手機后殼注塑模具設計【原版】
手機后殼注塑模具設計【原版】,原版,手機,注塑,模具設計
畢業(yè)設計報告(論文)
報告(論文)題目:手機后殼注塑模具設計
作者所在系部:
作者所在專業(yè):
作者所在班級:
作 者 姓 名 :
作 者 學 號 :
指導教師姓名:
完 成 時 間 :
摘 要
本設計說明書主要講述對手機后蓋進行模具設計的過程。通過對塑件的工藝分析,設計出塑料模具。
本論文首先簡單介紹了模具設計與分類,然后對產(chǎn)品材料性能作了介紹,并初步選擇注射機。
本說明書還詳細敘述了模具結構方案,包括確定分型面、成型零部件的結構設計、斜頂內抽芯機構、脫模機構、合模導向機構、冷卻系統(tǒng)等等的設計過程。還有重要零件的工藝參數(shù)的選擇與計算。校核注射模與注射機的關系等。
本設計主要是通過使用CAXA與AutoCAD完成裝配圖、零件圖。此次設計綜合了大學四年來所學的專業(yè)知識,從而進一步鞏固了模具設計方面的相關知識,并積累了相關的設計意念與經(jīng)驗。
The graduation project on the brochures of the main mobile phone back for the die design process. The plastic parts of the process, the design of a two-mode point of the plastic mold.
First of all, this paper a brief introduction of the mold design and classification, and then the product was introduced by the material properties, and the initial choice of injection machine.
This statement has also described in detail the structure of the program die, including the identification of sub-surface, forming the structural design of parts and components, core-pulling mechanism within Xieding, Stripping agencies Die-oriented institutions, and so on the cooling system design process. There is still an important part of the process parameters of choice and calculation. Check with the injection mold injection machines, such as the relationship.
This design is through the use of CAXA and AutoCAD completion of the assembly, parts map. The integrated design of a university graduate in three years the school's expertise to further consolidate the mold design-related knowledge, and the accumulation of related design ideas and experience.
關鍵詞:側抽芯 塑料模具 注射機
目錄
摘要
第一章、塑件結構工藝分析與設計
1.1 材料的選用
1.2 脫模斜度
1.3 加強肋
1.4 塑件尺寸、公差與精度
1.5 壁厚
第二章、注射成型機的選擇
2.1 注射機的選用
2.2 鎖模力校核
第三章 、注射模的機構設計
3.1 型腔數(shù)目的確定
3.2分型面的選擇
3.3澆注系統(tǒng)設計
3.3.1主流道設計
3.3.2分流道設計
3.3.3澆口的設計
3.4成型零件結構設計
3.5排氣系統(tǒng)設計
第四章 、側抽芯機構的設計
4.1 滑塊內側分型抽芯機構
4.2 抽芯距計算
第五章 、工作尺寸計算
5.1計算公式
5.2凹模的尺寸計算
5.3型芯的尺寸計算
第六章 、冷卻系統(tǒng)的設計與計算
第七章 、模具閉合高度的確定
結語
致謝
參考文獻
塑件的基本信息
