中考數(shù)學(xué)復(fù)習(xí) 探索二次函數(shù)綜合題解題技巧(六)二次函數(shù)與圓的探究問(wèn)題練習(xí) 魯教版.doc
《中考數(shù)學(xué)復(fù)習(xí) 探索二次函數(shù)綜合題解題技巧(六)二次函數(shù)與圓的探究問(wèn)題練習(xí) 魯教版.doc》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《中考數(shù)學(xué)復(fù)習(xí) 探索二次函數(shù)綜合題解題技巧(六)二次函數(shù)與圓的探究問(wèn)題練習(xí) 魯教版.doc(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
探索二次函數(shù)綜合題解題技巧六 二次函數(shù)在中考數(shù)學(xué)中常常作為壓軸題,具有一定的綜合性和較大的難度。學(xué)生往往因缺乏思路,感到無(wú)從下手,難以拿到分?jǐn)?shù)。事實(shí)上,只要理清思路,方法得當(dāng),穩(wěn)步推進(jìn),少失分、多得分、是完全可以做到的。第1小問(wèn)通常是求解析式:這一小題簡(jiǎn)單,直接找出坐標(biāo)或者用線(xiàn)段長(zhǎng)度來(lái)確定坐標(biāo),進(jìn)而用待定系數(shù)法求出解析式即可。第2—3小問(wèn)通常要結(jié)合三角形、四邊形、圓、對(duì)稱(chēng)、解方程(組)與不等式(組)等知識(shí)呈現(xiàn),知識(shí)面廣,難度大;解這類(lèi)題要善于運(yùn)用轉(zhuǎn)化、數(shù)形結(jié)合、分類(lèi)討論等數(shù)學(xué)思想,認(rèn)真分析條件和結(jié)論、圖形的幾何特征與代數(shù)式的數(shù)量結(jié)構(gòu)特征的關(guān)系,確定解題的思路和方法;同時(shí)需要心態(tài)平和,切記急躁:當(dāng)思維受阻時(shí),要及時(shí)調(diào)整思路和方法,并重新審視題意,注意挖掘隱蔽的條件和內(nèi)在聯(lián)系;既要防止鉆牛角尖,又要防止輕易放棄。 類(lèi)型六 二次函數(shù)與圓的探究問(wèn)題 例1已知二次函數(shù)y=x2+bx+c的頂點(diǎn)M在直線(xiàn)y=-4x上,并且圖象經(jīng)過(guò)點(diǎn)A(-1,0)。 (1)求這個(gè)二次函數(shù)的解析式; (2)設(shè)此二次函數(shù)與x軸的另一個(gè)交點(diǎn)為B,與y軸的交點(diǎn)為C,求經(jīng)過(guò)M、B、C三點(diǎn)的⊙O′的直徑長(zhǎng); (3)設(shè)⊙O′與y軸的另一個(gè)交點(diǎn)為N,經(jīng)過(guò)P(-2,0)、N兩點(diǎn)的直線(xiàn)為L(zhǎng),則圓心O′是否在直線(xiàn)L上,請(qǐng)說(shuō)明理由。 解:(1)由公式法可表示出二次函數(shù)的頂點(diǎn)M坐標(biāo)代入y=-4x,得到關(guān)于b,c的關(guān)系式,再把A的坐標(biāo)代入函數(shù)解析式又可得到b,c的關(guān)系式,聯(lián)立以上兩個(gè)關(guān)系式解方程組求出b和c的值即可求出這個(gè)二次函數(shù)的解析式為y=x2-2x-3; (2)分別求出B(3,0),C(0,-3),和M(1,-4)的坐標(biāo), 過(guò)M作ME⊥OE,過(guò)B作BF⊥EM交EM于F, ∴OC=3,OB=3,CE=OE-OC=1,MF=2,BF=4,EM=1 在Rt△BOC,Rt△CEM,Rt△BFM中,利用勾股定理得:BC=3 ,MC= ,BM=2 , ∵BC2+MC2=20,BM2=(2 2∴BC2+MC2=BM2 ∴△MBC為直角三角形,且∠BCM=90, ∴⊙O′的直徑長(zhǎng)為BM=2 ; (3)圓心O′在直線(xiàn)上,過(guò)O′作x軸的垂線(xiàn),交x軸于R,過(guò)O′作y軸的垂線(xiàn),交y軸于T,交MQ于S, 設(shè)⊙O′與x軸的另一個(gè)交點(diǎn)為Q,連接MQ, 由BM是⊙O′的直徑,知∠BQM=90.∴Q(1,0), ∵BQ=2,O′R⊥OB, ∴QR=1, ∴OR=2, 在Rt△O′RB中,由勾股定理得O′R= =2, ∴O′的坐標(biāo)為(2,-2), ∴OT=2, ∵OC=3, ∴TC=1, ∴NC=1, ∴ON=1, ∴N的坐標(biāo)為(0,-1) 設(shè)過(guò)PN的直線(xiàn)解析式為y=kx+b,把N的坐標(biāo)為(0,-1)和P(-2,0)分別代入 求得k=- ,b=-1, ∴過(guò)PN的直線(xiàn)解析式為y=- x-1, ∵O′的坐標(biāo)為(2,-2), ∴-2=- 2-1=-2, ∴圓心O′是在直線(xiàn)上。 方法提煉: ★運(yùn)用轉(zhuǎn)化的思想。