XIV旋液式油水分離器的設(shè)計[摘要]:目前,水力旋流器在油田采出液預分離和含油污水處理中逐步推廣應用。水力旋流器具有結(jié)構(gòu)簡單緊湊、效 率高、體積及占地面積小等優(yōu)點。對水力旋流器結(jié)構(gòu)及參數(shù)關(guān)系進行了分析。通過改進與優(yōu)選水力旋流器結(jié)構(gòu),得到旋 流器單體的雙入口結(jié)構(gòu)理想型式為反渦線、大小錐段為圓弧過渡形式。同時簡要分析了高次曲線與正余切曲線結(jié)構(gòu)的 錐段過渡形式,確定出合理的水力旋流器單體旋流腔長度為 65 mm。經(jīng)過理論研究和對比試驗發(fā)現(xiàn),具有結(jié)構(gòu)參數(shù)關(guān)系 模型的水力旋流器較常規(guī)結(jié)構(gòu)的水力旋流器有更高的分離效率。水力旋流器是利用強離心力場來實現(xiàn)有一定密度差且不互溶物系分離的離心 沉降設(shè)備。目前油田在無動力加工環(huán)境中的單井作業(yè)無法進行機械脫水處理,一 直采用裝原油的容器下加煤炭火燒加溫、攪拌、沉淀、分解的老方法進行脫水處 理。這種方法不但極易引起火災,而且原油損耗大、勞動強度髙、工作效率低, 以及對環(huán)境造成極大污染。該方法已經(jīng)不能滿足現(xiàn)在油田生產(chǎn)的需要。水力旋流法是由英國南安普頓大學(Southampton)研究成功的一種具有 80 年代先進水平的含油污水處理新方法。因為它結(jié)構(gòu)簡單、分離效率高、成本低,從它問世之日起,就得到了世界各國的重視?,F(xiàn)在,旋流分離已作為重力分離的 一項替代技術(shù),成為世界國際油田地面工程中的主體技術(shù)和重要裝備。在前期對液-液旋流分離器流量壓降特性實驗研究的基礎(chǔ)上,分析了結(jié)構(gòu)參數(shù)、操作參數(shù)及物性參數(shù)對液- 液旋流分離效率的影響; 提出了液-液旋流分離器結(jié)構(gòu)設(shè)計的設(shè)計方法和設(shè)計步驟,認為建立性能優(yōu)良的旋流器模 型數(shù)據(jù)庫,是選型設(shè)計的基礎(chǔ)和前提。[關(guān)鍵詞] :水力旋流器;分離效率;入口 ;錐段;溢流管;旋流腔;底流管[Abstract:] At present, the hydrocyclone in oilfield produced gradually promote the use of liquid separation and oily sewage treatment. Hydrocyclone has the XVadvantages of simple and compact structure, high efficiency, small volume and area etc On the relationship between the structure and the parameters of the hydrocyclone are analyzed. Through the improvement and optimization of hydrocyclone, get double entrance structure of ideal type cyclone monomer for the vortex line, size of the taper section is arc transition form. At the same time, a brief analysis of the cone transition form high-order curve and curve structure, reasonable length of single bodied whirl cavity of hydrocyclone has been determined as 65 mm. It has been discovered that through theoretical study and contrast test,the hydrocyclone that possessing relation model of structural parameters hasmore higher separation efficiency than hydrocyclones with conventional structures.Cyclone separators are used in various kinds of industries to separate materials of different densities. By creating a strong swirl, large centrifugal forces in the process mixture are generated and due to differences in density the materials will separate. At present in petroleum industry, single well cannot proceed mechanical dehydration treatments with not power. It always taken heat up and deposit method to dewatering, such means not only bring fire and crude oil waste large, labor intensity high, and it have badly influence on environment. Now that approach had insatiability oil fields produce demand.Hydraulic power method was newly oil-water separation method. It was invented by Britain Southampton University in 1980s. For it structure simplicity, separation efficiency high, and cost low. From it appearance, that has been got widely recognition. In the not far future, rotational flow separate will certainly replace gravitational separation technology, became 21 century international oil field primary equipment.Based on the experiments aiming at studying flowrate and pressure drop performance,geometric parameters, operating parameters and liquid characteristic parameters influence on separate efficiency are analyzed. Optimal structure design method and process of liquid-liquid separate hydrocyclone are brought forward. It's thought that the database of best hydricyclone model is the basic and premises about optimal structure design.XVI[Keywords]: hydrocyclone; separation efficiency; entrance; conicsection; overflow pipe; whirl cavity; underflow pip