材料:ABS+PC 公差等級:IT2 批量:大批量生產(chǎn)
第1章 塑件結構工藝分析與設計
1.1 材料的選用
該塑件為手機后殼,要求具有一定的強度、剛度、耐熱和耐磨損等性能,同時還必須滿足絕緣性。
聚碳酸酯?透明度較高,沖擊韌性好,而且耐蠕變,使用溫度范圍廣,尺寸穩(wěn)定性好,電絕緣性優(yōu)良,耐候性、無毒性。由于聚碳酸酯熔體粘度較高,在成型過程中極少發(fā)生泄漏現(xiàn)象。
ABS合成塑料以其具有很好的韌性( 抗震性) 、密封性,很高的機械強度,耐化學腐蝕,拿在手上很有質感的特點而受到人們的青睞。有優(yōu)越的耐沖擊強度,特別是在低溫有無與倫比的沖擊強度,而且熱變形溫度高 。電性能,耐化學藥品性,耐油性好,易電鍍 。加工適應性好,注射成型,擠出成型,模壓成型等所有的加工方法都可以,而且尺寸穩(wěn)定性好,耐堿性,耐應力開裂性也好
根據(jù)以上特點以及經(jīng)濟因素,采用ABS+PC塑料,規(guī)格性能如表1所示:
表1
代號
PC+ABS
比重
1.10—1.15
收縮率
0.004—0.006
熔融溫度
230—300℃
成型模溫
50—100℃
成型壓力
100—200Mpa
1.2 脫模斜度
設計脫模斜度的目的是便于塑件的脫模,避免在脫模過程中拉傷塑件表面,其大小取決于塑料的收縮率。脫模斜度的取向要根據(jù)塑件的內外型尺寸而定。塑件外形以型腔大端為準,尺寸要符合圖紙要求,斜度沿形狀減小方向。要求開模后塑件留在型芯上,塑件內表面的脫模斜度應小于外表面的脫模斜度。根據(jù)ABS 和PC的性能,參考《實用模具設計簡明手冊》表3—10,型芯和型腔的脫模斜度取1°。
1.3 加強肋
為了使塑件與底殼便于裝配,并有一定的強度和剛度,同時又能避免因壁過厚而產(chǎn)生成型缺陷,在塑件內表面外側增設了多處加強肋。
1.4 塑件尺寸、公差與精度
該塑件長64mm,寬42.6mm,最高8.5mm。影響塑件公差的主要因素是: 模具制造誤差及磨損誤差,尤其是成型零件的制造和裝配誤差以及使用中的磨損、塑料收縮的波動、注射工藝條件的變化、塑件的形狀和飛邊厚度的波動、脫模斜度及成型后塑件的尺寸變化。該塑件選用尺寸精度等級為MT2,公差為GB/T14486——1993 尺寸公差數(shù)值。
1.5 壁厚
由于產(chǎn)品的壁厚與熔體的流動長度、 生產(chǎn)效率以及使用要求等有關, 從成本和生產(chǎn)效率來看, 產(chǎn)品壁厚過厚也是不可取的,它不僅會增加制品的成本,而且成型周期也較長, 所得制品的收縮率明顯增加。 因此,產(chǎn)品壁厚均為1.3mm,銜接部分的上下唇壁厚為0.3mm。
第2章 注射成型機的選擇
在模具設計時,根據(jù)產(chǎn)品幾何尺寸及模具結構特點,盡可能選用適合的注塑機以充分發(fā)揮設備的內在能力。從模具設計角度考慮,需要了解注射機的主要技術規(guī)范有:額定注射量、額定注射壓、額定鎖模力、模具安裝尺寸以及開模行程等。
2.1 注射機的選用
根據(jù)塑件的體積或重量大致確定模具的結構,初步確定注塑機的型號。根據(jù)手機殼的造型尺寸64x42.57x8.5mm,按注塑機加工能力和注塑量分類選用小型注塑機,型號選用XS-Z-60,其相關參數(shù)如表:
螺桿直徑(mm)
28
模具最大厚度(mm)
200
拉桿內間距(HxVmm)
190*300
注射時間(s)
20
標稱注塑容量(c)
60
高壓時間(s)
3
注塑壓力(MPa)
122
冷卻時間(s)
20
注塑速率(g/s)
120
噴嘴溫度(0C)
200
鎖模力(kN)
500
模具溫度(0C)
80
模具最小厚度(mm)
70
模板最大行程(mm)
180
2.2 鎖模力校核
鎖模力是指注射機構在工作中對模具所能施加的最大夾緊力。鎖模力與注射容量全面地反映了設備的主要特征和加工能力。
在實際注射成型中,由于制品形狀不同,所采用樹脂品種不同,注射工藝條件及模具結構不同,所需要的合模力大小也各不相同。因此,在選用注射機時,要對其合模力進行計算。通常,可采用下列公式進行:
F≥Pm(NAs+Aj)
式中: F-----注射機最大合模力(MN)
N------型腔個數(shù)
Pc----成型時型腔平均壓力(MPa)
As-----塑件在開模方向的最大投影面積(㎡)
Aj-----澆注系統(tǒng)在開模方向的最大投影面積(㎡)
從前面可知: N=2
計算得澆注系統(tǒng)以及塑件在開模方向上的投影面積約為:
0.064×0.042×2+0.08×0.006=0.005856㎡.
