2018-2019學(xué)年高中數(shù)學(xué) 第一章 導(dǎo)數(shù)及其應(yīng)用學(xué)業(yè)質(zhì)量標(biāo)準(zhǔn)檢測(cè) 新人教A版選修2-2.doc
《2018-2019學(xué)年高中數(shù)學(xué) 第一章 導(dǎo)數(shù)及其應(yīng)用學(xué)業(yè)質(zhì)量標(biāo)準(zhǔn)檢測(cè) 新人教A版選修2-2.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018-2019學(xué)年高中數(shù)學(xué) 第一章 導(dǎo)數(shù)及其應(yīng)用學(xué)業(yè)質(zhì)量標(biāo)準(zhǔn)檢測(cè) 新人教A版選修2-2.doc(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第一章 學(xué)業(yè)質(zhì)量標(biāo)準(zhǔn)檢測(cè) 時(shí)間120分鐘,滿分150分. 一、選擇題(本大題共12個(gè)小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中只有一個(gè)是符合題目要求的) 1.dx等于( B ) A.-2ln2 B.2ln2 C.-ln2 D.ln2 [解析] 因?yàn)?2lnx)′=, 所以 dx=2lnx|=2ln4-2ln2=2ln2. 2.曲線y=x3-3x2+1在點(diǎn)(1,-1)處的切線方程為( B ) A.y=3x-4 B.y=-3x+2 C.y=-4x+3 D.y=4x-5 [解析] ∵點(diǎn)(1,-1)在曲線上,y′=3x2-6x, ∴y′|x=1=-3,即切線斜率為-3. ∴利用點(diǎn)斜式得,切線方程為y+1=-3(x-1),即y=-3x+2.故選B. 3.(2018全國(guó)卷Ⅰ文,6)設(shè)函數(shù)f(x)=x3+(a-1)x2+ax.若f(x)為奇函數(shù),則曲線y=f(x)在點(diǎn)(0,0)處的切線方程為( D ) A.y=-2x B.y=-x C.y=2x D.y=x [解析] ∵ f(x)=x3+(a-1)x2+ax, ∴ f′(x)=3x2+2(a-1)x+a. 又f(x)為奇函數(shù), ∴ f(-x)=-f(x)恒成立, 即-x3+(a-1)x2-ax=-x3-(a-1)x2-ax恒成立, ∴ a=1,∴ f′(x)=3x2+1, ∴ f′(0)=1, ∴ 曲線y=f(x)在點(diǎn)(0,0)處的切線方程為y=x. 故選D. 4.(2018青島高二檢測(cè))下列函數(shù)中,x=0是其極值點(diǎn)的函數(shù)是( B ) A.f(x)=-x3 B.f(x)=-cosx C.f(x)=sinx-x D.f(x)= [解析] 對(duì)于A,f ′(x)=-3x2≤0恒成立,在R上單調(diào)遞減,沒有極值點(diǎn);對(duì)于B,f ′(x)=sinx,當(dāng)x∈(-π,0)時(shí),f ′(x)<0,當(dāng)x∈(0,π)時(shí),f ′(x)>0,故f(x)=-cosx在x=0的左側(cè)區(qū)間(-π,0)內(nèi)單調(diào)遞減,在其右側(cè)區(qū)間(0,π)內(nèi)單調(diào)遞增,所以x=0是f(x)的一個(gè)極小值點(diǎn);對(duì)于C,f ′(x)=cosx-1≤0恒成立,在R上單調(diào)遞減,沒有極值點(diǎn);對(duì)于D,f(x)=在x=0沒有定義,所以x=0不可能成為極值點(diǎn),綜上可知,答案選B. 5.已知函數(shù)f(x)=x3+ax2+3x-9在x=-3時(shí)取得極值,則a=( D ) A.2 B.3 C.4 D.5 [解析] f ′(x)=3x2+2ax+3,由條件知,x=-3是方程f ′(x)=0的實(shí)數(shù)根,∴a=5. 