《2019高考數(shù)學大二輪復習 專題六 直線、圓、圓錐曲線 專題能力訓練18 直線與圓錐曲線 理.doc》由會員分享,可在線閱讀,更多相關《2019高考數(shù)學大二輪復習 專題六 直線、圓、圓錐曲線 專題能力訓練18 直線與圓錐曲線 理.doc(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。
專題能力訓練18 直線與圓錐曲線
一、能力突破訓練
1.已知O為坐標原點,F是橢圓C:x2a2+y2b2=1(a>b>0)的左焦點,A,B分別為C的左、右頂點.P為C上一點,且PF⊥x軸.過點A的直線l與線段PF交于點M,與y軸交于點E.若直線BM經(jīng)過OE的中點,則C的離心率為 ( )
A. B. C. D.
2.已知雙曲線x2a2-y2b2=1(a>0,b>0)的離心率為5,則拋物線x2=4y的焦點到雙曲線的漸近線的距離是( )
A.510 B.55 C.255 D.455
3.如果與拋物線y2=8x相切傾斜角為135的直線l與x軸和y軸的交點分別是A和B,那么過A,B兩點的最小圓截拋物線y2=8x的準線所得的弦長為( )
A.4 B.22 C.2 D.2
4.(2018全國Ⅰ,理11)已知雙曲線C:x23-y2=1,O為坐標原點,F為C的右焦點,過F的直線與C的兩條漸近線的交點分別為M,N.若△OMN為直角三角形,則|MN|= ( )
A. B.3 C.23 D.4
5.平面直角坐標系xOy中,雙曲線C1:x2a2-y2b2=1(a>0,b>0)的漸近線與拋物線C2:x2=2py(p>0)交于點O,A,B.若△OAB的垂心為C2的焦點,則C1的離心率為 .
6.(2018全國Ⅰ,理19)設橢圓C:x22+y2=1的右焦點為F,過F的直線l與C交于A,B兩點,點M的坐標為(2,0).
(1)當l與x軸垂直時,求直線AM的方程;
(2)設O為坐標原點,證明:∠OMA=∠OMB.
7.
如圖,已知拋物線x2=y,點A-12,14,B32,94,拋物線上的點P(x,y)-12
b>0)的離心率為32,A(a,0),B(0,b),O(0,0),△OAB的面積為1.
(1)求橢圓C的方程;
(2)設P是橢圓C上一點,直線PA與y軸交于點M,直線PB與x軸交于點N,求證:|AN||BM|為定值.
9.(2018全國Ⅱ,理19)設拋物線C:y2=4x的焦點為F,過F且斜率為k(k>0)的直線l與C交于A,B兩點,|AB|=8.
(1)求l的方程.
(2)求過點A,B且與C的準線相切的圓的方程.
二、思維提升訓練
10.(2018全國Ⅲ,理16)已知點M(-1,1)和拋物線C:y2=4x,過C的焦點且斜率為k的直線與C交于A,B兩點,若∠AMB=90,則k= .
11.定長為3的線段AB的兩個端點A,B分別在x軸、y軸上滑動,動點P滿足BP=2PA.
(1)求點P的軌跡曲線C的方程;
(2)若過點(1,0)的直線與曲線C交于M,N兩點,求OMON的最大值.
12.設圓x2+y2+2x-15=0的圓心為A,直線l過點B(1,0)且與x軸不重合,l交圓A于C,D兩點,過B作AC的平行線交AD于點E.
(1)證明|EA|+|EB|為定值,并寫出點E的軌跡方程;
(2)設點E的軌跡為曲線C1,直線l交C1于M,N兩點,過B且與l垂直的直線與圓A交于P,Q兩點,求四邊形MPNQ面積的取值范圍.
13.(2018全國Ⅲ,理20)已知斜率為k的直線l與橢圓C:x24+y23=1交于A,B兩點,線段AB的中點為M(1,m)(m>0).
(1)證明:k<-;
(2)設F為C的右焦點,P為C上一點,且FP+FA+FB=0.證明:|FA|,|FP|,|FB|成等差數(shù)列,并求該數(shù)列的公差.
