2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第12章 選修4系列 第2講 參數(shù)方程講義 理(含解析).doc
《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第12章 選修4系列 第2講 參數(shù)方程講義 理(含解析).doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第12章 選修4系列 第2講 參數(shù)方程講義 理(含解析).doc(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第2講 參數(shù)方程 [考綱解讀] 了解參數(shù)方程及參數(shù)的意義,掌握直線、圓及橢圓的參數(shù)方程,并能利用參數(shù)方程解決問(wèn)題.(重點(diǎn)、難點(diǎn)) [考向預(yù)測(cè)] 從近三年高考情況來(lái)看,本講是高考中的一個(gè)必考點(diǎn). 預(yù)測(cè)2020年將會(huì)考查:參數(shù)方程與普通方程的互化及直線與橢圓參數(shù)方程的應(yīng)用. 1.曲線的參數(shù)方程 一般地,在平面直角坐標(biāo)系中,如果曲線上任意一點(diǎn)的坐標(biāo)x,y都是某個(gè)變數(shù)t的函數(shù),并且對(duì)于t的每一個(gè)允許值,由這個(gè)方程組所確定的點(diǎn)M(x,y)都在這條曲線上,那么這個(gè)方程組就叫做這條曲線的參數(shù)方程,聯(lián)系變數(shù)x,y的變數(shù)t叫做參變數(shù),簡(jiǎn)稱參數(shù). 2.常見(jiàn)曲線的參數(shù)方程和普通方程 提醒:直線的參數(shù)方程中,參數(shù)t的系數(shù)的平方和為1時(shí),t才有幾何意義且?guī)缀我饬x為:|t|是直線上任一點(diǎn)M(x,y)到M0(x0,y0)的距離. 1.概念辨析 (1)直線(t為參數(shù))的傾斜角α為30.( ) (2)過(guò)點(diǎn)M0(x0,y0),傾斜角為α的直線l的參數(shù)方程為(t為參數(shù)).參數(shù)t的幾何意義表示:直線l上以定點(diǎn)M0為起點(diǎn),任一點(diǎn)M(x,y)為終點(diǎn)的有向線段的數(shù)量.( ) (3)方程表示以點(diǎn)(0,1)為圓心,以2為半徑的圓.( ) (4)已知橢圓的參數(shù)方程(t為參數(shù)),點(diǎn)M在橢圓上,對(duì)應(yīng)參數(shù)t=,點(diǎn)O為原點(diǎn),則直線OM的斜率為.( ) 答案 (1)√ (2)√ (3)√ (4) 2.小題熱身 (1)若直線的參數(shù)方程為(t為參數(shù)),則直線的斜率為_(kāi)_______. 答案?。? 解析 因?yàn)樗?x+2y=7,此直線的斜率為-. (2)橢圓(θ為參數(shù))的離心率為_(kāi)_______. 答案 解析 將消去參數(shù)θ,得橢圓+=1. 所以a2=25,b2=9,c2=a2-b2=16,所以a=5,b=3,c=4,所以離心率e==. (3)曲線C的參數(shù)方程為(θ為參數(shù)),則曲線C的普通方程為_(kāi)_______. 答案 y=2-2x2(-1≤x≤1) 解析 由(θ為參數(shù))消去參數(shù)θ,得y=2-2x2(-1≤x≤1). 題型 參數(shù)方程與普通方程的互化 1.求直線(t為參數(shù))與曲線(α為參數(shù))的交點(diǎn)個(gè)數(shù). 解 將消去參數(shù)t得直線x+y-1=0; 將消去參數(shù)α,得圓x2+y2=9. 又圓心(0,0)到直線x+y-1=0的距離d=<3. 因此直線與圓相交,故直線與曲線有2個(gè)交點(diǎn). 2.如圖,以過(guò)原點(diǎn)的直線的傾斜角θ為參數(shù),求圓x2+y2-x=0的參數(shù)方程. 解 如圖,圓的半徑為, 記圓心為C,連接CP, 則∠PCx=2θ, 故xP=+cos2θ=cos2θ, yP=sin2θ=sinθcosθ(θ為參數(shù)). 所以圓的參數(shù)方程為(θ為參數(shù)). 條件探究 把舉例說(shuō)明1中“曲線(α為參數(shù))”改為“”其他條件不變,求兩條曲線交點(diǎn)的坐標(biāo). 解 由(sinθ+cosθ)2=1+sin2θ=2-(1-sin2θ),得 y2=2-x. 又因?yàn)閤=1-sin2θ∈[0,2], 所以所求普通方程為y2=2-x,x∈[0,2]. 解方程組得或 又因?yàn)閤∈[0,2],所以交點(diǎn)坐標(biāo)為. 1.參數(shù)方程化為普通方程 基本思路是消去參數(shù),常用的消參方法有:①代入消元法;②加減消元法;③恒等式(三角的或代數(shù)的)消元法;④平方后再加減消元法等.其中代入消元法、加減消元法一般是利用解方程組的技巧,三角恒等式消元法常利用公式sin2θ+cos2θ=1等. 2.