6.(2017浙江卷)函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,則函數(shù)y=f(x)的圖象可能是( D ) [解析] 觀察導(dǎo)函數(shù)f′(x)的圖象可知,f′(x)的函數(shù)值從左到右依次為小于0,大于0,小于0,大于0, ∴對(duì)應(yīng)函數(shù)f(x)的增減性從左到右依次為減、增、減、增. 觀察選項(xiàng)可知,排除A,C. 如圖所示,f′(x)有3個(gè)零點(diǎn),從左到右依次設(shè)為x1,x2,x3,且x1,x3是極小值點(diǎn),x2是極大值點(diǎn),且x2>0,故選項(xiàng)D確,故選D. 7.若a>0,b>0,且函數(shù)f(x)=4x3-ax2-2bx+2在x=1處有極值,則ab的最大值等于( D ) A.2 B.3 C.6 D.9 [解析] ∵f ′(x)=12x2-2ax-2b, 又因?yàn)樵趚=1處有極值,∴a+b=6, ∵a>0,b>0,∴ab≤()2=9, 當(dāng)且僅當(dāng)a=b=3時(shí)取等號(hào), 所以ab的最大值等于9.故選D. 8.函數(shù)f(x)=ax3+ax2-2ax+1的圖象經(jīng)過四個(gè)象限,則實(shí)數(shù)a的取值范圍是( D ) A.- [解析] f ′(x)=ax2+ax-2a=a(x+2)(x-1), 要使函數(shù)f(x)的圖象經(jīng)過四個(gè)象限,則f(-2)f(1)<0, 即(a+1)(-a+1)<0,解得a<-或a>. 故選D. 9.(2018沈陽(yáng)一模)設(shè)函數(shù)f(x)=xex+1,則( D ) A.x=1為f(x)的極大值點(diǎn) B.x=1為f(x)的極小值點(diǎn) C.x=-1為f(x)的極大值點(diǎn) D.x=-1為f(x)的極小值點(diǎn) [解析] 由于f(x)=xex,可得f′(x)=(x+1)ex, 令f′(x)=(x+1)ex=0可得x=-1, 令f′(x)=(x+1)ex>0可得x>-1,即函數(shù)在(-1,+∞)上是增函數(shù) 令f′(x)=(x+1)ex<0可得x<-1,即函數(shù)在(-∞,-1)上是減函數(shù) 所以x=-1為f(x)的極小值點(diǎn). 故選D. 10.(2017全國(guó)卷Ⅱ理,11)若x=-2是函數(shù)f(x)=(x2+ax-1)ex-1的極值點(diǎn),則f(x)的極小值是( A ) A.-1 B.-2e-3 C.5e-3 D.1 [解析] 函數(shù)f(x)=(x2+ax-1)ex-1 則f′(x)=(2x+a)ex-1+(x2+ax-1)ex-1 =ex-1[x2+(a+2)x+a-1]. 由x=-2是函數(shù)f(x)的極值點(diǎn)得 f′(-2)=e-3(4-2a-4+a-1)=(-a-1)e-3=0, 所以a=-1. 所以f(x)=(x2-x-1)ex-1,f′(x)=ex-1(x2+x-2). 由ex-1>0恒成立,得x=-2或x=1時(shí),f′(x)=0, 且x<-2時(shí),f′(x)>0;-2- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2018-2019學(xué)年高中數(shù)學(xué) 第一章 導(dǎo)數(shù)及其應(yīng)用學(xué)業(yè)質(zhì)量標(biāo)準(zhǔn)檢測(cè) 新人教A版選修2-2 2018 2019 學(xué)年 高中數(shù)學(xué) 導(dǎo)數(shù) 及其 應(yīng)用 學(xué)業(yè) 質(zhì)量標(biāo)準(zhǔn) 檢測(cè) 新人 選修
鏈接地址:http://m.szxfmmzy.com/p-6239932.html