面齒輪。 用與相交軸傳動的有:兩軸線垂直相交和兩軸線相交但不垂直的直齒、圓弧齒、延伸外擺線齒錐齒輪。 用與交錯軸傳動的有:螺旋齒輪、蝸輪蝸桿和軸線偏置的錐齒輪(雙曲線齒輪)這些齒輪又稱空間齒輪。 齒輪齒形曲線主要采用漸開線、其它還有擺線、圓弧線等,由于漸開線齒形容易制造,便于安裝,所以大多數(shù)齒輪采用漸開線齒形。 齒形標準:(摘自JB-100-60,JB304-62) 齒輪傳動是機械傳動中最重要的傳動之一,形式很多,應用廣泛,傳遞的功率近十萬千瓦,圓周速度可達200m/s。齒輪傳動按照兩齒輪軸在機構中相對位置的不同 一. 齒輪傳動主要特點: ①效率高 在常用的機械傳動中,以齒輪傳動的效率為最高。如一級圓柱齒輪的效率可達99%。這對大功率傳動十分重要,因為即使效率只提高1%,也有很大的經(jīng)濟效益。 ②結(jié)構緊湊 在相同的使用條件下,齒輪傳動所需的空間尺寸一般較小。 ③工作可靠,壽命長 設計制造正確合理、使用維護良好的齒輪,工作十分可靠,壽命可長達一、二十年,這也是其它機械傳動所不能比擬的。這對車輛及礦井內(nèi)工作的機器尤為重要。 ④傳動比穩(wěn)定 傳動比穩(wěn)定往往是對傳動性能的基本要求。齒輪傳動獲得廣泛應用,也就是由于這一特點。 但是齒輪傳動的制造及安裝精度要求高,價格較貴,且不宜用于傳動距離大的場合。 齒輪傳動可做成開式、半開式及閉式。如在農(nóng)業(yè)機械、建筑機械以及簡易的機械設備中,有一些齒輪傳動沒有防塵罩或機殼,齒輪完全暴露在外邊,這叫開式齒輪傳動。這種傳動外界雜物極易侵入,而且潤滑不良,因此工作條件不好,輪齒也極易磨損,故只宜用于低速傳動。當齒輪傳動裝有簡易的防護罩,有時還把大齒輪部分地浸入油池中,則稱為半開式齒輪傳動。它的工作條件雖有改善,但仍不能做到防止外界雜物侵入,潤滑條件也不算最好。而汽車、機床、航空發(fā)動機等所用的齒輪傳動,都是裝在精確加工而且封閉嚴密的箱體(機匣)內(nèi),這稱為閉式齒輪傳動(齒輪箱)。它與開式或半開式相比,潤滑及防護等條件最好,多用于重要的場合。 二. 設計原則: 所設計的齒輪傳動在具體的工作情況下,必須具有足夠的、相應的工作能力,以保證在整個工作壽命期間不致失效。目前設計一般使用的齒輪傳動時,通常按保證齒根彎曲疲勞強度及保證齒面接觸疲勞強度兩準則進行計算。 設計齒輪傳動時,應使齒面具有較高的抗磨損、抗點蝕、抗膠合及抗塑性變形的能力,而齒根要有較高的抗折斷的能力。因此,對齒輪材料性能的基本要求為:齒面要硬,齒芯要韌。常用的齒輪材料有鋼、鑄鐵和一些非金屬材料。 三. 設計步驟: 整個回轉(zhuǎn)頭回轉(zhuǎn)180換刀的運動是由回轉(zhuǎn)液壓缸8驅(qū)動,回轉(zhuǎn)液壓缸的輸出軸上安裝有齒輪99,齒輪41裝在套筒上,回轉(zhuǎn)液壓缸固定在立柱上。當回轉(zhuǎn)液壓缸動片轉(zhuǎn)動時,齒輪99帶動齒輪41轉(zhuǎn)動,其轉(zhuǎn)角的極限位置可由螺釘限定,同時有微動行程開關發(fā)出到位信號,其運動的計算公式為: φ41/φ99=Z2/(Z1+Z2) 式中φ41 ----回轉(zhuǎn)頭的回轉(zhuǎn)角度 φ99----回轉(zhuǎn)缸動片的轉(zhuǎn)角 Z1----齒輪41的齒數(shù) Z2----齒輪99的齒數(shù) 由于在這里φ44=180,φ99=280,即: 180/280= Z2/(Z1+Z2) 解得:兩齒輪的齒數(shù)比μ= Z2/Z1=1.8 ⒈選定齒輪類型、精度等級、材料及齒數(shù) 1) 選用直齒圓柱齒輪傳動。 