專題能力訓練18 直線與圓錐曲線
一、能力突破訓練
1.A 解析 由題意,不妨設直線l的方程為y=k(x+a),k>0,分別令x=-c與x=0,得|FM|=k(a-c),|OE|=ka.
設OE的中點為G,
由△OBG∽△FBM,得12|OE||FM|=|OB||BF|,
即ka2k(a-c)=aa+c,整理,得ca=13,
故橢圓的離心率e=13,故選A.
2.B 解析 拋物線x2=4y的焦點為(0,1),雙曲線x2a2-y2b2=1 (a>0,b>0)的離心率為5,所以ba=c2-a2a2=e2-1=2,雙曲線的漸近線為y=x=2x,則拋物線x2=4y的焦點到雙曲線的漸近線的距離是11+4=55.故選B.
3.C 解析 設直線l的方程為y=-x+b,聯(lián)立直線與拋物線方程,消元得y2+8y-8b=0.因為直線與拋物線相切,所以Δ=82-4(-8b)=0,解得b=-2,故直線l的方程為x+y+2=0,從而A(-2,0),B(0,-2).因此過A,B兩點的最小圓即為以AB為直徑的圓,其方程為(x+1)2+(y+1)2=2,而拋物線y2=8x的準線方程為x=-2,此時圓心(-1,-1)到準線的距離為1,故所截弦長為2(2)2-12=2.
4.B 解析 由條件知F(2,0),漸近線方程為y=33x,所以∠NOF=∠MOF=30,∠MON=60≠90.
不妨設∠OMN=90,則|MN|=3|OM|.
又|OF|=2,在Rt△OMF中,|OM|=2cos 30=3,所以|MN|=3.
5.32 解析 雙曲線的漸近線為y=x.由y=bax,x2=2py,得A2bpa,2b2pa2.
由y=-bax,x2=2py,得B-2bpa,2b2pa2.
∵F0,p2為△OAB的垂心,∴kAFkOB=-1.
即2b2pa2-p22bpa-0-ba=-1,解得b2a2=54,
∴c2a2=94,即可得e=32.
6.解 (1)由已知得F(1,0),l的方程為x=1.
由已知可得,點A的坐標為1,22或1,-22.
所以AM的方程為y=-22x+2或y=22x-2.
(2)當l與x軸重合時,∠OMA=∠OMB=0,
當l與x軸垂直時,OM為AB的垂直平分線,所以∠OMA=∠OMB.
當l與x軸不重合也不垂直時,設l的方程為y=k(x-1)(k≠0),A(x1,y1),B(x2,y2),
則x1<2,x2<2,直線MA,MB的斜率之和為kMA+kMB=y1x1-2+y2x2-2.
由y1=kx1-k,y2=kx2-k,得
kMA+kMB=2kx1x2-3k(x1+x2)+4k(x1-2)(x2-2).
將y=k(x-1)代入x22+y2=1得(2k2+1)x2-4k2x+2k2-2=0,
所以x1+x2=4k22k2+1,x1x2=2k2-22k2+1.
則2kx1x2-3k(x1+x2)+4k=4k3-4k-12k3+8k3+4k2k2+1=0.
從而kMA+kMB=0,故MA,MB的傾斜角互補,所以∠OMA=∠OMB.
綜上,∠OMA=∠OMB.
7.解 (1)設直線AP的斜率為k,k=x2-14x+12=x-,
因為-120).
設A(x1,y1),B(x2,y2).
由y=k(x-1),y2=4x得k2x2-(2k2+4)x+k2=0.
Δ=16k2+16>0,故x1+x2=2k2+4k2.
所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=4k2+4k2.
由題設知4k2+4k2=8,解得k=-1(舍去),k=1.
因此l的方程為y=x-1.
(2)由(1)得AB的中點坐標為(3,2),所以AB的垂直平分線方程為y-2=-(x-3),即y=-x+5.
設所求圓的圓心坐標為(x0,y0),則
y0=-x0+5,(x0+1)2=(y0-x0+1)22+16.
解得x0=3,y0=2或x0=11,y0=-6.
因此所求圓的方程為
(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.