所以: F≥nPcA
=2×30×0.005856
=0.3514MN
=351.4KN
而注塑機合模力500KN>351.4KN,故滿足要求。
第3章 注射模的結構設計
3.1 型腔數(shù)目的確定
型腔數(shù)目的確定,應根據(jù)塑件的幾何形狀及尺寸、質量要求、批量大小、交貨期長短、注射機能力、模具成本等要求來綜合考慮。根據(jù)塑件質量要求,大型、中型、復雜塑件一般都采用單型腔注射模,而高精度塑件的型腔數(shù)原則上不超過4個,本模具型腔數(shù)采用一模兩腔。
3.2 分型面的設計
如何確定分型面,需要考慮的因素比較復雜。由于分型面受到塑件在模具中的成型位置、澆注系統(tǒng)設計、塑件的結構工藝性及精度、嵌件位置形狀以及推出方法、模具的制造、排氣、操作工藝等多種因素的影響,因此在選擇分型面時應綜合分析比較,從幾種方案中優(yōu)選出較為合理的方案。選擇分型面時一般應遵循以下幾項原則:
1、分型面應選在塑件外形最大輪廓處。
2、便于塑件順利脫模,盡量使塑件開模時留在動模一邊。
3、保證塑件的精度要求。
4、滿足塑件的外觀質量要求。
5、便于模具加工制造。
6、對成型面積的影響。
7、對排氣效果的影響。
8、對側向抽芯的影響。
綜上分型面選手機蓋底平面為分型面。
3.3澆注系統(tǒng)設計
3.3.1主流道設計
我的設計采用直澆口式主流道,如圖1所示:主流道入口直徑d應大于注射機噴嘴直徑1mm左右。這樣便于兩者能同軸對準,也使得主流道凝料能順利脫出。所以:
d =4+1=5mm
主流道入口的凹坑球面半徑R,應該大于注射機噴嘴球頭半徑約2~3mm。反之,兩者不能很好貼和,會讓塑料熔體反噴,出現(xiàn)溢邊致使脫模困難。故:
R=15+(2~3)=(17~18)mm
取R=18mm
錐孔壁粗糙度Ra≤0.8μm,取Ra0.63μm。主流道的錐角α=2°~4°。過大的錐角會產(chǎn)生湍流或渦流,卷入空氣。過小錐角使凝料脫模困難,還會使充模時流動阻力大,比表面增大,熱量損耗大。這里取2°。主流道的出口端應該有較大圓角r≈ D。
其中, D可用經(jīng)驗公式求出:
D=
其中, V----流經(jīng)主流道的熔體體積(c);
K----因熔體材料而異的常數(shù),取K=1.2;
所以, D==≈ 4.6mm
所以, r===0.58mm,這里取r=1mm
主流道的長度是L,一般按模板厚度確定。但為了減小充模時壓力降和減少物料損耗,以短為好。小模具控制在60mm之內。初步確定:
L=50mm
3.3.2 分流道設計
分流道的截面形狀有圓形、半圓形、矩形、梯形、V形等多種。其中圓形截面最理想,使用越來越多。本次設計采用單面圓形截面。
3.3.3 澆口設計
模具設計時,澆口的位置及尺寸要求比較嚴格,初步試模后還需進一步修改澆口尺寸,無論采用何種澆口,其開設位置對塑件成型性能及質量影響很大,因此合理選擇澆口的開設位置是提高質量的重要環(huán)節(jié),同時澆口位置的不同還影響模具結構??傊顾芗哂辛己玫男阅芘c外表,一定要認真考慮澆口位置的選擇, 綜合我的塑件,是比較容易流動的ABS和PC,而且零件外表面要求較高;我設計的澆口位置在手機后殼的底側。
3.4 成型零件結構設計
3.4.1 定模結構設計
定模是成型塑件外表面的成型零件。定模的基本結構可分為整體式、整體潛入式和組合式。根據(jù)本次設計的塑料的特點,采用整體式定模。
3.4.2 動模結構設計
動模和和動模型芯都是用來成型塑料制品的內表面的成型零件。動模也稱主型芯,用來成型塑件整體的內部形狀。與定模部分不同,它與注塑機后半部分相連它參于塑件的頂出,一般的模具設計都要求塑件留在動模部分,好容易脫模。因而動模一般比定模復雜。
我的塑件由于外表面向上,要求較高,而內表面裝配在手機里面,對于外觀并沒有太高的要求,所以只要保證尺寸的精確就可以了。經(jīng)過查資料和考證,我采用與定模部分一樣的結構——整體凸模。
3.5 排氣系統(tǒng)的設計
由于我的設計采用了大量的推桿以實現(xiàn)模具對塑件的均勻頂出,使得塑件不會因為應力不均勻而斷裂或留下痕跡;采用了滑塊來實現(xiàn)塑件的抽芯。這些結構都的存在著間隙,可以利用這些間隙實現(xiàn)排氣的功能,而不用設計另外的排氣結構。
第4章 抽芯機構設計
4.1 滑塊內側分型抽芯機構
由于本塑件結構的特殊性,塑件的成型機構大部分也就是抽芯機構。本模具滑塊設計如下圖
4.2 抽芯距計算
S=S1+2~3
S1——側成型零件成型位置點與不防礙塑件軸向推出之極限相關點間的距離(mm)
所以 S=2+2~3=4~5mm
第5章 工作尺寸計算
按照以上規(guī)定,現(xiàn)根據(jù)塑料件的尺寸按平均收縮率對模具尺寸進行計算。其中,我們由第一章可知,=0.5%, 塑件尺寸為長64mm,寬42.75mm,最高8.5mm。
本節(jié)所采用的主要代號及其含義如下:
——成型零件工作尺寸(mm)
——注射塑料的平均成型收縮率(%)
——塑件基本尺寸(mm)
----塑件公差值(mm)
——成型零件制造公差(mm),其值取/6~/3。當成型大型塑件時,取偏下限;當成型小
塑件或采用組合式型芯與凹模時,取偏上限。
5.1 計算公式
凹模徑向尺寸:L=[(1+S)L-3/4Δ];按增大凹模徑向尺寸修模
型芯徑向尺寸:L=( L+LS+0.75Δ)
凹模深度尺寸:H=[H(1+S)-2/3Δ]
型芯高度尺寸:H=(H+HS+2/3Δ)
5.2 凹模工作尺寸計算
由公式L=[(1+S)L-3/4Δ]
L1=(1.005*64-0.75*0.34)=64.065
L2=(1,.005*42.75-0.75*0.26)=42.769
由公式H=[H(1+S)-2/3Δ]
H=(1.005*8.5-2/3*0.14)=8.45
5.3 型芯工作尺寸計算
由公式L=( L+LS+0.75Δ)
L1=(1.005*61.4+0.75*0.34)=61.96
L2=(1.005*40.15+0.75*0.26)=40.55
由公式H=(H+HS+2/3Δ)
H=(1.005*7.2+2/3*0.14)=7.33
第6章 冷卻系統(tǒng)的設計
管道直徑經(jīng)湍流計算確定,一般取d=8~12mm。 PC和ABS的注射成型特性是低料溫,高壓力注射。模具型腔復雜,實在不易采用較大的管道直徑,以免影響到斜滑頂桿、推桿推出塑件。Ф8的管道已經(jīng)能夠保證注塑過程中的能量轉換。因此冷卻系統(tǒng)的管道設為Ф8。位置如圖
第7章 模具閉合高度的確定
尺寸組合B×L : 200×230
定模板厚度為: 40mm
定模座板厚度為: 20mm
動模座板厚度為: 20mm
動模板厚度為: 40mm
墊塊厚度為: 60mm
模具總厚度為: 180mm
結 語
通過本次設計,使我對大學階段所學習的模具設計方面的知識做了一個很好的總結和鞏固,平時所學的比較零散的知識得到了系統(tǒng)化的運用。發(fā)現(xiàn)了自己在學科內的某些方面知識的欠缺。在模具設計中,我越往下做就越感覺到自己知識的淺薄,我發(fā)現(xiàn)模具設計需要考慮的問題總比我想到的要多。
做完本次設計,我強烈的希望自己盡快的走上工作崗位,因為我深深的感覺到實際經(jīng)驗的匱乏對模具設計有多么大的影響。因為對整個模具設計缺乏大局感和立體感,在整個設計中往往感到捉襟見肘,整個的設計還是在別人設計的框架下完成的,缺乏了一種思維的創(chuàng)新和跳躍。