2) 換刀機械手換刀時速度較高,我們選用6級精度(GB10095-88)。 3)材料選擇。 由表10-1選擇小齒輪材料為40Cr(調(diào)質(zhì)),硬度為280HBS,大齒輪材料為45鋼(調(diào)質(zhì))硬度為240HBS,二者材料硬度差為40HBS。 4)選小齒輪齒數(shù)為Z1=24,大齒輪齒數(shù)Z2=μZ1=1.824=43.2,取Z2=43。 ⒉按齒面接觸強度設計 由設計公式(10-9a)進行計算,即: d1t≥2.32{(KtT1/φd)[(μ1)/μ](ZE/[σH])2}1/3 1)確定公式內(nèi)各計算式數(shù)值 ⑴試選載荷系數(shù)Kt=1.3 ⑵計算小齒輪傳遞的轉(zhuǎn)矩 T1=95.5105P1/n1=95.510530/ 1460N.mm =1.962105N.mm ⑶由表10-7選取齒寬系數(shù)φd=1 ⑷由表10-6查的材料的彈性影響系數(shù)ZE =189.8MPa1/2 ⑸由圖10-21d按齒輪齒面硬度查得小齒輪的接觸疲勞強度極限 σHlim1 =600MPa;大齒輪的接觸疲勞強度極限σHlim2=550MPa; ⑹由式10-13計算應力循環(huán)次數(shù) N1=60n1jLh=6014601(2830015)=6.307109 N2=4.147109/3.2=1.296109 ⑺由圖10-19查得接觸疲勞壽命系數(shù)KHN1 =0.91;K HN2=0.94 ⑻計算接觸疲勞許用應力 取失效概率為1%,安全系數(shù)S=1,由式(10-12)得 [σH]1= KHN1σHlim1/S=0.91600MPa=546MP [σH]2= KHN2σHlim2/S=0.94550Mpa=517Mpa 2)計算 ⑴試算小齒輪分度圓直徑d1t,代入[σH]中較小的值 d1t≥2.32{(KtT1/φd)[(μ1)/μ](ZE/[σH])2}}1/3 =2.32{(1.31.962105/1)[(4.7+1)/4.7](109.8/517)2}1/3 =80.445mm ⑵計算圓周速度v v=πd1tn1/601000=π80.4451460/601000m/s=6.15m/s ⑶計算齒寬b b=φdd1t=180.445㎜=80.445㎜ ⑷計算齒寬與齒高之比b/h 模數(shù) mt=d1t/ Z1=80.445/24=3.352 齒高 h=2.25mt=2.253.352mm=7.54mm b/h=80.445/7.54=10.67 ⑸計算載荷系數(shù) 根據(jù)v=6.15m/s,6級精度,由圖10-8查得動載荷系數(shù): KV=1.02; 直齒輪 ,假設KAFt/b≤100N/㎜.由表10-3查得: KHα=KFα=1.2; 由表10-4查得使用系數(shù): KA=1; 由表10-4查的7級精度、小齒輪相對支承非對稱分布時, KHβ=1.12+0.18(1+0.6φd2)φd2+0.2310-3b 將數(shù)據(jù)代入后得 KHβ=1.12+0.18(1+0.612)12+0.2310-380.445=1.75 由b/h=10.67, KHβ=1.75,查圖10-13得KFβ=1.35;故載荷系數(shù): K=KAKVKHαKHβ=11.021.21.75=2.142 ⑹按實際的載荷系數(shù)校正所算得的分度圓直徑,由式(10-10a)得 d1= d1t(K/Kt)2/3=80.445(2.142/1.3)2/3㎜=95.01㎜ ⑺計算模數(shù)m m=d1/ Z1=95.01/24㎜=3.95㎜ ⒊按齒根彎曲強度設計 由式(10-5)得彎曲強度計算的設計公式為 m≥[(2KT1/φd Z12)(YFaYSa/[σF])]1/3 1)確定公式內(nèi)的各計算數(shù)值 ⑴由圖10-20c查得小齒輪的彎曲疲勞強度極限: σFE1=500MPa 大齒輪的彎曲疲勞強度極限: σFE2=380MPa ⑵由圖10-18查得彎曲疲勞壽命系數(shù): KFN1=0.85 KFN2=0.88 ⑶計算彎曲疲勞許用應力 取彎曲疲勞安全系數(shù): S=1.4 由式(10-12)得 [σF]1= KFN1/σFE1=0.85500/1.4MPa=303.57Mpa [σF]2= KFN2/σFE2=0.88380/1.4MPa=238.86MPa 計算載荷系數(shù) K=KAKVKFαKFβ=11.021.21.35=1.944 ⑸查取齒形系數(shù) 由表10-5 查得: YFa1=2.65 YFa2=2.226 ⑹查取應力校正系數(shù) 由表10-5查得: YSa1 =1.58 YSa2=1.764 ⑺計算大、小齒輪的YFaYSa/[σF]并加以比較 YFa1YSa1/[σF]1 =2.651.58/303.57=0.01379 YFa2YSa2/[σF]2=2.2261.764/238.86=0.01644 大齒輪的數(shù)值大。 2)設計計算 m≥[(21.9449.948105)/1242]0.1644]1/3㎜=2.792㎜ 對比計算結(jié)果,由齒面接觸疲勞強度計算的模數(shù)大于由齒根彎曲疲勞強度計算的模數(shù),由于齒輪模數(shù)的大小主要取決于彎曲強度所決定的承載能力,而齒面接觸疲勞強度所決定的承載能力,僅與齒輪直徑(即模數(shù)與齒數(shù)的乘積)有關,可取由彎曲強度算得的模數(shù)2.792并就近圓整為標準值m=3。按接觸強度算得的分度圓直徑d1=95.01㎜,算出: 小齒輪齒數(shù): z1= d1/m=95.01/3=32 大齒輪齒數(shù): z2=μz1=1.832=57.6 取z2=58 這樣設計出的齒輪傳動,既滿足了齒面接觸疲勞強度,又滿足了齒根彎曲疲勞強度,并做到結(jié)構緊湊,避免浪費。 ⒋幾何尺寸計算 1) 計算分度圓直徑 d1=z1m=323㎜=96㎜ d2=z2m=583㎜=174㎜ 2)計算中心距 a= (d1+d2)/2=(96+174)/2㎜=134㎜ 3)計算齒輪寬度 b=φdd1=196㎜=96㎜ ⒌驗算 Ft =2T1/d1=21.965105/96N=4087.5N KAFt/b=14087.5/96N/㎜=42.58 N/㎜<100 N/㎜,合適. 另外,機械手臂的伸出和縮回是通過齒輪齒條傳動進行的,其設計過程與此相似,由于受篇幅的限制,這里就不再敘述設計步驟。 3.3.3 軸的設計 軸是組成機械的一個常用的重要零件,它支持著其他轉(zhuǎn)動零件如齒輪、蝸輪等零件回轉(zhuǎn)并傳遞轉(zhuǎn)矩,它由軸系支持、軸承則安放在箱體或機架上面,軸承、軸和軸上零件形成一個組成體,稱為軸系。組成軸系的主要零件-軸、軸承、聯(lián)軸器等稱為軸系零件。 軸設計的主要問題: ]軸的設計主要包括:軸的材料選擇、結(jié)構設計、軸的強度、剛度和振動穩(wěn)定性計算等,設計軸的主要步驟如下: (1) 根據(jù)機械傳動總體布局擬定軸上零件的位置。(2)選擇軸的材料。(3)初步估計軸的直徑。