2019版高考數(shù)學(xué)大一輪復(fù)習(xí) 第八章 立體幾何初步 第8課時(shí) 立體幾何中的向量方法(二)——求空間角課件 北師大版.ppt
《2019版高考數(shù)學(xué)大一輪復(fù)習(xí) 第八章 立體幾何初步 第8課時(shí) 立體幾何中的向量方法(二)——求空間角課件 北師大版.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019版高考數(shù)學(xué)大一輪復(fù)習(xí) 第八章 立體幾何初步 第8課時(shí) 立體幾何中的向量方法(二)——求空間角課件 北師大版.ppt(29頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第8節(jié)立體幾何中的向量方法 一 求空間角 01 02 03 04 考點(diǎn)三 考點(diǎn)一 考點(diǎn)二 例1訓(xùn)練1 用空間向量求異面直線所成的角 用空間向量求線面角 用空間向量求二面角 多維探究 診斷自測(cè) 例2訓(xùn)練2 例3 1例3 2訓(xùn)練3 圖 1 圖 2 圖 2 圖 3 解析 2 設(shè)等邊三角形的邊長(zhǎng)為2 取BC的中點(diǎn)O 連接OA OD 等邊三角形ABC和BCD所在平面互相垂直 OA OC OD兩兩垂直 以O(shè)為坐標(biāo)原點(diǎn) 建立如圖所示的空間直角坐標(biāo)系 考點(diǎn)一用空間向量求異面直線所成的角 考點(diǎn)二用空間向量求線面角 1 證明 BAP CDP 90 PA AB PD CD 又 AB CD PD AB 又 PD PA P PD PA 平面PAD AB 平面PAD 又AB 平面PAB 平面PAB 平面PAD 2 解取AD中點(diǎn)O BC中點(diǎn)E 連接PO OE 由 1 知 AB 平面PAD OE 平面PAD 又PO AD 平面PAD OE PO OE AD 又 PA PD PO AD PO OE AD兩兩垂直 以O(shè)為坐標(biāo)原點(diǎn) 建立如圖所示的空間直角坐標(biāo)系O xyz 設(shè)n x y z 為平面PBC的法向量 APD 90 PD PA 又知AB 平面PAD PD 平面PAD PD AB 又PA AB A PA AB 平面PAB PD 平面PAB 因?yàn)樗倪呅蜛DNM是矩形 MA AD 平面ADNM 平面ABCD且交線為AD 所以MA 平面ABCD 又DE 平面ABCD 所以DE AM 又AM AB A AM AB 平面ABM 所以DE 平面ABM 又DE 平面DEM 所以平面DEM 平面ABM 2 解在線段AM存在點(diǎn)P 理由如下 由DE AB AB CD 得DE CD 因?yàn)樗倪呅蜛DNM是矩形 平面ADNM 平面ABCD且交線為AD 所以ND 平面ABCD 以D為原點(diǎn) DE DC DN所在直線分別為x軸 y軸 z軸建立如圖所示的坐標(biāo)系 考點(diǎn)三用空間向量求二面角 多維探究 解 1 因?yàn)锳P BE AB BE AB AP 平面ABP AB AP A 所以BE 平面ABP 又BP 平面ABP 所以BE BP 又 EBC 120 因此 CBP 30 圖1 圖2- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019版高考數(shù)學(xué)大一輪復(fù)習(xí) 第八章 立體幾何初步 第8課時(shí) 立體幾何中的向量方法二求空間角課件 北師大版 2019 高考 數(shù)學(xué) 一輪 復(fù)習(xí) 第八 立體幾何 初步 課時(shí) 中的 向量 方法 空間
鏈接地址:http://m.szxfmmzy.com/p-5730897.html