《2019-2020年高考數(shù)學二輪專題突破 高考小題分項練(二)理.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高考數(shù)學二輪專題突破 高考小題分項練(二)理.doc(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學二輪專題突破 高考小題分項練(二)理
1.(xx課標全國Ⅰ)sin 20cos 10-cos 160sin 10等于( )
A.- B. C.- D.
2.若函數(shù)y=sin 2x的圖象向左平移個單位得到y(tǒng)=f(x)的圖象,則( )
A.f(x)=cos 2x B.f(x)=sin 2x
C.f(x)=-cos 2x D.f(x)=-sin 2x
3.函數(shù)f(x)=2sin (ωx+φ)(ω>0,-<φ<)的部分圖象如圖所示,則ω,φ的值分別是( )
A.2,-
B.2,-
C.4,-
D.4,
4.(xx陜西)對任意向量a,b,下列關系式中不恒成立的是( )
A.|ab|≤|a||b|
B.|a-b|≤||a|-|b||
C.(a+b)2=|a+b|2
D.(a+b)(a-b)=a2-b2
5.函數(shù)y=tan(-)(0
0,ω>0)在區(qū)間上單調遞增,則ω的最大值是( )
A. B. C.1 D.2
9.已知△ABC的外接圓的圓心為O,半徑為1,若+=2,且||=||,則向量在向量方向上的投影為( )
A. B. C.3 D.-
10.(xx重慶)已知△ABC的內角A,B,C滿足sin 2A+sin(A-B+C)=sin(C-A-B)+,面積S滿足1≤S≤2,記a,b,c分別為A,B,C所對的邊,則下列不等式一定成立的是( )
A.bc(b+c)>8 B.a(chǎn)b(a+b)>16
C.6≤abc≤12 D.12≤abc≤24
11.如圖,在矩形ABCD中,AB=,BC=2,點E為BC的中點,點F在邊CD上,若=,則的值是________.
12.(xx寧波模擬)已知a,b,c分別為△ABC三個內角A,B,C的對邊,若cos B=,a=10,△ABC的面積為42,則b+的值為________.
13.(xx嘉興模擬)若將函數(shù)y=sin 2x的圖象向右平移φ (φ>0)個單位,得到的圖象關于直線x=對稱,則φ的最小值為________.
14.已知函數(shù)f(x)=|cos x|sin x,給出下列五個說法:
①f()=-;
②若|f(x1)|=|f(x2)|,則x1=x2+kπ(k∈Z);
③f(x)在區(qū)間[-,]上單調遞增;
④函數(shù)f(x)的周期為π;
⑤f(x)的圖象關于點(-,0)中心對稱.
其中正確說法的序號是________.
15.給出以下結論:
①在三角形ABC中,若a=5,b=8,C=60,則=20;
②已知正方形ABCD的邊長為1,則|++|=2;
③已知=a+5b,=-2a+8b,=3(a-b),則A,B,D三點共線.
其中正確結論的序號為________.
高考小題分項練(二)
1.D [sin 20cos 10-cos 160sin 10=sin 20cos 10+cos 20sin 10=sin 30=.]
2.A [y=sin 2xy
=sin 2(x+)=sin(2x+)=cos 2x.]
3.A [由圖知T=-(-)=,T=π,則ω==2.注意到函數(shù)f(x)在x=時取到最大值,則有2+φ=2kπ+,k∈Z,而-<φ<,故φ=-.]
4.B [對于A,由|ab|=||a||b|cosa,b|≤|a||b|恒成立;對于B,當a,b均為非零向量且方向相反時不成立;對于C、D容易判斷恒成立.故選B.]
5.D [因為函數(shù)y=tan(-)(00,所以2≤R≤2.
故abc=2Rsin A2Rsin B2Rsin C=R3∈[8,16],即8≤abc≤16,從而可以排除選項C和D.對于選項A:bc(b+c)>abc≥8,即bc(b+c)>8,故A正確;對于選項B:ab(a+b)>abc≥8,即ab(a+b)>8,故B錯誤.故選A.]
11.
解析 方法一 坐標法.
以A為坐標原點,AB,AD所在直線為x軸,y軸建立平面直角坐標系,
則A(0,0),B(,0),E(,1),F(xiàn)(x,2).
故=(,0),=(x,2),=(,1),=(x-,2),
∴=(,0)(x,2)=x.
又=,∴x=1.
∴=(1-,2).
∴=(,1)(1-,2)=-2+2=.
方法二 用,表示,是關鍵.
設=x,則=(x-1).
=(+)
=(+x)=x2=2x,
又∵=,∴2x=,
∴x=.
∴=+=+.
∴=(+)
=
=2+2
=2+4=.
12.16
解析 依題意可得sin B=,
又S△ABC=acsin B=42,則c=14.故b==6,所以b+=b+=16.
13.
解析 由題意得,y=sin 2(x-φ)的圖象關于直線x=對稱,所以2(-φ)=+kπ(k∈Z),φ=--π(k∈Z),因此當k=-1時,φ取最小值為.
14.①③
解析?、賔()=f(671π+)
=|cos(671π+)|sin(671π+)
=cos(-sin)=-,正確.
②令x1=-,x2=,
則|f(x1)|=|f(x2)|,
但x1-x2=-=-,
不滿足x1=x2+kπ(k∈Z),不正確.
③f(x)=
∴f(x)在[-,]上單調遞增,正確.
④f(x)的周期為2π,不正確.
⑤易知f(x)的圖象不關于點(-,0)中心對稱,
∴不正確.
綜上可知,正確說法的序號是①③.
15.②③
解析 對于①,=abcos(π-C)=
-abcos C=-20;對于②,|++|=|2|=2||=2;對于③,因為=a+5b,=+=a+5b,所以=,則A,B,D三點共線.綜上可得,②③正確.
鏈接地址:http://m.szxfmmzy.com/p-2832661.html