在本次設計中,我使用了UG、CAD等輔助軟件,尤其是CAD,通過這次設計我對CAD的操作更加熟練了。在設計中,我翻閱了大量的書籍,公差、制圖、力學、材料,在這次設計中都用到了。
通過本次設計,對模具的設計和加工有了一個比較系統(tǒng)、全面的認識和了解,同時也遇到了很多問題。在學校老師和同學們的指導幫助下,設計終于成功的完成了,從如何選材到確定大致模架結構,從零件圖的繪制再到說明書的裝訂,包含了太多的汗水,也為這大學4年畫上了一個完美的句號。
致謝
首先,我要衷心感謝我的指導老師-任兆坤老師!在設計過程中給與我的幫助與指正,老師經(jīng)常詢問我的進度,并督促我盡快完成。同時,我要感謝同組同學的幫助,在我遇到不懂的問題時,及時幫助我克服。在此對給予幫助的老師們及同學們表示真摯的感謝。
由于我設計水平有限,設計中肯定會有許多不足之處,敬請各位老師批評指正。
參考文獻
[1]機械設計手冊編委會. 機械設計手冊(單行本?齒輪傳動)——4版 . 北京:機械工業(yè)出版社,2007.3
[2]郁文娟,顧 燕. 塑料產(chǎn)品工業(yè)設計基礎.北京:化學工業(yè)出版社,2006. 9
[3]王建華,徐佩弦. 注射模的熱流道技術. 北京:機械工業(yè)出版社,2005.11
[4]王文廣,田寶善等. 塑料注射模具設計技巧與實例. 北京:化學工業(yè)出版社, 2003. 12
[5] 奇曉杰. 塑料成型工藝與模具設計. 北京: 機械工業(yè)出版社, 2005.10
[6] 趙偉閣. 模具設計. 西安: 電子科技大學出版社, 2006.8
[7] 劉靖巖. 模具設計與制造. 北京: 中國輕工業(yè)出版社, 2005.9
14
Journal of Materials Processing Technology 187188(2007)690693Adaptive system for electrically driven thermoregulationof moulds for injection mouldingB.Nardina,B.Zagara,A.Glojeka,D.Kri zajbaTECOS,Tool and Die Development Centre of Slovenia,Kidri ceva Cesta 25,3000 Celje,SloveniabFaculty of Electrical Engineering,Ljubljana,SloveniaAbstractOne of the basic problems in the development and production process of moulds for injection moulding is the control of temperature con-ditions in the mould.Precise study of thermodynamic processes in moulds showed,that heat exchange can be manipulated by thermoelectricalmeans.Such system upgrades conventional cooling systems within the mould or can be a stand alone application for heat manipulation withinit.Inthepaper,theauthorswillpresentresultsoftheresearchproject,whichwascarriedoutinthreephasesanditsresultsarepatentedinA6862006patent.The testing stage,the prototype stage and the industrialization phase will be presented.The main results of the project were total and rapidon-line thermoregulation of the mould over the cycle time and overall influence on quality of plastic product with emphasis on deformationcontrol.Presentedapplicationcanpresentamilestoneinthefieldofmouldtemperatureandproductqualitycontrolduringtheinjectionmouldingprocess.2006 Elsevier B.V.All rights reserved.Keywords:Injection moulding;Mould cooling;Thermoelectric modules;FEM simulations1.Introduction,definition of problemDevelopment of technology of cooling moulds via thermo-electrical(TEM)means derives out of the industrial praxis andproblems,i.e.at design,tool making and exploitation of tools.Current cooling technologies have technological limitations.Their limitations can be located and predicted in advance withfiniteelementanalyses(FEA)simulationpackagesbutnotcom-pletely avoided.Results of a diverse state of the art analysesrevealed that all existing cooling systems do not provide con-trollable heat transfer capabilities adequate to fit into demand-ing technological windows of current polymer processingtechnologies.Polymer processing is nowadays limited(in term of short-ening the production cycle time and within that reducing costs)onlywithheatcapacitymanipulationcapabilities.Otherproduc-tion optimization capabilities are already driven to mechanicaland polymer processing limitations 3.Corresponding authors.Tel.:+386 3 490920;fax:+386 3 4264612.E-mail address:Blaz.Nardintecos.si(B.Nardin).1.1.Thermal