2019-2020年八年級數(shù)學 用函數(shù)的觀點看一元二次方程教案1.doc
《2019-2020年八年級數(shù)學 用函數(shù)的觀點看一元二次方程教案1.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年八年級數(shù)學 用函數(shù)的觀點看一元二次方程教案1.doc(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年八年級數(shù)學 用函數(shù)的觀點看一元二次方程教案1 教學目標: 1.通過探索,使學生理解二次函數(shù)與一元二次方程、一元二次不等式之間的聯(lián)系。 2.使學生能夠運用二次函數(shù)及其圖象、性質(zhì)解決實際問題,提高學生用數(shù)學的意識。 3.進一步培養(yǎng)學生綜合解題能力,滲透數(shù)形結(jié)合思想。 重點難點: 重點:使學生理解二次函數(shù)與一元二次方程、一元二次不等式之間的聯(lián)系,能夠運用二次函數(shù)及其圖象、性質(zhì)去解決實際問題是教學的重點。 難點:進一步培養(yǎng)學生綜合解題能力,滲透數(shù)形結(jié)合的思想是教學的難點. 教學過程: 一、引言 在現(xiàn)實生活中,我們常常會遇到與二次函數(shù)及其圖象有關(guān)的問題,如拱橋跨度、拱高計算等,利用二次函數(shù)的有關(guān)知識研究和解決這些問題,具有很現(xiàn)實的意義。本節(jié)課,請同學們共同研究,嘗試解決以下幾個問題。 二、探索問題 問題1:某公園要建造一個圓形的噴水池,在水池中央垂直于水面豎一根柱子,上面的A處安裝一個噴頭向外噴水。連噴頭在內(nèi),柱高為0.8m。水流在各個方向上沿形狀相同的拋物線路徑落下,如圖(1)所示。 根據(jù)設計圖紙已知:如圖(2)中所示直角坐標系中,水流噴出的高度y(m)與水平距離x(m)之間的函數(shù)關(guān)系式是y=-x2+2x+。 (1)噴出的水流距水平面的最大高度是多少? (2)如果不計其他的因素,那么水池至少為多少時,才能使噴出的水流都落在水池內(nèi)? 教學要點 1.讓學生討論、交流,如何將文學語言轉(zhuǎn)化為數(shù)學語言,得出問題(1)就是求函數(shù)y=-x2+2x+最大值,問題(2)就是求如圖(2)B點的橫坐標; 2.學生解答,教師巡視指導; 3.讓一兩位同學板演,教師講評。 問題2:一個涵洞成拋物線形,它的截面如圖(3)所示,現(xiàn)測得,當水面寬AB=1.6m時,涵洞頂點與水面的距離為2.4m。這時,離開水面1.5m處,涵洞寬ED是多少?是否會超過1m? 教學要點 1.教師分析:根據(jù)已知條件,要求ED的寬,只要求出FD的長度。在如圖(3)的直角坐標系中,即只要求出D點的橫坐標。因為點D在涵洞所成的拋物線上,又由已知條件可得到點D的縱坐標,所以利用拋物線的函數(shù)關(guān)系式可以進一步算出點D的橫坐標。 2.讓學生完成解答,教師巡視指導。 3.教師分析存在的問題,書寫解答過程。 解:以AB的垂直平分線為y軸,以過點O的y軸的垂線為x軸,建立直角坐標系。 這時,涵洞的橫截面所成拋物線的頂點在原點,對稱軸為y軸,開口向下,所以可設它的 函數(shù)關(guān)系式為:y=ax2 (a<0) (1) 因為AB與y軸相交于C點,所以CB==0.8(m),又OC=2.4m,所以點B的坐標是(0.8,-2.4)。 因為點B在拋物線上,將它的坐標代人(1),得 -2.4=a0.82 所以:a=- 因此,函數(shù)關(guān)系式是 y=-x2 (2) 因為OF=1.5m,設FD=x1m(x1>0),則點D坐標為(x1,-1.5)。因為點D的坐標在拋物線上,將它的坐標代人(2),得 -1.5=-x12 x12= x1= x1=-不符合假設,舍去,所以x1=。 ED=2FD=2x1=2=≈3.162≈1.26(m) 所以涵洞ED是m,會超過1m。 問題3:畫出函數(shù)y=x2-x-3/4的圖象,根據(jù)圖象回答下列問題。 (1)圖象與x軸交點的坐標是什么; (2)當x取何值時,y=0?這里x的取值與方程x2-x-=0有什么關(guān)系? (3)你能從中得到什么啟發(fā)? 教學要點 1.