2017-2018學年高中數(shù)學 第四章 導(dǎo)數(shù)及其應(yīng)用 4.1 導(dǎo)數(shù)概念 4.1.2 問題探索——求作拋物線的切線當堂檢測 湘教版選修2-2.doc
《2017-2018學年高中數(shù)學 第四章 導(dǎo)數(shù)及其應(yīng)用 4.1 導(dǎo)數(shù)概念 4.1.2 問題探索——求作拋物線的切線當堂檢測 湘教版選修2-2.doc》由會員分享,可在線閱讀,更多相關(guān)《2017-2018學年高中數(shù)學 第四章 導(dǎo)數(shù)及其應(yīng)用 4.1 導(dǎo)數(shù)概念 4.1.2 問題探索——求作拋物線的切線當堂檢測 湘教版選修2-2.doc(2頁珍藏版)》請在裝配圖網(wǎng)上搜索。
4.1.2 問題探索——求作拋物線的切線 1.一物體作勻速圓周運動,其運動到圓周A處時 ( ) A.運動方向指向圓心O B.運動方向所在直線與OA垂直 C.速度與在圓周其他點處相同 D.不確定 答案 B 2.若已知函數(shù)f(x)=2x2-1的圖象上的一點(1,1)及鄰近一點(1+d,1+Δy),則等于 ( ) A.1 B.2+d C.4+2d D.4+d 答案 C 解析?。剑?+2d. 3.過曲線y=2x上兩點(0,1),(1,2)的割線的斜率為________. 答案 1 解析 由平均變化率的幾何意義知,k==1. 4.已知函數(shù)f(x)=-x2+x的圖象上一點(-1,-2)及鄰近一點(-1+d,-2+Δy),則=________. 解析 Δy=f(-1+d)-f(-1) =-(-1+d)2+(-1+d)-(-2) =-d2+3d. ∴==-d+3. 答案?。璬+3 1.求曲線y=f(x)上一點(x0,y0)處切線斜率的步驟 (1)作差求函數(shù)值增量Δy,即f(x0+d)-f(x0). (2)化簡,用x0與d表示化簡結(jié)果. (3)令d→0,求的極限即所求切線的斜率. 2.過某點的曲線的切線方程 要正確區(qū)分曲線“在點(u,v)處的切線方程”和“過點(u,v)的切線方程”.前者以點(u,v)為切點,后者點可能在曲線上,也可能不在曲線上,即使在曲線上,也不一定是切點. 3.曲線的割線與切線的區(qū)別與聯(lián)系 曲線的割線的斜率反映了曲線在這一區(qū)間上上升或下降的變化趨勢,刻畫了曲線在這一區(qū)間升降的程度,而曲線的切線是割線與曲線的一交點向另一交點逼近時的一種極限狀態(tài),它實現(xiàn)了由割線向切線質(zhì)的飛躍.- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2017-2018學年高中數(shù)學 第四章 導(dǎo)數(shù)及其應(yīng)用 4.1 導(dǎo)數(shù)概念 4.1.2 問題探索求作拋物線的切線當堂檢測 湘教版選修2-2 2017 2018 學年 高中數(shù)學 第四 導(dǎo)數(shù) 及其 應(yīng)用 概念
鏈接地址:http://m.szxfmmzy.com/p-6250557.html