processes in injection moulding plasticprocessingPlastic processing is based on heat transfer between plasticmaterial and mould cavity.Within calculation of heat transferone should consider two major facts:first is all used energywhich is based on first law of thermodynamicslaw of energyconservation 1,second is velocity of heat transfer.Basic taskat heat transfer analyses is temperature calculation over timeand its distribution inside studied system.That last depends onvelocity of heat transfer between the system and surroundingsand velocity of heat transfer inside the system.Heat transfer canbe based as heat conduction,convection and radiation 1.1.2.Cooling timeComplete injection moulding process cycle comprises ofmouldclosingphase,injectionofmeltintocavity,packingpres-sure phase for compensating shrinkage effect,cooling phase,mould opening phase and part ejection phase.In most cases,thelongest time of all phases described above is cooling time.Cooling time in injection moulding process is defined astime needed to cool down the plastic part down to ejectiontemperature 1.0924-0136/$see front matter 2006 Elsevier B.V.All rights reserved.doi:10.1016/j.jmatprotec.2006.11.052B.Nardin et al./Journal of Materials Processing Technology 187188(2007)690693691Fig.1.Mould temperature variation across one cycle 2.The main aim of a cooling process is to lower additionalcoolingtimewhichistheoreticallyneedless;inpraxis,itextendsfrom 45 up to 67%of the whole cycle time 1,4.From literature and experiments 1,4,it can be seen,that themould temperature has enormous influence on the ejection timeand therefore the cooling time(costs).Injection moulding process is a cyclic process where mouldtemperature varies as shown in Fig.1 where temperature variesfrom average value through whole cycle time.2.Cooling technology for plastic injection mouldsAs it was already described,there are already several differ-ent technologies,enabling the users to cool the moulds 5.Themost conventional is the method with the drilling technology,i.e.producing holes in the mould.Through these holes(coolinglines),thecoolingmediaisflowing,removingthegeneratedandaccumulatedheatfromthemould1,2.Itisalsoveryconvenientto build in different materials,with different thermal conductiv-ity with the aim to enhance control over temperature conditionsin the mould.Such approaches are so called passive approachestowards the mould temperature control.The challenging task is to make an active system,which canalter the thermal conditions,regarding to the desired aspects,like product quality or cycles time.One of such approaches isintegrating thermal electrical modules(TEM),which can alterthe thermal conditions in the mould,regarding the desired prop-erties.With such approach,the one can control the heat transferwith the time and space variable,what means,that the temper-ature can be regulated throughout the injection moulding cycle,independent of the position in the mould.The heat control isdone by the control unit,where the input variables are receivedfrom the manual input or the input from the injection mouldingsimulation.With the output values,the control unit monitors