先讓學生回顧函數(shù)y=ax2+bx+c圖象的畫法,按列表、描點、連線等步驟畫出函數(shù)y=x2-x-的圖象。 2.教師巡視,與學生合作、交流。 3.教師講評,并畫出函數(shù)圖象,如圖(4)所示。 4.教師引導學生觀察函數(shù)圖象,回答(1)提出的問題,得到圖象與x軸交點的坐標分別是(-,0)和(,0)。 5.讓學生完成(2)的解答。教師巡視指導并講評。 6.對于問題(3),教師組織學生分組討論、交流,各組選派代表發(fā)表意見,全班交流,達成共識:從“形”的方面看,函數(shù)y=x2-x-的圖象與x軸交點的橫坐標,即為方程x2-x-=0的解;從“數(shù)”的方面看,當二次函數(shù)y=x2-x-的函數(shù)值為0時,相應的自變量的值即為方程x2-x-=0的解。更一般地,函數(shù)y=ax2+bx+c的圖象與x軸交點的橫坐標即為方程ax2+bx+c=0的解;當二次函數(shù)y=ax2+bx+c的函數(shù)值為0時,相應的自變量的值即為方程ax2+bx+c=0的解,這一結(jié)論反映了二次函數(shù)與一元二次方程的關(guān)系。 三、試一試 根據(jù)問題3的圖象回答下列問題。 (1)當x取何值時,y<0?當x取何值時,y>0? (當-<x<時,y<0;當x<-或x>時,y>0) (2)能否用含有x的不等式來描述(1)中的問題? (能用含有x的不等式采描述(1)中的問題,即x2-x-<0的解集是什么?x2-x->0的解集是什么?) 想一想:二次函數(shù)與一元二次不等式有什么關(guān)系? 讓學生類比二次函數(shù)與一元二次不等式方程的關(guān)系,討論、交流,達成共識: (1)從“形”的方面看,二次函數(shù)y=ax2+bJ+c在x軸上方的圖象上的點的橫坐標,即為一元二次不等式ax2+bx+c>0的解;在x軸下方的圖象上的點的橫坐標.即為一元二次不等式ax2+bx+c<0的解。 (2)從“數(shù)”的方面看,當二次函數(shù)y=ax2+bx+c的函數(shù)值大于0時,相應的自變量的值即為一元二次不等式ax2+bx+c>0的解;當二次函數(shù)y=ax2+bx+c的函數(shù)值小于0時,相應的自變量的值即為一元二次不等式ax2+bc+c<0的解。這一結(jié)論反映了二次函數(shù)與一元二次不等式的關(guān)系。 四、課堂練習: P23練習1、2。 五、小結(jié): 1.通過本節(jié)課的學習,你有什么收獲?有什么困惑? 2.若二次函數(shù)y=ax2+bx+c的圖象與x軸無交點,試說明,元二次方程ax2+bx+c=0和一元二次不等式ax2+bx+c>0、ax2+bx+c<0的解的情況。 六、作業(yè): 1. 二次函數(shù)y=x2-3x-18的圖象與x軸有兩交點,求兩交點間的距離。 2.已知函數(shù)y=x2-x-2。 (1)先確定其圖象的開口方向、對稱軸和頂點坐標,再畫出圖象 (2)觀察圖象確定:x取什么值時,①y=0,②y>0;③y<0。 3.學校建造一個圓形噴水池,在水池中央垂直于水面安裝一個花形柱子OA。O恰好在水面中心,布置在柱子頂端A處的噴頭向外噴水,水流在各個方向上沿形狀相同的拋物線路徑落下,且在過OA任意平面上的拋物線如圖(5)所示,建立直角坐標系(如圖(6)),水流噴出的高度y(m)與水面距離x(m)之間的函數(shù)關(guān)系式是y=-x2+x+,請回答下列問題: (1)花形柱子OA的高度; (2)若不計其他因素,水池的半徑至少要多少米,才能使噴出的水不至于落在池外? 4.如圖(7),一位籃球運動員跳起投籃,球沿拋物線y=-x2+3.5運行,然后準確落人籃框內(nèi)。已知籃框的中心離地面的距離為3.05米。 (1)球在空中運行的最大高度為多少米? (2)如果該運動員跳投時,球出手離地面的高度為2.25米,請問他距離籃框中心的水平距離是多少?- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年八年級數(shù)學 用函數(shù)的觀點看一元二次方程教案1 2019 2020 年級 數(shù)學 函數(shù) 觀點 一元 二次方程 教案
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://m.szxfmmzy.com/p-3293773.html