轉(zhuǎn)化的數(shù)學(xué)思想是解決數(shù)學(xué)問(wèn)題的核心思想,由于函數(shù)與幾何結(jié)合的問(wèn)題都具有較強(qiáng)的綜合性,因此在解決這類(lèi)問(wèn)題時(shí),要善于把“新知識(shí)”轉(zhuǎn)化為“舊知識(shí)”,把“未知”化為“已知”,把“抽象”的問(wèn)題轉(zhuǎn)化為“具體”的問(wèn)題,把“復(fù)雜”的問(wèn)題轉(zhuǎn)化為“簡(jiǎn)單”的問(wèn)題?!锞C合使用分析法和綜合法。就是從條件與結(jié)論出發(fā)進(jìn)行聯(lián)想、推理,“由已知得可知”,“從要求到需求”,通過(guò)對(duì)問(wèn)題的“兩邊夾擊”,使它們?cè)谥虚g的某個(gè)環(huán)節(jié)上產(chǎn)生聯(lián)系,從而使問(wèn)題得以解決。 跟蹤訓(xùn)練1如圖,拋物線(xiàn)y=ax2+bx-3與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且經(jīng)過(guò)點(diǎn)(2,-3a),對(duì)稱(chēng)軸是直線(xiàn)x=1,頂點(diǎn)是M. (1)求拋物線(xiàn)對(duì)應(yīng)的函數(shù)表達(dá)式; (2)經(jīng)過(guò)C,M兩點(diǎn)作直線(xiàn)與x軸交于點(diǎn)N,在拋物線(xiàn)上是否存在這樣的點(diǎn)P,使以點(diǎn)P,A,C,N為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由; (3)設(shè)直線(xiàn)y=-x+3與y軸的交點(diǎn)是D,在線(xiàn)段BD上任取一點(diǎn)E(不與B,D重合),經(jīng)過(guò)A,B,E三點(diǎn)的圓交直線(xiàn)BC于點(diǎn)F,試判斷△AEF的形狀,并說(shuō)明理由; (4)當(dāng)E是直線(xiàn)y=-x+3上任意一點(diǎn)時(shí),(3)中的結(jié)論是否成立(請(qǐng)直接寫(xiě)出結(jié)論). 跟蹤訓(xùn)練2如圖,在平面直角坐標(biāo)系中,四邊形OABC是邊長(zhǎng)為2的正方形,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)A,B,與x軸分別交于點(diǎn)E,F(xiàn),且點(diǎn)E的坐標(biāo)為(-,0),以O(shè)C為直徑作半圓,圓心為D. (1)求二次函數(shù)的解析式; (2)求證:直線(xiàn)BE是⊙D的切線(xiàn); (3)若直線(xiàn)BE與拋物線(xiàn)的對(duì)稱(chēng)軸交點(diǎn)為P,M是線(xiàn)段CB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)B,C不重合),過(guò)點(diǎn)M作MN∥BE交x軸與點(diǎn)N,連結(jié)PM,PN,設(shè)CM的長(zhǎng)為t,△PMN的面積為S,求S與t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍.S是否存在著最大值?若存在,求出最大值;若不存在,請(qǐng)說(shuō)明理由. 跟蹤訓(xùn)練3如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)y=ax2+bx+c與⊙M相交于A,B,C,D四點(diǎn),其中A,B兩點(diǎn)坐標(biāo)升別為(-1,0),(0,-2),點(diǎn)D在.x軸上且AD為⊙M的直徑,點(diǎn)E是⊙M與y軸的另一個(gè)交點(diǎn),過(guò)劣弧上的點(diǎn)F作FH⊥AD于點(diǎn)H,且FH=1.5. (1)求點(diǎn)D的坐標(biāo)及拋物線(xiàn)的表達(dá)式; (2)若點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),試求出△PEF的周長(zhǎng)最小時(shí)點(diǎn)P的坐標(biāo); (3)在拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在點(diǎn)Q,使△QCM是等腰三角形?如果存在,請(qǐng)直接寫(xiě)出點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 中考數(shù)學(xué)復(fù)習(xí) 探索二次函數(shù)綜合題解題技巧六二次函數(shù)與圓的探究問(wèn)題練習(xí) 魯教版 中考 數(shù)學(xué) 復(fù)習(xí) 探索 二次 函數(shù) 綜合 題解 技巧 探究 問(wèn)題 練習(xí)
鏈接地址:http://m.szxfmmzy.com/p-3719133.html