2019-2020年高中數(shù)學(xué) 4.2.1函數(shù)模型的應(yīng)用實(shí)例 Ⅰ教案 北師大必修1.doc
《2019-2020年高中數(shù)學(xué) 4.2.1函數(shù)模型的應(yīng)用實(shí)例 Ⅰ教案 北師大必修1.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 4.2.1函數(shù)模型的應(yīng)用實(shí)例 Ⅰ教案 北師大必修1.doc(3頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 4.2.1函數(shù)模型的應(yīng)用實(shí)例 Ⅰ教案 北師大必修1 一、 教學(xué)目標(biāo): 1. 知識(shí)與技能:能夠找出簡單實(shí)際問題中的函數(shù)關(guān)系式,初步體會(huì)應(yīng)用一次函數(shù)、二次函數(shù)模型解決實(shí)際問題. 2.過程與方法:感受運(yùn)用函數(shù)概念建立模型的過程和方法,體會(huì)一次函數(shù)、二次函數(shù)模型在數(shù)學(xué)和其他學(xué)科中的重要性. 3.情感、態(tài)度、價(jià)值觀:體會(huì)運(yùn)用函數(shù)思想處理現(xiàn)實(shí)生活中和社會(huì)中的一些簡單問題的實(shí)用價(jià)值. 二、 教學(xué)重點(diǎn)與難點(diǎn): 1.教學(xué)重點(diǎn):運(yùn)用一次函數(shù)、二次函數(shù)模型解決一些實(shí)際問題. 2. 教學(xué)難點(diǎn):將實(shí)際問題轉(zhuǎn)變?yōu)閿?shù)學(xué)模型. 三、 學(xué)法與教法 1. 學(xué)法:學(xué)生自主閱讀教材,采用嘗試、討論方式進(jìn)行探究. 2. 教法:自主閱讀、嘗試、討論法。 四、 教學(xué)過程 (一)創(chuàng)設(shè)情景,揭示課題 引例:大約在一千五百年前,大數(shù)學(xué)家孫子在《孫子算經(jīng)》中記載了這樣的一道題:“今有雛兔同籠,上有三十五頭,下有九十四足,問雛兔各幾何?”這四句的意思就是:有若干只有幾只雞和兔?你知道孫子是如何解答這個(gè)“雞兔同籠”問題的嗎?你有什么更好的方法?老師介紹孫子的大膽解法:他假設(shè)砍去每只雞和兔一半的腳,則每只雞和兔就變成了“獨(dú)腳雞”和“雙腳兔”. 這樣,“獨(dú)腳雞”和“雙腳兔”腳的數(shù)量與它們頭的數(shù)量之差,就是兔子數(shù),即:47-35=12;雞數(shù)就是:35-12=23. 比例激發(fā)學(xué)生學(xué)習(xí)興趣,增強(qiáng)其求知欲望. 可引導(dǎo)學(xué)生運(yùn)用方程的思想解答“雞兔同籠”問題. (二)結(jié)合實(shí)例,探求新知 例1. 某列火車眾北京西站開往石家莊,全程277km,火車出發(fā)10min開出13km后,以120km/h勻速行駛. 試寫出火車行駛的總路程S與勻速行駛的時(shí)間t之間的關(guān)系式,并求火車離開北京2h內(nèi)行駛的路程. 探索: 1)本例所涉及的變量有哪些?它們的取值范圍怎樣; 2)所涉及的變量的關(guān)系如何? 3)寫出本例的解答過程. 老師提示:路程S和自變量t的取值范圍(即函數(shù)的定義域),注意t的實(shí)際意義. 學(xué)生獨(dú)立思考,完成解答,并相互討論、交流、評(píng)析. 例2.某商店出售茶壺和茶杯,茶壺每只定價(jià)20元,茶杯每只定價(jià)5元,該商店制定了兩種優(yōu)惠辦法: 1)本例所涉及的變量之間的關(guān)系可用何種函數(shù)模型來描述? 2)本例涉及到幾個(gè)函數(shù)模型? 3)如何理解“更省錢?”; 4)寫出具體的解答過程. 在學(xué)生自主思考,相互討論完成本例題解答之后,老師小結(jié):通過以上兩例,數(shù)學(xué)模型是用數(shù)學(xué)語言模擬現(xiàn)實(shí)的一種模型,它把實(shí)際問題中某些事物的主要特征和關(guān)系抽象出來,并用數(shù)學(xué)語言來表達(dá),這一過程稱為建模,是解應(yīng)用題的關(guān)鍵。數(shù)學(xué)模型可采用各種形式,如方程(組),函數(shù)解析式,圖形與網(wǎng)絡(luò)等 . 課堂練習(xí)1 某農(nóng)家旅游公司有客房300間,每間日房租為20元,每天都客滿. 公司欲提高檔次,并提高租金,如果每間客房日增加2元,客房出租數(shù)就會(huì)減少10間. 若不考慮其他因素,旅社將房間租金提高到多少時(shí),每天客房的租金總收入最高? 引導(dǎo)學(xué)生探索過程如下: 1)本例涉及到哪些數(shù)量關(guān)系? 2)應(yīng)如何選取變量,其取值范圍又如何? 3)應(yīng)當(dāng)選取何種函數(shù)模型來描述變量的關(guān)系? 4)“總收入最高”的數(shù)學(xué)含義如何理解? 根據(jù)老師的引導(dǎo)啟發(fā),學(xué)生自主,建立恰當(dāng)?shù)暮瘮?shù)模型,進(jìn)行解答,然后交流、進(jìn)行評(píng)析. [略解:] 設(shè)客房日租金每間提高2元,則每天客房出租數(shù)為300-10,由>0,且300-10>0得:0<<30 設(shè)客房租金總上收入元,則有: =(20+2)(300-10) =-20(-10)2 + 8000(0<<30) 由二次函數(shù)性質(zhì)可知當(dāng)=10時(shí),=8000. 所以當(dāng)每間客房日租金提高到20+102=40元時(shí),客戶租金總收入最高,為每天8000元. 課堂練習(xí)2 要建一個(gè)容積為8m3,深為2m的長方體無蓋水池,如果池底和池壁的造價(jià)每平方米分別為120元和80元,試求應(yīng)當(dāng)怎樣設(shè)計(jì),才能使水池總造價(jià)最低?并求此最低造價(jià). (三)歸納整理,發(fā)展思維. 引導(dǎo)學(xué)生共同小結(jié),歸納一般的應(yīng)用題的求解方法步驟: 1) 合理迭取變量,建立實(shí)際問題中的變量之間的函數(shù)關(guān)系,從而將實(shí)際問題轉(zhuǎn)化為 函數(shù)模型問題: 2)運(yùn)用所學(xué)知識(shí)研究函數(shù)問題得到函數(shù)問題的解答; 3)將函數(shù)問題的解翻譯或解釋成實(shí)際問題的解; 4)在將實(shí)際問題向數(shù)學(xué)問題的轉(zhuǎn)化過程中,能畫圖的要畫圖,可借助于圖形的直觀 性,研究兩變量間的聯(lián)系. 抽象出數(shù)學(xué)模型時(shí),注意實(shí)際問題對(duì)變量范圍的限制. (四)布置作業(yè):教材P120習(xí)題3.2(A組)第3 、4題: 五、教后反思:- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高中數(shù)學(xué) 4.2.1函數(shù)模型的應(yīng)用實(shí)例 教案 北師大必修1 2019 2020 年高 數(shù)學(xué) 4.2 函數(shù) 模型 應(yīng)用 實(shí)例 教案 北師大 必修
鏈接地址:http://m.szxfmmzy.com/p-2627589.html