2019-2020年高考數(shù)學(xué)總復(fù)習(xí) 課時(shí)提升練72 參數(shù)方程 理 新人教版.doc
《2019-2020年高考數(shù)學(xué)總復(fù)習(xí) 課時(shí)提升練72 參數(shù)方程 理 新人教版.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué)總復(fù)習(xí) 課時(shí)提升練72 參數(shù)方程 理 新人教版.doc(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué)總復(fù)習(xí) 課時(shí)提升練72 參數(shù)方程 理 新人教版 一、選擇題 1.當(dāng)參數(shù)θ變化時(shí),動(dòng)點(diǎn)P(2cos θ,3sin θ)的軌跡必過(guò)點(diǎn)( ) A.(2,0) B.(2,3) C.(1,3) D. 【解析】 由題意可知,動(dòng)點(diǎn)P的軌跡方程為+=1,結(jié)合四個(gè)選項(xiàng)可知A正確. 【答案】 A 2.直線l:(t為參數(shù))的傾斜角為( ) A.20 B.70 C.160 D.120 【解析】 法一:將直線l:(t為參數(shù)) 化為參數(shù)方程的標(biāo)準(zhǔn)形式為(t為參數(shù)),故直線的傾斜角為70. 法二:將直線l:(t為參數(shù))化為直角坐標(biāo)方程為y-5=(x+2), 即y-5=(x+2), ∴y-5=tan 70(x+2),∴直線的傾斜角為70. 【答案】 B 3.(xx北京高考)曲線(θ為參數(shù))的對(duì)稱(chēng)中心 ( ) A.在直線y=2x上 B.在直線y=-2x上 C.在直線y=x-1上 D.在直線y=x+1上 【解析】 消去參數(shù)θ,將參數(shù)方程化為普通方程. 曲線可化為(x+1)2+(y-2)2=1,其對(duì)稱(chēng)中心為圓心(-1,2),該點(diǎn)在直線y=-2x上,故選B. 【答案】 B 4.已知在平面直角坐標(biāo)系xOy中,點(diǎn)P(x,y)是橢圓+=1上的一個(gè)動(dòng)點(diǎn),則S=x+y的取值范圍為( ) A.[,5] B.[-,5] C.[-5,-] D.[-,] 【解析】 因橢圓+=1的參數(shù)方程為(φ為參數(shù)),故可設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(cos φ,sin φ),其中0≤φ<2π,因此S=x+y=cos φ+sin φ==sin(φ+γ),其中tan γ=,所以S的取值范圍是[-,],故選D. 【答案】 D 5.(xx安徽高考)以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位.已知直線l的參數(shù)方程是(t為參數(shù)),圓C的極坐標(biāo)方程是ρ=4cos θ,則直線l被圓C截得的弦長(zhǎng)為( ) A. B.2 C. D.2 【解析】 將參數(shù)方程和極坐標(biāo)方程化為直角坐標(biāo)方程求解. 直線l的參數(shù)方程(t為參數(shù))化為直角坐標(biāo)方程是y=x-4,圓C的極坐標(biāo)方程ρ=4cos θ化為直角坐標(biāo)方程是x2+y2-4x=0.圓C的圓心(2,0)到直線x-y-4=0的距離為d==.又圓C的半徑r=2,因此直線l被圓C截得的弦長(zhǎng)為2=2.故選D. 【答案】 D 6.已知圓C的參數(shù)方程為(α為參數(shù)),當(dāng)圓心C到直線kx+y+4=0的距離最大時(shí),k的值為( ) A. B. C.- D.- 【解析】 圓C的直角坐標(biāo)方程為(x+1)2+(y-1)2=1,∴圓心C(-1,1),又直線kx+y+4=0過(guò)定點(diǎn)A(0,-4),故當(dāng)CA與直線kx+y+4=0垂直時(shí),圓心C到直線距離最大,∵kCA=-5,∴-k=,∴k=-. 【答案】 D 二、填空題 7.