(4)進行軸的結(jié)構設計。(5)進行軸的強度、剛度、振動計算。(6)校核鍵、軸承、聯(lián)軸器等的強度或壽命。(7)繪出軸系的裝配圖、零件圖等。 軸是組成機械的一個重要零件。它支承著其他轉(zhuǎn)動件回轉(zhuǎn)并傳遞轉(zhuǎn)矩,同時它又通過軸承和機架聯(lián)接。所有軸上零件都圍繞軸心線作回轉(zhuǎn)運動,形成了一個以軸為基準的組合體——軸系部件。 一. 軸的總類: 軸按受載情況分為轉(zhuǎn)軸、心軸和傳動軸,其中轉(zhuǎn)軸既支承傳動機件又傳遞力,即承受彎矩和扭矩兩種作用;心軸只起支承旋轉(zhuǎn)件作用而不傳遞動力,即只承受彎矩作用;傳動軸主要傳遞動力,即主要承受扭矩作用。 按結(jié)構形狀分為:光軸、階梯軸、實心軸、空心軸等。 按幾何軸線形狀分為:直軸、曲軸、鋼絲軟軸。 設計軸時應考慮多方面的因素和要求,其中主要問題是軸的選材、結(jié)構、強度和剛度。對于高速軸還應考慮震動穩(wěn)定性問題。 二. 軸的常用材料 軸的材料種類很多,設計時主要根據(jù)對軸的強度、剛度、耐磨性等要求,以及為實現(xiàn)這些要求而采用的熱處理方式,同時考慮制造工藝問題加以選用,力求經(jīng)濟合理。 軸的常用材料是35、45、50優(yōu)質(zhì)碳素鋼,對于受載較小或不太重要的軸,也可以用A3、A5等普通碳素鋼。對于受力較大,軸的尺寸和重量受到限制,以及有某些特殊要求的軸,可采用合金鋼。 根據(jù)工作條件要求,軸可在加工前或加工后經(jīng)過整體或表面處理,以及表面強化處理(如噴丸、輥壓、氮化等),以提高其強度(尤其疲勞強度)和耐磨、耐腐蝕等性能。 軸一般由軋制圓鋼或鍛件經(jīng)切削加工制造。軸的直徑較小,可用圓鋼棒制造;對于重要的,大直徑或階梯直徑變化較大的軸,采用鍛坯。為節(jié)約金屬和提高工藝性,直徑大的軸還可以制成空心的,并且?guī)в泻附拥幕蛘咤懺斓耐咕墶τ谛螤顝碗s的軸,可采用鑄造。 軸的結(jié)構決定于受載情況、軸上零件的布置和固定方式、軸承的類型和尺寸、軸的毛坯、制造和裝配工藝及安裝、運輸?shù)葪l件。軸的結(jié)構應是盡量減小應力集中,受力合理,有良好工藝性,并使軸上零件定位可靠,裝拆方便。對于要求剛度大的軸,還應在結(jié)構上考慮減小軸的變形。 零件與軸的固定或聯(lián)接方式,隨零件的作用而異。一般情況下,為了保證零件在軸上具有固定的工作位置,需從軸向和周向加以固定。 三. 軸的設計過程 我們設計的驅(qū)動裝置中所采用的軸主要作用是既可以在插刀、拔刀時帶動整個機械手左右移動,又可在交換刀具時帶動回轉(zhuǎn)頭轉(zhuǎn)動,由于這兩個動作是分離的,我們在這里采用花鍵軸。 該花鍵軸左端與回轉(zhuǎn)頭固定聯(lián)接,兩個花鍵套筒通過軸承安裝在機床立柱上的回轉(zhuǎn)座內(nèi),齒輪41通過花鍵套筒安裝在花鍵軸的右端。當回轉(zhuǎn)缸通入壓力油而使轉(zhuǎn)軸轉(zhuǎn)動時,通過傳動齒輪99帶動齒輪41轉(zhuǎn)動,這樣,花鍵軸即可帶動回轉(zhuǎn)頭轉(zhuǎn)動,又由于直線液壓缸活塞桿端部有聯(lián)接件與花鍵軸相連,當活塞桿因油缸進入高壓油而向左或向右運動時,通過聯(lián)接件即可帶動花鍵軸作直線運動,從而帶動回轉(zhuǎn)頭及機械臂作向左或向右運動。 