普通方程化為參數(shù)方程 (1)選擇參數(shù)的一般原則 曲線上任意一點(diǎn)的坐標(biāo)與參數(shù)的關(guān)系比較明顯且關(guān)系相對(duì)簡(jiǎn)單;當(dāng)參數(shù)取某一值時(shí),可以唯一確定x,y的值. (2)解題的一般步驟 第一步,引入?yún)?shù),但要選定合適的參數(shù)t; 第二步,確定參數(shù)t與變量x或y的一個(gè)關(guān)系式x=f(t)(或y=φ(t)); 第三步,把確定的參數(shù)與一個(gè)變量的關(guān)系式代入普通方程F(x,y)=0,求得另一關(guān)系y=g(t)(或x=φ(t)),問(wèn)題得解. 在平面直角坐標(biāo)系xOy中,直線l:(t為參數(shù)),與曲線C:(k為參數(shù))交于A,B兩點(diǎn),求線段AB的長(zhǎng). 解 將直線l的參數(shù)方程化為普通方程,得4x-3y=4,將曲線C的參數(shù)方程化為普通方程,得y2=4x,聯(lián)立方程解得或 所以A(4,4),B或A,B(4,4). 所以AB==. 題型 參數(shù)方程的應(yīng)用 角度1 利用參數(shù)方程解最值問(wèn)題 1.在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(θ∈[0,2π]),曲線C2的參數(shù)方程為(t為參數(shù)). (1)求曲線C1,C2的普通方程; (2)求曲線C1上一點(diǎn)P到曲線C2的距離的最大值. 解 (1)由題意知,曲線C1的普通方程為x2+=1, 曲線C2的普通方程為x+y+2=0. (2)設(shè)點(diǎn)P的坐標(biāo)為(cosα,3sinα),則點(diǎn)P到直線C2的距離 d= =, 所以當(dāng)sin=1,即α=時(shí),dmax=2, 即點(diǎn)P到曲線C2的距離的最大值為2. 角度2 參數(shù)幾何意義的應(yīng)用 2.(2018全國(guó)卷Ⅱ)在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為(t為參數(shù)). (1)求C和l的直角坐標(biāo)方程; (2)若曲線C截直線l所得線段的中點(diǎn)坐標(biāo)為(1,2),求l的斜率. 解 (1)曲線C的直角坐標(biāo)方程為+=1. 當(dāng)cosα≠0時(shí),l的直角坐標(biāo)方程為y=tanαx+2-tanα,當(dāng)cosα=0時(shí),l的直角坐標(biāo)方程為x=1. (2)將l的參數(shù)方程代入C的直角坐標(biāo)方程,整理得關(guān)于t的方程(1+3cos2α)t2+4(2cosα+sinα)t-8=0.① 因?yàn)榍€C截直線l所得線段的中點(diǎn)(1,2)在C內(nèi),所以①有兩個(gè)解,設(shè)為t1,t2,則t1+t2=0. 又由①得t1+t2=-, 故2cosα+sinα=0,于是直線l的斜率k=tanα=-2. 1.設(shè)直線l的參數(shù)方程為(t為參數(shù)),直線的參數(shù)方程在交點(diǎn)問(wèn)題中的應(yīng)用 (1)若M1,M2是直線l上的兩個(gè)點(diǎn),對(duì)應(yīng)的參數(shù)分別為t1,t2,則||||=|t1t2|,||=|t2-t1|=. (2)若線段M1M2的中點(diǎn)為M3,點(diǎn)M1,M2,M3對(duì)應(yīng)的參數(shù)分別為t1,t2,t3,則t3=. (3)若直線l上的線段M1M2的中點(diǎn)為M0(x0,y0),則t1+t2=0,t1t2<0. 2.圓和圓錐曲線參數(shù)方程的應(yīng)用 有關(guān)圓或圓錐曲線上的動(dòng)點(diǎn)距離的最大值、最小值以及取值范圍的問(wèn)題,通常利用它們的參數(shù)方程轉(zhuǎn)化為三角函數(shù)的最大值、最小值求解. 提醒:對(duì)于形如(t為參數(shù)),當(dāng)a2+b2≠1時(shí),應(yīng)先化為標(biāo)準(zhǔn)形式后才能利用t的幾何意義解題. 1.已知曲線C的極坐標(biāo)方程為ρ=2,在以極點(diǎn)為直角坐標(biāo)系的原點(diǎn)O,極軸為x軸的正半軸建立的平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)). (1)寫(xiě)出直線l的普通方程與曲線C的直角坐標(biāo)方程; (2)已知曲線W:(α為參數(shù)),若M為曲線W上任意一點(diǎn),求點(diǎn)M到直線l的最小距離. 解 (1)由(t為參數(shù))消去參數(shù)t,得y=x+3. 即直線l的普通方程為x-y+3=0. 因?yàn)棣?=x2+y2, 所以曲線C的直角坐標(biāo)方程為x2+y2=4. (2)由已知可設(shè)M(cosα,2sinα)(α為參數(shù)), 則點(diǎn)M到直線l的距離 d==(其中tanβ=2), 所以點(diǎn)M到直線l的距離的最小值為=. 