(xx咸陽(yáng)模擬)已知直線l1:(t為參數(shù))與圓C2:(θ為參數(shù))的位置關(guān)系不可能是________. 【解析】 把直線l1的方程:(t為參數(shù))化為直角坐標(biāo)方程為xtan α-y-tan α=0,把圓C2的方程:(θ為參數(shù))化為直角坐標(biāo)方程為x2+y2=1,圓心到直線的距離d==≤1=r,所以直線與圓相交或相切,故填相離. 【答案】 相離 8.(xx陜西高考)圓錐曲線(t為參數(shù))的焦點(diǎn)坐標(biāo)是________. 【解析】 將參數(shù)方程化為普通方程為y2=4x,表示開(kāi)口向右,焦點(diǎn)在x軸正半軸上的拋物線,由2p=4?p=2,則焦點(diǎn)坐標(biāo)為(1,0). 【答案】 (1,0) 9.(xx湖南高考)在平面直角坐標(biāo)系中,傾斜角為的直線l與曲線C:(α為參數(shù))交于A,B兩點(diǎn),且|AB|=2.以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,則直線l的極坐標(biāo)方程是________. 【解析】 曲線(α為參數(shù)),消去參數(shù)得(x-2)2+(y-1)2=1. 由于|AB|=2,因此|AB|為圓的直徑,故直線過(guò)圓的圓心(2,1),所以直線l的方程為y-1=x-2,即x-y-1=0,化為極坐標(biāo)方程為ρcos θ-ρsin θ=1,即ρ(cos θ-sin θ)=1. 【答案】 ρ(cos θ-sin θ)=1 三、解答題 10.(xx江蘇高考)在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為(t為參數(shù)),直線l與拋物線y2=4x相交于A,B兩點(diǎn),求線段AB的長(zhǎng). 【解】 將直線l的參數(shù)方程代入拋物線方程y2=4x,得2=4, 解得t1=0,t2=-8. 所以AB=|t1-t2|=8. 11.(xx長(zhǎng)春模擬)長(zhǎng)為3的線段兩端點(diǎn)A,B分別在x軸正半軸和y軸的正半軸上滑動(dòng),=3,點(diǎn)P的軌跡為曲線C. (1)以直線AB的傾斜角α為參數(shù),求曲線C的參數(shù)方程; (2)求點(diǎn)P到點(diǎn)D(0,-2)距離的最大值. 【解】 (1)設(shè)P(x,y),由題設(shè)可知, 則x=|AB|cos(π-α)=-2cos α, y=|AB|sin(π-α)=sin α, 所以曲線C的參數(shù)方程為(α為參數(shù),<α<π). (2)由(1)得|PD|2=(-2cos α)2+(sin α+2)2 =4cos2α+sin2α+4sin α+4 =-3sin2α+4sin α+8=-32+. 當(dāng)sin α=時(shí),|PD|取得最大值. 12.在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,半圓C的極坐標(biāo)方程為ρ=2cos θ,θ∈. (1)求C的參數(shù)方程; (2)設(shè)點(diǎn)D在C上,C在D處的切線與直線l:y=x+2垂直,根據(jù)(1)中你得到的參數(shù)方程,確定D的坐標(biāo). 【解】 (1)C的普通方程為(x-1)2+y2=1(0≤y≤1). 可得C的參數(shù)方程為(t為參數(shù),0≤t≤π). (2)設(shè)D(1+cos t,sin t),由(1)知C是以G(1,0)為圓心,1為半徑的上半圓.因?yàn)镃在點(diǎn)D處的切線與l垂直, 所以直線GD與l的斜率相同,tan t=,t=. 故D的直角坐標(biāo)為, 即.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高考數(shù)學(xué)總復(fù)習(xí) 課時(shí)提升練72 參數(shù)方程 新人教版 2019 2020 年高 數(shù)學(xué) 復(fù)習(xí) 課時(shí) 提升 72 參數(shù) 方程 新人
鏈接地址:http://m.szxfmmzy.com/p-2624512.html