二、思維提升訓練
10.2 解析 設直線AB:x=my+1,
聯(lián)立x=my+1,y2=4x?y2-4my-4=0,
y1+y2=4m,y1y2=-4.
而MA=(x1+1,y1-1)=(my1+2,y1-1),
MB=(x2+1,y2-1)=(my2+2,y2-1).
∵∠AMB=90,
∴MAMB=(my1+2)(my2+2)+(y1-1)(y2-1)
=(m2+1)y1y2+(2m-1)(y1+y2)+5
=-4(m2+1)+(2m-1)4m+5
=4m2-4m+1=0.
∴m=12.∴k=1m=2.
11.解 (1)設A(x0,0),B(0,y0),P(x,y),
由BP=2PA得(x,y-y0)=2(x0-x,-y),
即x=2(x0-x),y-y0=-2y?x0=32x,y0=3y.
因為x02+y02=9,所以32x2+(3y)2=9,化簡,得x24+y2=1,
所以點P的軌跡方程為x24+y2=1.
(2)當過點(1,0)的直線為y=0時,OMON=(2,0)(-2,0)=-4,
當過點(1,0)的直線不為y=0時,可設為x=ty+1,A(x1,y1),B(x2,y2).
聯(lián)立x24+y2=1,x=ty+1并化簡,得(t2+4)y2+2ty-3=0,
由根與系數(shù)的關系得y1+y2=-2tt2+4,y1y2=-3t2+4,
OMON=x1x2+y1y2=(ty1+1)(ty2+1)+y1y2=(t2+1)y1y2+t(y1+y2)+1=(t2+1)-3t2+4+t-2tt2+4+1=-4t2+1t2+4=-4(t2+4)+17t2+4=-4+17t2+4.
又由Δ=4t2+12(t2+4)=16t2+48>0恒成立,所以t∈R,
對于上式,當t=0時,(OMON)max=14.
綜上所述,OMON的最大值為14.
12.解 (1)因為|AD|=|AC|,EB∥AC,
故∠EBD=∠ACD=∠ADC.
所以|EB|=|ED|,故|EA|+|EB|=|EA|+|ED|=|AD|.
又圓A的標準方程為(x+1)2+y2=16,
從而|AD|=4,
所以|EA|+|EB|=4.
由題設得A(-1,0),B(1,0),|AB|=2,
由橢圓定義可得點E的軌跡方程為x24+y23=1(y≠0).
(2)當l與x軸不垂直時,設l的方程為
y=k(x-1)(k≠0),M(x1,y1),N(x2,y2),
由y=k(x-1),x24+y23=1
得(4k2+3)x2-8k2x+4k2-12=0,
則x1+x2=8k24k2+3,x1x2=4k2-124k2+3,
所以|MN|=1+k2|x1-x2|=12(k2+1)4k2+3.
過點B(1,0)且與l垂直的直線m:y=-1k(x-1),A到m的距離為2k2+1,
所以|PQ|=242-2k2+12=44k2+3k2+1.
故四邊形MPNQ的面積
S=12|MN||PQ|=121+14k2+3.
可得當l與x軸不垂直時,四邊形MPNQ面積的取值范圍為(12,83).
當l與x軸垂直時,其方程為x=1,|MN|=3,|PQ|=8,四邊形MPNQ的面積為12.
綜上,四邊形MPNQ面積的取值范圍為[12,83).
13.解 (1)設A(x1,y1),B(x2,y2),則x124+y123=1,x224+y223=1.
兩式相減,并由y1-y2x1-x2=k得x1+x24+y1+y23k=0.
由題設知x1+x22=1,y1+y22=m,于是k=-34m. ①
由題設得0
下載提示(請認真閱讀)
- 1.請仔細閱讀文檔,確保文檔完整性,對于不預覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領!既往收益都歸您。
文檔包含非法信息?點此舉報后獲取現(xiàn)金獎勵!
下載文檔到電腦,查找使用更方便
9.9
積分
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
-
2019高考數(shù)學大二輪復習
專題六
直線、圓、圓錐曲線
專題能力訓練18
直線與圓錐曲線
2019
高考
數(shù)學
二輪
復習
專題
直線
圓錐曲線
能力
訓練
18
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.szxfmmzy.com/p-5482430.html