2.(2018河北“五個(gè)一名校聯(lián)盟”二模)在平面直角坐標(biāo)系xOy中,曲線C1過(guò)點(diǎn)P(a,1),其參數(shù)方程為(t為參數(shù),a∈R).以O(shè)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρcos2θ+4cosθ-ρ=0. (1)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程; (2)已知曲線C1與曲線C2交于A,B兩點(diǎn),且|AB|=8,求實(shí)數(shù)a的值. 解 (1)∵曲線C1的參數(shù)方程為(t為參數(shù),a∈R), ∴曲線C1的普通方程為x-y-a+1=0. ∵曲線C2的極坐標(biāo)方程為ρcos2θ+4cosθ-ρ=0, ∴ρ2cos2θ+4ρcosθ-ρ2=0,∴x2+4x-x2-y2=0, 即曲線C2的直角坐標(biāo)方程為y2=4x. (2)設(shè)A,B兩點(diǎn)所對(duì)應(yīng)的參數(shù)分別為t1,t2, 由得t2-2t+2-8a=0. Δ=(-2)2-4(2-8a)>0,即a>0, ∴根據(jù)參數(shù)方程中參數(shù)的幾何意義可知 |AB|=|t1-t2|====8,∴a=2. 題型 極坐標(biāo)方程和參數(shù)方程的綜合應(yīng)用 (2019貴州聯(lián)考)已知在一個(gè)極坐標(biāo)系中,點(diǎn)C的極坐標(biāo)為. (1)求出以C為圓心,半徑長(zhǎng)為2的圓的極坐標(biāo)方程(寫(xiě)出解題過(guò)程); (2)在直角坐標(biāo)系中,以圓C所在極坐標(biāo)系的極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立直角坐標(biāo)系,點(diǎn)P是圓C上任意一點(diǎn),Q(5,-),M是線段PQ的中點(diǎn),當(dāng)點(diǎn)P在圓C上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡的普通方程. 解 (1)如圖,設(shè)圓C上任意一點(diǎn) A(ρ,θ),則∠AOC=θ-或-θ. 由余弦定理得, 4+ρ2-4ρcos=4, 所以圓C的極坐標(biāo)方程為ρ=4cos. (2)在直角坐標(biāo)系中,點(diǎn)C的坐標(biāo)為(1,),可設(shè)圓C上任意一點(diǎn)P(1+2cosα,+2sinα),又令M(x,y),由Q(5,-),M是線段PQ的中點(diǎn),得點(diǎn)M的軌跡的參數(shù)方程為(α為參數(shù)),即 (α為參數(shù)), ∴點(diǎn)M的軌跡的普通方程為(x-3)2+y2=1. 極坐標(biāo)方程與參數(shù)方程綜合問(wèn)題的解題策略 (1)求交點(diǎn)坐標(biāo)、距離、線段長(zhǎng).可先求出直角坐標(biāo)方程,然后求解. (2)判斷位置關(guān)系.先轉(zhuǎn)化為平面直角坐標(biāo)方程,然后再作出判斷. (3)求參數(shù)方程與極坐標(biāo)方程綜合的問(wèn)題.一般是先將方程化為直角坐標(biāo)方程,利用直角坐標(biāo)方程來(lái)研究問(wèn)題. (2017全國(guó)卷Ⅲ)在直角坐標(biāo)系xOy中,直線l1的參數(shù)方程為(t為參數(shù)),直線l2的參數(shù)方程為(m為參數(shù)).設(shè)l1與l2的交點(diǎn)為P,當(dāng)k變化時(shí),P的軌跡為曲線C. (1)寫(xiě)出C的普通方程; (2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,設(shè)l3:ρ(cosθ+sinθ)-=0,M為l3與C的交點(diǎn),求M的極徑. 解 (1)消去參數(shù)t得l1的普通方程l1:y=k(x-2); 消去參數(shù)m得l2的普通方程l2:y=(x+2). 設(shè)P(x,y),由題設(shè)得 消去k得x2-y2=4(y≠0), 所以C的普通方程為x2-y2=4(y≠0). (2)C的極坐標(biāo)方程為ρ2(cos2θ-sin2θ)=4(0<θ<2π,θ≠π),聯(lián)立得 cosθ-sinθ=2(cosθ+sinθ). 故tanθ=-,從而cos2θ=,sin2θ=. 代入ρ2(cos2θ-sin2θ)=4得ρ2=5, 所以交點(diǎn)M的極徑為.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第12章 選修4系列 第2講 參數(shù)方程講義 理含解析 2020 高考 數(shù)學(xué) 一輪 復(fù)習(xí) 12 選修 系列 參數(shù) 方程 講義 解析
鏈接地址:http://m.szxfmmzy.com/p-6302534.html