蘇教版五年級數(shù)學(xué)《公倍數(shù)和最小公倍數(shù)》教案及反思.doc
《蘇教版五年級數(shù)學(xué)《公倍數(shù)和最小公倍數(shù)》教案及反思.doc》由會員分享,可在線閱讀,更多相關(guān)《蘇教版五年級數(shù)學(xué)《公倍數(shù)和最小公倍數(shù)》教案及反思.doc(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
蘇教版五年級數(shù)學(xué)《公倍數(shù)和最小公倍數(shù)》教案及反思 教學(xué)目標:1.讓學(xué)生認識公倍數(shù)和最小公倍數(shù),會在集合圖中分別表示兩個數(shù)的倍數(shù)和它們的公倍數(shù)。2.讓學(xué)生學(xué)會用列舉的方法找到10以內(nèi)兩個數(shù)的公倍數(shù)和最小公倍數(shù),并能在解決問題的過程中主動探索簡捷的方法,進行有條理的思考。3.讓學(xué)生在學(xué)習(xí)過程中,進一步發(fā)展與同伴進行合作交流的意識和能力,獲得成功的體驗。 教學(xué)重點:1.理解公倍數(shù)和最小公倍數(shù)的含義。 2.掌握求兩個數(shù)的最小公倍數(shù)的方法。 教學(xué)過程: 一、游戲?qū)耄ぐl(fā)興趣 談話:今天我們先玩找朋友的游戲。 (黑板上標有4、6數(shù)字,其他同學(xué)的號碼是他們其中一位手中卡片的倍數(shù)就請站起來,兩位同學(xué)收上符合要求的號碼貼在黑板上。) 出現(xiàn)爭朋友的情況提問:你們?yōu)槭裁礌幣笥???2、24等既是4的倍數(shù),同時也是6的倍數(shù)) 那么12、24等數(shù)與4、6是什么關(guān)系呢?今天我們就來繼續(xù)研究關(guān)于倍數(shù)的知識。 二、教學(xué)例1,認識公倍數(shù) 多媒體出示例1 1. 想一想 談話:如果用一些長是3厘米、寬是5厘米的長方形紙片分別鋪在這兩個正方形上,看看鋪的結(jié)果怎樣?(教師提供材料,如果學(xué)生不能解決可以拼一拼) 學(xué)生說猜想的結(jié)果和想法。 2. 議一議 提問:為什么用這樣的長方形紙片能正好鋪邊長6厘米的正方形?學(xué)生觀察正方形的邊長與長、寬之間的關(guān)系。 引導(dǎo):用長3厘米、寬2厘米的長方形紙片鋪邊長6厘米的正方形,每條邊各鋪幾次?怎樣用算式表示? 鋪邊長8厘米的正方形呢?每條邊都能正好鋪完嗎? 提問:這樣的長方形紙片還能正好鋪滿邊長是多少厘米的正方形?(同桌交流討論) 組織學(xué)生說一說。 提問:能說說你的理由嗎? 引導(dǎo)學(xué)生明確12、18、24除以2和3都沒有余數(shù)。 提問:6、12、18、24這些數(shù)與2有什么關(guān)系?與3呢?學(xué)生發(fā)現(xiàn)6、12、18、24既是2的倍數(shù),又是3的倍數(shù)。 談話:只要正方形的邊長既是2的倍數(shù),又是3的倍數(shù),這樣的正方形就能正好鋪滿。6、12、18、24既是2的倍數(shù),又是3的倍數(shù)它們是2和3的公倍數(shù)。(板書:公倍數(shù)) 提問:兩個數(shù)的公倍數(shù)的個數(shù)是有限的還是無限的?為什么? 明確:因為一個數(shù)的倍數(shù)的個數(shù)是無限的,所以兩個數(shù)的公倍數(shù)的個數(shù)也是無限的,可以用省略號來表示。 提問:8是2和3的公倍數(shù)嗎?為什么? 學(xué)生回答:8是2的倍數(shù),但8不是3的倍數(shù),所以8不是2和3的公倍數(shù)。 三、教學(xué)例2,求兩個數(shù)的公倍數(shù)和最小公倍數(shù)。 1.多媒體出示:6和9的公倍數(shù)有哪些?其中最小的公倍數(shù)是幾?你有什么好方法能很快找出來? 學(xué)生討論交流做法和想法。 教師組織交流: 學(xué)生想到的方法可能有: (1)依次分別寫出6和9的倍數(shù),然后再找出它們的公倍數(shù)。 (2)先找出6的倍數(shù),再從6的倍數(shù)中找出9的倍數(shù)。 (3)先找出9的倍數(shù),再從9的倍數(shù)中找出6的倍數(shù)。 引導(dǎo):這三種方法你覺得哪一種方法簡捷一些? 談話:6和9的公倍數(shù)中最小的一個是18,18就是6和9的最小公倍數(shù)。(板書:最小公倍數(shù)) 3. 集合圖 談話:我們可以畫圖表示6的倍數(shù)、9的倍數(shù)和6和9的公倍數(shù)之間的關(guān)系。 展示書上的集合圖,你能從圖中看出哪些數(shù)是6的倍數(shù)嗎?哪些數(shù)是9的倍數(shù)?6和9的公倍數(shù)是哪些數(shù)?圖中的三個省略號各表示什么?6和9的最小公倍數(shù)是多少? 4.給課始活動時的板書加上集合圈。提問這里是否需要加省略號?明確什么情況下需要加省略號。 四、鞏固練習(xí),加深對公倍數(shù)和最小公倍數(shù)的認識 1.完成練一練。 2. 做練習(xí)四第2題。 引導(dǎo):4與一個自然數(shù)的乘積都是4的什么數(shù)?5、6與一個自然數(shù)的乘積呢?怎樣找4和5的公倍數(shù)?填空時還要注意什么? 3. 做練習(xí)四第4題。 說明題意,引導(dǎo)學(xué)生思考,哪些方格兩種棋都會走到?這些方格中的數(shù)有什么共同特點?動筆涂一涂。 然后同桌開展活動,玩一玩,看看紅棋和黃棋是否都走到涂色的方格中。 五、全課小結(jié)(略) 六、布置作業(yè) 1、練習(xí)四第1、3兩題。 2、補充習(xí)題11頁。 課后反思: 1.我為誰備課? 根據(jù)教材的安排,教學(xué)中可以將引進概念的環(huán)節(jié)分成三個步驟。第一個步驟是操作,讓學(xué)生用長3厘米、寬2厘米的長方形紙片分別鋪長6厘米和8厘米的兩個正方形。備課時,我認為這個環(huán)節(jié)簡直是低估學(xué)生,上學(xué)期學(xué)生多次做過類似這樣的題目,學(xué)生解決這個問題不是小菜一碟嗎?于是,我制作一套材料以備不時之需。課中,發(fā)現(xiàn)有些學(xué)生對能否鋪滿邊長8厘米的正方形有異議。還好準備一套,立即演示給學(xué)生看。看似解決了問題,其實是我剝奪了學(xué)生操作感悟的機會。所以,有時自己的想法往往又高估了學(xué)生,備課還是要從學(xué)生的實際出發(fā)。當然,要從學(xué)生的實際出發(fā),這一節(jié)課的內(nèi)容就無法完成,是想照顧到全體還是想完成一節(jié)課,孰是孰非? 2. 我為誰上課? 按照教材的建議,這一課時要完成例1、例2和練一練以及練習(xí)四1~4題的教學(xué)。每次公開課后我都發(fā)現(xiàn)學(xué)生的課后作業(yè)令人失望。究其原因,為完成教學(xué)任務(wù),課上即使發(fā)現(xiàn)學(xué)生沒有得到充分的思考,或者練習(xí)沒有都完成,也不肯為他們停留,為他們等待,而是硬著頭皮往下開,導(dǎo)致夾生飯的出爐。其實,我知道學(xué)生參差不齊,想要在一節(jié)課中讓每個人都能研究透那是不可能的,所以我把希望寄托在下一節(jié)課。公開課只想給聽課老師留下一個完整的一節(jié)課的印象,感覺公開課不是為學(xué)生而開了。所以我也特別希望聽課的評價體制能夠有所變化,我們是想聽真實的課,了解學(xué)生的真實情況,還是想看一節(jié)課的流程,至少這是我的一個困惑。我究竟應(yīng)該怎樣上課? 5 / 5- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
6 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 公倍數(shù)和最小公倍數(shù) 蘇教版五 年級 數(shù)學(xué) 公倍數(shù) 最小公倍數(shù) 教案 反思
鏈接地址:http://m.szxfmmzy.com/p-4407108.html