theTEM module behaviour.2.1.Thermoelectric modules(TEM)For the needs of the thermal manipulation,the TEM modulewasintegratedintomould.Interactionbetweentheheatandelec-trical variables for heat exchange is based on the Peltier effect.The phenomenon of Peltier effect is well known,but it was untilFig.2.TEM block diagram.now never used in the injection moulding applications.TEMmodule(see Fig.2)is a device composed of properly arrangedpairsofPandNtypesemiconductorsthatarepositionedbetweentwo ceramic plates forming the hot and the cold thermoelectriccooler sites.Power of a heat transfer can be easily controlledthrough the magnitude and the polarity of the supplied electriccurrent.2.2.Application for mould coolingThe main idea of the application is inserting TEM moduleinto walls of the mould cavity serving as a primary heat transferunit.Such basic assembly can be seen in Fig.3.Secondary heattransfer is realized via conventional fluid cooling system thatallows heat flows in and out from mould cavity thermodynamicsystem.Device presented in Fig.3 comprises of thermoelectricmodules(A)that enable primarily heat transfer from or to tem-perature controllable surface of mould cavity(B).Secondaryheat transfer is enabled via cooling channels(C)that deliverconstant temperature conditions inside the mould.Thermoelec-tric modules(A)operate as heat pump and as such manipulatewith heat derived to or from the mould by fluid cooling sys-tem(C).System for secondary heat manipulation with coolingchannels work as heat exchanger.To reduce heat capacity ofcontrollable area thermal insulation(D)is installed between themould cavity(F)and the mould structure plates(E).Fig.3.Structure of TEM cooling assembly.692B.Nardin et al./Journal of Materials Processing Technology 187188(2007)690693Fig.4.Structure for temperature detection and regulation.The whole application consists of TEM modules,a temper-ature sensor and an electronic unit that controls the completesystem.The system is described in Fig.4 and comprises of aninput unit(input interface)and a supply unit(unit for electronicand power electronic supplyH bridge unit).The input and supply units with the temperature sensor loopinformation are attached to a control unit that acts as an exe-cution unit trying to impose predefined temperate/time/positionrelations.UsingthePeltiereffect,theunitcanbeusedforheatingor cooling purposes.The secondary heat removal is realized via fluid coolingmedia seen as heat exchanger in Fig.4.That unit is based oncurrent cooling technologies and serves as a sink or a sourceof a heat.This enables complete control of processes in termsof temperature,time and position through the whole cycle.Furthermore,it allows various temperature/time/position pro-files within the cycle also for starting and ending procedures.Described technology can be used for various industrial andresearchpurposeswhereprecisetemperature/time/positioncon-trol is required.ThepresentedsystemsinFigs.3and4wereanalysedfromthetheoretical,aswellasthepracticalpointofview.ThetheoreticalaspectwasanalysedbytheFEMsimulations,whilethepracticalonebythedevelopmentandtheimplementationoftheprototypeinto real application