2019高考數(shù)學(xué)二輪復(fù)習(xí) 第二編 專(zhuān)題八 選修4系列 第1講 坐標(biāo)系與參數(shù)方程配套作業(yè) 文.doc
《2019高考數(shù)學(xué)二輪復(fù)習(xí) 第二編 專(zhuān)題八 選修4系列 第1講 坐標(biāo)系與參數(shù)方程配套作業(yè) 文.doc》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2019高考數(shù)學(xué)二輪復(fù)習(xí) 第二編 專(zhuān)題八 選修4系列 第1講 坐標(biāo)系與參數(shù)方程配套作業(yè) 文.doc(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第1講 坐標(biāo)系與參數(shù)方程 配套作業(yè) 1.(2018安徽模擬)將圓x2+y2=1上每一點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的,得曲線(xiàn)C. (1)寫(xiě)出C的參數(shù)方程; (2)設(shè)直線(xiàn)l:3x+y+1=0與C的交點(diǎn)為P1,P2,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過(guò)線(xiàn)段P1P2的中點(diǎn)且與l垂直的直線(xiàn)的極坐標(biāo)方程. 解 (1)由坐標(biāo)變換公式得x=3x′,y=y(tǒng)′代入x2+y2=1中得9x′2+y′2=1, 故曲線(xiàn)C的參數(shù)方程為(θ為參數(shù)). (2)由題知,P1,P2(0,-1), P1P2線(xiàn)段中點(diǎn)M, kP1P2=-3,故P1P2線(xiàn)段中垂線(xiàn)的方程為 y+= 即3x-9y-4=0,則極坐標(biāo)方程為 3ρcosθ-9ρsinθ-4=0. 2.(2018廣東模擬)以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)l的極坐標(biāo)方程是2ρsin=5,射線(xiàn)OM:θ=,在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為(φ為參數(shù)). (1)求圓C的普通方程及極坐標(biāo)方程; (2)射線(xiàn)OM與圓C的交點(diǎn)為O,P,與直線(xiàn)l的交點(diǎn)為Q,求線(xiàn)段PQ的長(zhǎng). 解 (1)由圓C的參數(shù)方程(φ為參數(shù))知,圓C的圓心為(0,2),半徑為2, 圓C的普通方程為x2+(y-2)2=4, 將x=ρcosθ,y=ρsinθ代入x2+(y-2)2=4, 得圓C的極坐標(biāo)方程為ρ=4sinθ. (2)設(shè)P(ρ1,θ1),則由 解得ρ1=2,θ1=. 設(shè)Q(ρ2,θ2),則由 解得ρ2=5,θ2=, 所以|PQ|=|ρ1-ρ2|=3. 3.在平面直角坐標(biāo)系xOy中,傾斜角為α的直線(xiàn)l的參數(shù)方程為(t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程是ρcos2θ-4sinθ=0. (1)寫(xiě)出直線(xiàn)l的普通方程和曲線(xiàn)C的直角坐標(biāo)方程; (2)已知點(diǎn)P(1,0).若點(diǎn)M的極坐標(biāo)為,直線(xiàn)l經(jīng)過(guò)點(diǎn)M且與曲線(xiàn)C相交于A,B兩點(diǎn),設(shè)線(xiàn)段AB的中點(diǎn)為Q,求|PQ|的值. 解 (1)∵直線(xiàn)l的參數(shù)方程為(t為參數(shù)), ∴直線(xiàn)l的普通方程為y=tanα(x-1). 由ρcos2θ-4sinθ=0得ρ2cos2θ-4ρsinθ=0, 即x2-4y=0. ∴曲線(xiàn)C的直角坐標(biāo)方程為x2=4y. (2)∵點(diǎn)M的極坐標(biāo)為, ∴點(diǎn)M的直角坐標(biāo)為(0,1). ∴tanα=-1,直線(xiàn)l的傾斜角α=. ∴直線(xiàn)l的參數(shù)方程為(t為參數(shù)). 代入x2=4y,得t2-6t+2=0. 設(shè)A,B兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為t1,t2. ∵Q為線(xiàn)段AB的中點(diǎn), ∴點(diǎn)Q對(duì)應(yīng)的參數(shù)值為==3. 又點(diǎn)P(1,0),則|PQ|==3. 4.(2018福建模擬)在平面直角坐標(biāo)系xOy中,曲線(xiàn)C1的參數(shù)方程為(φ為參數(shù)),在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)C2是圓心為,半徑為1的圓. (1)求曲線(xiàn)C1的普通方程,C2的直角坐標(biāo)方程; (2)設(shè)M為曲線(xiàn)C1上的點(diǎn),N為曲線(xiàn)C2上的點(diǎn),求|MN|的取值范圍. 