已知條件: 花鍵軸傳遞的功率為:P=30KW; 軸的轉(zhuǎn)速為n=1460r/min ⒈估算軸徑 選擇軸的材料為40Cr,經(jīng)調(diào)質(zhì)處理,由《機械設計手冊》(第四卷)表26.1-1查得材料機械性能數(shù)據(jù)為: σb=750MPa σs=550MPa σ-1=350MPa τ-1=200MPa 根據(jù)表26.3-1公式初步計算軸徑,由于材料為40Cr,由表26.3-2選取A=100,則得: dmin=A(P/n)1/3=100(30/1460) 1/3㎜=27.3㎜ 我們選用花鍵軸的尺寸為:Ddb=65㎜56㎜10㎜ ⒉軸的結(jié)構設計,如圖3.8-a)所示: ⒊軸上受力分析,如圖3.8-b)所示: 軸傳遞的轉(zhuǎn)矩為: T1=9.55106P/n=9.5510630/1460 N㎜=1.962105 N㎜ 齒輪的圓周力為: Ft=2T1/d1=21.962105/96 N=4088 N 齒輪的徑向力為: Fr= Fttgα=4088tg20 N=1488 N 圖3.8 ⒋求支反力 在水平面上的支反力(圖3.8-c): 由: ΣMA=0得: RBZa-Fr(a+b)=0 則: RBZ=Fr(a+b)/a =1488(280+80)/280N=1913.14N 由: ΣZ=0得: RAZ= Fr-RBZ=1488-1913=-425N 數(shù)值為負表示方向與圖示方向相反。 在垂直面內(nèi)的支反力(圖3.8-e): 由: ΣMA=0得: RBya-Ft(a+b)=0 則: RBy=Ft(a+b)/a=4088(280+80)/280N=5256N 由: ΣY=0得: RAy= Ft-RBy=4088-5256=-1168N 數(shù)值為負表示方向與圖示方向相反。 ⒌作彎矩和扭矩圖 齒輪的作用力在水平平面的彎矩圖如圖3.8-d所示: MDZ=RAZ(a+b)=-425(280+80) N㎜=-153000N㎜ M′DZ=RBZb=191380 N㎜=153000N㎜ 齒輪的作用力在垂直平面的彎矩圖如圖3.8-f所示: MDy=RAy(a+b)=-1168(280+80) N㎜=-420000N㎜ M′Dy=RByb=525880 N㎜=420000N㎜ 齒輪作用力在D截面作出的最大合成彎矩為: Md=(MDZ2+MDy2)1/2=[(-153000)2+(-420000)2 ]1/2 N㎜=447000 N㎜ 作出扭矩圖,如圖2.8-g所示: T1=1960000 N㎜ ⒍軸的強度校核 確定危險截面。根據(jù)軸的結(jié)構尺寸以及彎矩圖、扭矩圖,截面B處彎矩較大,且具有軸承配合引起的應力集中,截面D處彎矩最大,且有齒輪配合與鍵槽引起的應力集中,故屬危險截面?,F(xiàn)對D截面進行強度校核。 安全系數(shù)的校核計算: 由于該軸轉(zhuǎn)動,彎矩引起對稱循環(huán)的彎應力,轉(zhuǎn)矩引起的為脈動循環(huán)的剪應力。 彎曲應力副為: σα=MD/W W—抗彎截面系數(shù),由公式: W=[πd4+(D-d)(D+d)2zb]/32D W=[πd4+(D-d)(D+d)2zb]/32D =[π564+(62-56)(62+56)2610]/3262=20029 MPa 所以 σα=MD/W=447000/20029 MPa=18.091 MPa 由于是對稱循環(huán)彎曲應力,故平均應力σm=0,根據(jù)公式26.3-2, Sσ=σ-1/[(Kσσα/βεσ)+Ψσσm] 確定公式內(nèi)的各計算數(shù)值: ①σ-1—40Cr彎曲對稱循環(huán)應力時的疲勞極限,由表26.1-1查得, σ-1=350MPa ① Kσ—正應力有效集中系數(shù),由表26.3-6,用插值法求得: (750-700)/(800-750)=( Kσ-1.60)/(1.65-Kσ) 得: Kσ=1.625 ② εσ—尺寸系數(shù),由表26.3-11,查得: εσ=0.68 ③ β—表面質(zhì)量系數(shù),軸按磨削加工,由表26.3-9查得; β=0.68 代入公式得: Sσ=350106/[(1.62518.091/0.920.68)106+0] =7.45 剪應力副為: τm=τα=T1/2WT WT—抗扭截面系數(shù),由公式: W=[πd4+(D-d)(D+d)2zb]/16D =[π564+(62-56)(62+56)2610]/1662 =36182 MPa 所以 τm=T1/2WT=196000103/236.183 MPa=2.7 MPa 由公式26.3-2, Sτ=τ-1/[(Kττα/βετ)+Ψτστ] 確定公式內(nèi)的各計算數(shù)值: ①τ-1—40Cr彎曲對稱循環(huán)應力時的疲勞極限,由表26.1-1查得, τ-1=200MPa ②Kτ—彎應力有效集中系數(shù),由表26.3-6,用插值法求得: (750-700)/(800-750)=(Kτ-2.45)/(2.55-Kτ) 得: Kτ=2.5 ③ετ—尺寸系數(shù),由表26.3-11,查得: ετ=0.68 ④β—表面質(zhì)量系數(shù),軸按磨削加工,由表26.3-9查得; β=0.68 ④ Ψτ—平均應力折算系數(shù),由表26.3-13,查得: Ψτ=0.29 代入公式得: Sτ=200106/[(2.52.7/0.920.68)106+0.292.7106]=20.32 則: Sca=SσSτ/[ Sσ2+ Sτ2]1/2=7.4520.32/[ 7.452+20.322]1/2=6.99 由表26.3-4可知,[S]=1.3~2.5 故S>[S],則該軸是安全的。 3.3.4 軸承的設計 滾動軸承是現(xiàn)代機器中應用廣泛的部件之一,它是依靠主要元件間的滾動接觸來支承轉(zhuǎn)動零件的。其優(yōu)點主要有摩擦阻力小,功率消耗少,起動容易等。 一. 軸承的分類 如果僅按軸承用于承受的外載荷不同來分類時,滾動軸承可以概括地分為向心軸承、推力軸承和向心推力軸承,主要承受徑向載荷的軸承叫做向心軸承;只能承受軸向載荷的軸承叫做推力軸承;能同時承受徑向載荷和軸向載荷的軸承叫做向心推力軸承。 二. 軸承的選用原則 軸承的選用,包括類型、尺寸、精度、游隙、配合以及支承形式的選擇。首先是選擇軸承的類型,在選擇時應考慮的主要因素有:軸承的載荷、轉(zhuǎn)速和調(diào)心性能、安裝和拆卸等。 根據(jù)載荷的大小選用軸承類型時,由于滾子軸承中的主要元件是線接觸,宜用于承受較大的載荷,承載后的變形也較小。而球軸承中則主要為點接觸,宜用于承受較輕的或中等的載荷,故在載荷較小時,應優(yōu)先選用球軸承。 根據(jù)載荷的方向選擇軸承時,對于純軸向載荷,一般選用推力軸承;對于純徑向載荷,一般選用深溝球軸承、圓柱滾子軸承或滾針軸承;當同時承受徑向載荷和軸向載荷,而軸向載荷不大時,可選用深溝球軸承或接觸角不大的角接觸球軸承或圓錐滾子軸承,當軸向載荷較大時,可選用接觸角較大的角接觸球軸承或圓錐滾子軸承。 在一般轉(zhuǎn)速下,轉(zhuǎn)速的高低對類型的選擇不會發(fā)生什么影響,只有在轉(zhuǎn)速較高時,才會有比較顯著的影響。