testing.3.FEM analysis of mould coolingCurrent development of designing moulds for injectionmoulding comprises of several phases 3.Among them is alsodesign and optimization of a cooling system.This is nowa-daysperformedbysimulationsusingcustomizedFEMpackages(Moldflow 4)that can predict cooling system capabilities andespeciallyitsinfluenceonplastic.Withsuchsimulations,moulddesigners gather information on product rheology and deforma-tionduetoshrinkageasellasproductiontimecycleinformation.This thermal information is usually accurate but can still beunreliable in cases of insufficient rheological material informa-tion.For the high quality input for the thermal regulation ofTEM,it is needed to get a picture about the temperature distri-bution during the cycle time and throughout the mould surfaceandthroughoutthemouldthickness.Therefore,differentprocesssimulations are needed.Fig.5.Cross-section of a prototype in FEM environment.3.1.Physical model,FEM analysisImplementation of FEM analyses into development projectwas done due to authors long experiences with such packages4 and possibility to perform different test in the virtual envi-ronment.WholeprototypecoolingsystemwasdesignedinFEMenvironment(seeFig.5)throughwhichtemperaturedistributionin each part of prototype cooling system and contacts betweenthem were explored.For simulating physical properties inside adeveloped prototype,a simulation model was constructed usingCOMSOL Multiphysics software.Result was a FEM modelidentical to real prototype(see Fig.7)through which it waspossible to compare and evaluate results.FEM model was explored in term of heat transfer physicstaking into account two heat sources:a water exchanger withfluid physics and a thermoelectric module with heat transferphysics(onlyconductionandconvectionwasanalysed,radiationwas ignored due to low relative temperature and therefore lowimpact on temperature).Boundary conditions for FEM analyses were set with thegoal to achieve identical working conditions as in real test-ing.Surrounding air and the water exchanger were set at stabletemperature of 20C.Fig.6.Temperature distribution according to FEM analysis.B.Nardin et al./Journal of Materials Processing Technology 187188(2007)690693693Fig.7.Prototype in real environment.ResultsoftheFEManalysiscanbeseeninFig.6,i.e.temper-ature distribution through the simulation area shown in Fig.5.Fig.6 represents steady state analysis which was very accuratein comparison to prototype tests.In order to simulate the timeresponse also the transient simulation was performed,showingverypositiveresultsforfuturework.Itwaspossibletoachieveatemperature difference of 200C in a short period of time(5s),what could cause several problems in the TEM structure.Thoseproblems were solved by several solutions,such as adequatemounting,choosing appropriate TEM material and applyingintelligent electronic regulation.3.2.Laboratory testingAs it was already described,the prototype was produced andtested(see Fig.7).The results are showing,that the set assump-tions were confirmed.With the TEM module it is possible tocontrol the temperature distribution on different parts of themould throughout the cycle time.With