解 (1)由得 ①2+②2得+y2=1. 所以曲線(xiàn)C1的普通方程為+y2=1. C2,設(shè)C2(x,y),則x=3cos=0, y=3sin=3,故C2(0,3),且r=1,則圓C2的直角坐標(biāo)方程為x2+(y-3)2=1. (2)設(shè)M(2cosφ,sinφ),則 |MC2|= =. 當(dāng)sinφ=1時(shí),|MC2|min=2, 當(dāng)sinφ=-1時(shí),|MC2|max=4, 故|MN|min=2-1=1,|MN|max=4+1=5. 所以|MN|的取值范圍是[1,5]. 5.(2018武漢模擬)在直角坐標(biāo)系xOy中,已知圓C:(θ為參數(shù)),點(diǎn)P在直線(xiàn)l:x+y-4=0上,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系. (1)求圓C和直線(xiàn)l的極坐標(biāo)方程; (2)射線(xiàn)OP交圓C于R,點(diǎn)Q在射線(xiàn)OP上,且滿(mǎn)足|OP|2=|OR||OQ|,求Q點(diǎn)軌跡的極坐標(biāo)方程. 解 (1)圓C的極坐標(biāo)方程ρ=2,直線(xiàn)l的極坐標(biāo)方程為ρ=. (2)設(shè)P,Q,R的極坐標(biāo)分別為(ρ1,θ),(ρ,θ),(ρ2,θ), 因?yàn)棣?=,ρ2=2, 又因?yàn)閨OP|2=|OR||OQ|,即ρ=ρρ2, 所以ρ==, 所以Q點(diǎn)軌跡的極坐標(biāo)方程為ρ=. 6.(2018銀川模擬)以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知直線(xiàn)l的極坐標(biāo)方程為ρsin=2,將圓x2+y2+4x+3=0向右平移兩個(gè)單位長(zhǎng)度,再把所得曲線(xiàn)上每一點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)變?yōu)樵瓉?lái)的倍得到曲線(xiàn)C. (1)求直線(xiàn)l的直角坐標(biāo)方程及曲線(xiàn)C的參數(shù)方程; (2)若A,B分別為曲線(xiàn)C及直線(xiàn)l上的動(dòng)點(diǎn),求|AB|的最小值. 解 (1)由ρsin=2得 ρsinθ+ρcosθ=2, ∴ρsinθ+ρcosθ=4,即x+y-4=0, ∵x2+y2+4x+3=0即(x+2)2+y2=1, 向右平移兩個(gè)單位長(zhǎng)度,即x2+y2=1, 橫坐標(biāo)變?yōu)樵瓉?lái)的倍得到曲線(xiàn)C:+y2=1. 故曲線(xiàn)C的參數(shù)方程為(α為參數(shù)). (2)由(1)知曲線(xiàn)C上的點(diǎn)(cosα,sinα), 到直線(xiàn)l:x+y-4=0的距離 d==, ∴當(dāng)α=時(shí),|AB|的最小值為. 7.(2018陜西質(zhì)檢)在平面直角坐標(biāo)系xOy中,已知曲線(xiàn)C的參數(shù)方程為(t>0,α為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)l的極坐標(biāo)方程為ρsin=3. (1)當(dāng)t=1時(shí),求曲線(xiàn)C上的點(diǎn)到直線(xiàn)l的距離的最大值; (2)若曲線(xiàn)C上的所有點(diǎn)都在直線(xiàn)l的下方,求實(shí)數(shù)t的取值范圍. 解 (1)由ρsin=3得ρsinθ+ρcosθ=3, 把x=ρcosθ,y=ρsinθ代入得直線(xiàn)l的直角坐標(biāo)方程為x+y-3=0, 當(dāng)t=1時(shí),曲線(xiàn)C的參數(shù)方程為(α為參數(shù)), 消去參數(shù)得曲線(xiàn)C的普通方程為x2+y2=1, ∴曲線(xiàn)C為圓,且圓心為O,則點(diǎn)O到直線(xiàn)l的距離 d==, ∴曲線(xiàn)C上的點(diǎn)到直線(xiàn)l的距離的最大值為1+. (2)∵曲線(xiàn)C上的所有點(diǎn)均在直線(xiàn)l的下方, ∴對(duì)任意的α∈R,tcosα+sinα-3<0恒成立, 即cos(α-φ)<3恒成立, ∴<3,又t>0,∴0- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019高考數(shù)學(xué)二輪復(fù)習(xí) 第二編 專(zhuān)題八 選修4系列 第1講 坐標(biāo)系與參數(shù)方程配套作業(yè) 2019 高考 數(shù)學(xué) 二輪 復(fù)習(xí) 第二 專(zhuān)題 選修 系列 坐標(biāo)系 參數(shù) 方程 配套 作業(yè)
鏈接地址:http://m.szxfmmzy.com/p-3922849.html