球軸承與滾子軸承相比較,有較高的 極限轉(zhuǎn)速,故在高速時應優(yōu)先選用球軸承。軸承的極限轉(zhuǎn)速是在一定載荷和一定潤滑條件下,滾動軸承所能允許的最高轉(zhuǎn)速,它與軸承類型、尺寸、精度、游隙,保持架的材料與結(jié)構、潤滑方式、潤滑劑的性質(zhì)與用量、載荷的大小與方向以及散熱條件等因素有關。 此外,軸承類型的選擇還應該考慮軸承裝置整體設計的要求,如軸承的配置使用要求、游動要求等。 三. 軸承的設計過程 根據(jù)以上原則,我們在設計中,花鍵套筒的支撐我們選用角接觸球軸承,它可以同時承受徑向載荷和軸向載荷,也可單獨承受軸向載荷,能在較高轉(zhuǎn)速下正常工作,由于一個軸承只能承受單向的軸向力,因此,一般成對使用。且承受軸向載荷的能力與接觸角α有關。接觸角大的,承受軸向載荷的能力也高。 成對安裝的角接觸球軸承,是由兩套相同系列的單列角接觸球軸承選配組成,作為一個支承整體。按其外圈不同端面的組合分為背對背方式和面對面方式兩種,背對背方式是指一個支承上的兩個軸承小口相對,構成70000/DB型,面對面方式是指一個支承上的兩個軸承大口相對,構成70000/DF型,我們采用70000/DF型。在進行壽命計算時,其基本額定動載荷和基本額定靜載荷均應取雙列軸承的數(shù)值,如單列軸承的基本額定動載荷和基本額定靜載荷分別為Cr、C0r,則成對安裝的軸承的基本額定動載荷為C=i0.7Cr基本額定靜載荷C0=iC0r(其中I為支撐整體中單個軸承數(shù)),極限轉(zhuǎn)速為單個軸承的60%~80%?;ㄦI軸的D=62㎜,我們選用軸承型號為7214AC,參數(shù)見下表: 軸承型號 d D B a r1min Cr C0r 極限轉(zhuǎn)速(r/min) 7214AC 70 125 24 35.1 0.6 69.2 57.5 6700 其中極限轉(zhuǎn)速是采用油潤滑的轉(zhuǎn)速,若采用脂潤滑,極限轉(zhuǎn)速為4500 r/min。 軸承的安裝如圖3.9所示: 圖3.9 已知條件: 軸上齒輪受切向力 Ft=4088N, 齒輪受徑向力 Fr=1488N, 齒輪的分度圓直徑為 d=96㎜, 齒輪轉(zhuǎn)速為 n=1460r/min, 運動中無沖擊, 軸承預期計算壽命為 L′h=15000h。 成對安裝的7214AC軸承: 基本額定動載荷為:C=i0.7Cr= 20.769.2KN=112.4KN 基本額定靜載荷為:C=iCr=257.5KN=115KN ⒈求兩軸承受到的徑向載荷Fr1和Fr2 將軸系部件受到的空間力系分解為鉛垂面(圖3.9-b)和水平面(圖3.9-3c)兩個平面力系。其中圖3.9-c的Ft是通過另加轉(zhuǎn)矩而平移到的,指向軸線,由分析可知: Fr1V=Fr(280+80)/280=1488360/280N=1913.14N Fr2V=Fr- Fr1V=1488-1913.14=-425.14N Fr1H=Ft(280+80)/280=4088360/280N=5256N Fr2H=Ft- Fr1H=4088-5256=-1168N Fr1=(Fr12V+Fr12H)1/2=(1913.142+52562)1/2N=5593.36N Fr2=- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 臥式 加工 中心 機械手 設計
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.szxfmmzy.com/p-9957620.html