the laboratory tests,itwas proven,that the heat manipulation can be practically regu-lated with TEM modules.The test were made in the laboratory,simulating the real industrial environment,with the injectionmoulding machine Krauss Maffei KM 60 C,temperature sen-sors,infrared cameras and the prototype TEM modules.Thetemperature response in 1.8s varied form+5 up to 80C,whatrepresents a wide area for the heat control within the injectionmoulding cycle.4.ConclusionsUse of thermoelectric module with its straightforward con-nection between the input and output relations represents amilestone in cooling applications.Its introduction into mouldsforinjectionmouldingwithitsproblematiccoolingconstructionand problematic processing of precise and high quality plasticparts represents high expectations.The authors were assuming that the use of the Peltier effectcan be used for the temperature control in moulds for injectionmoulding.With the approach based on the simulation work andtherealproductionoflaboratoryequipmentproved,theassump-tions were confirmed.Simulation results showed a wide area ofpossible application of TEM module in the injection mouldingprocess.With mentioned functionality of a temperature profile acrosscycle time,injection moulding process can be fully controlled.Industrial problems,such as uniform cooling of problematicA class surfaces and its consequence of plastic part appear-ance can be solved.Problems of filling thin long walls can besolvedwithoverheatingsomesurfacesatinjectiontime.Further-more,with such application control over rheological propertiesof plastic materials can be gained.With the proper thermalregulation of TEM it was possible even to control the meltflow in the mould,during the filling stage of the mould cav-ity.This is done with the appropriate temperature distributionof the mould(higher temperature on the thin walled parts of theproduct).With the application of TEM module,it is possible to signif-icantly reduce the cycle time in the injection moulding process.Thelimitsofpossibletimereductionliesintheframeof1025%of additional cooling time,describe in Section 1.2.With the application of TEM module it is possible to activelycontrol the warping of the product and to regulate the amountof product warpage in the way to achieve required product tol-erances.ThepresentedTEMmodulecoolingapplicationforinjectionmoulding process is a matter of priority note for the patent,heldand owned by TECOS.References1 I.Cati c,Izmjena topline u kalupima za injekcijsko pre sanje plastomera,Dru stvo plasti cara i gumaraca,Zagreb,1985.2 I.Cati c,F.Johannaber,Injekcijsko pre sanje polimera i ostalih materiala,Dru stvo za plastiku i gumu,Biblioteka polimerstvo,Zagreb,2004.3 B.Nardin,K.Kuzman,Z.Kampu s,Injection moulding simulation resultsas an input to the injection moulding process,in:AFDM 2002:The Sec-ondInternationalConferenceonAdvancedFormingandDieManufacturingTechnology,Pusan,Korea,2002.4 TECOS,SlovenianToolandDieDevelopmentCentre,MoldflowSimulationProjects 19962006.5 S.C.Chen,et al.,Rapid mold surface heating/cooling using electromag-netic induction technology:ANTEC 2004,Conference CD-ROM,Chicago,Illinois,1620 May,2004.
收藏