《2019-2020年高中數(shù)學(xué)競(jìng)賽教材講義 第十八章 組合.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué)競(jìng)賽教材講義 第十八章 組合.doc(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué)競(jìng)賽教材講義 第十八章 組合
一、方法與例題
1.抽屜原理。
例1 設(shè)整數(shù)n≥4,a1,a2,…,an是區(qū)間(0,2n)內(nèi)n個(gè)不同的整數(shù),證明:存在集合{a1,a2,…,an}的一個(gè)子集,它的所有元素之和能被2n整除。
[證明] (1)若n{a1,a2,…,an},則n個(gè)不同的數(shù)屬于n-1個(gè)集合{1,2n-1},{2,2n-2},…,{n-1,n+1}。由抽屜原理知其中必存在兩個(gè)數(shù)ai,aj(i≠j)屬于同一集合,從而ai+aj=2n被2n整除;
(2)若n∈{a1,a2,…,an},不妨設(shè)an=n,從a1,a2,…,an-1(n-1≥3)中任意取3個(gè)數(shù)ai, aj, ak(ai,
0)不被n整除,考慮n個(gè)數(shù)a1,a2,a1+a2,a1+a2+a3,…,a1+a2+…+an-1。
?。┤暨@n個(gè)數(shù)中有一個(gè)被n整除,設(shè)此數(shù)等于kn,若k為偶數(shù),則結(jié)論成立;若k為奇數(shù),則加上an=n知結(jié)論成立。
ⅱ)若這n個(gè)數(shù)中沒(méi)有一個(gè)被n整除,則它們除以n的余數(shù)只能取1,2,…,n-1這n-1個(gè)值,由抽屜原理知其中必有兩個(gè)數(shù)除以n的余數(shù)相同,它們之差被n整除,而a2-a1不被n整除,故這個(gè)差必為ai, aj, ak-1中若干個(gè)數(shù)之和,同ⅰ)可知結(jié)論成立。
2.極端原理。
例2 在nn的方格表的每個(gè)小方格內(nèi)寫有一個(gè)非負(fù)整數(shù),并且在某一行和某一列的交叉點(diǎn)處如果寫有0,那么該行與該列所填的所有數(shù)之和不小于n。證明:表中所有數(shù)之和不小于。
[證明] 計(jì)算各行的和、各列的和,這2n個(gè)和中必有最小的,不妨設(shè)第m行的和最小,記和為k,則該行中至少有n-k個(gè)0,這n-k個(gè)0所在的各列的和都不小于n-k,從而這n-k列的數(shù)的總和不小于(n-k)2,其余各列的數(shù)的總和不小于k2,從而表中所有數(shù)的總和不小于(n-k)2+k2≥
3.不變量原理。
俗話說(shuō),變化的是現(xiàn)象,不變的是本質(zhì),某一事情反復(fù)地進(jìn)行,尋找不變量是一種策略。
例3 設(shè)正整數(shù)n是奇數(shù),在黑板上寫下數(shù)1,2,…,2n,然后取其中任意兩個(gè)數(shù)a,b,擦去這兩個(gè)數(shù),并寫上|a-b|。證明:最后留下的是一個(gè)奇數(shù)。
[證明] 設(shè)S是黑板上所有數(shù)的和,開始時(shí)和數(shù)是S=1+2+…+2n=n(2n+1),這是一個(gè)奇數(shù),因?yàn)閨a-b|與a+b有相同的奇偶性,故整個(gè)變化過(guò)程中S的奇偶性不變,故最后結(jié)果為奇數(shù)。
例4 數(shù)a1, a2,…,an中每一個(gè)是1或-1,并且有S=a1a2a3a4+ a2a3a4a5+…+ana1a2a3=0. 證明:4|n.
[證明] 如果把a(bǔ)1, a2,…,an中任意一個(gè)ai換成-ai,因?yàn)橛?個(gè)循環(huán)相鄰的項(xiàng)都改變符號(hào),S模4并不改變,開始時(shí)S=0,即S≡0,即S≡0(mod4)。經(jīng)有限次變號(hào)可將每個(gè)ai都變成1,而始終有S≡0(mod4),從而有n≡0(mod4),所以4|n。
4.構(gòu)造法。
例5 是否存在一個(gè)無(wú)窮正整數(shù)數(shù)列a1,
下載提示(請(qǐng)認(rèn)真閱讀)
- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
文檔包含非法信息?點(diǎn)此舉報(bào)后獲取現(xiàn)金獎(jiǎng)勵(lì)!
下載文檔到電腦,查找使用更方便
9.9
積分
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
-
2019-2020年高中數(shù)學(xué)競(jìng)賽教材講義
第十八章
組合
2019
2020
年高
數(shù)學(xué)
競(jìng)賽
教材
講義
第十八
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請(qǐng)勿作他用。
鏈接地址:http://m.szxfmmzy.com/p-2618668.html