2019-2020年高中數(shù)學(xué) 第三章《基本不等式》教案1 新人教A版必修5.doc
《2019-2020年高中數(shù)學(xué) 第三章《基本不等式》教案1 新人教A版必修5.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 第三章《基本不等式》教案1 新人教A版必修5.doc(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 第三章《基本不等式》教案1 新人教A版必修5 授課類型:新授課 【教學(xué)目標(biāo)】 1.知識(shí)與技能:學(xué)會(huì)推導(dǎo)并掌握基本不等式,理解這個(gè)基本不等式的幾何意義,并掌握定理中的不等號(hào)“≥”取等號(hào)的條件是:當(dāng)且僅當(dāng)這兩個(gè)數(shù)相等; 2.過(guò)程與方法:通過(guò)實(shí)例探究抽象基本不等式; 3.情態(tài)與價(jià)值:通過(guò)本節(jié)的學(xué)習(xí),體會(huì)數(shù)學(xué)來(lái)源于生活,提高學(xué)習(xí)數(shù)學(xué)的興趣 【教學(xué)重點(diǎn)】 應(yīng)用數(shù)形結(jié)合的思想理解不等式,并從不同角度探索不等式的證明過(guò)程; 【教學(xué)難點(diǎn)】 基本不等式等號(hào)成立條件 【教學(xué)過(guò)程】 1.課題導(dǎo)入 基本不等式的幾何背景: 如圖是在北京召開(kāi)的第24界國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去象一個(gè)風(fēng)車,代表中國(guó)人民熱情好客。你能在這個(gè)圖案中找出一些相等關(guān)系或不等關(guān)系嗎? 教師引導(dǎo)學(xué)生從面積的關(guān)系去找相等關(guān)系或不等關(guān)系。 2.講授新課 1.探究圖形中的不等關(guān)系 將圖中的“風(fēng)車”抽象成如圖,在正方形ABCD中右個(gè)全等的直角三角形。設(shè)直角三角形的兩條直角邊長(zhǎng)為a,b那么正方形的邊長(zhǎng)為。這樣,4個(gè)直角三角形的面積的和是2ab,正方形的面積為。由于4個(gè)直角三角形的面積小于正方形的面積,我們就得到了一個(gè)不等式:。 當(dāng)直角三角形變?yōu)榈妊苯侨切?,即a=b時(shí),正方形EFGH縮為一個(gè)點(diǎn),這時(shí)有。 2.得到結(jié)論:一般的,如果 3.思考證明:你能給出它的證明嗎? 證明:因?yàn)? 當(dāng) 所以,,即 4.1)從幾何圖形的面積關(guān)系認(rèn)識(shí)基本不等式 特別的,如果a>0,b>0,我們用分別代替a、b ,可得, 通常我們把上式寫(xiě)作: 2)從不等式的性質(zhì)推導(dǎo)基本不等式 用分析法證明: 要證 (1) 只要證 a+b (2) 要證(2),只要證 a+b- 0 (3) 要證(3),只要證 ( - ) (4) 顯然,(4)是成立的。當(dāng)且僅當(dāng)a=b時(shí),(4)中的等號(hào)成立。 3)理解基本不等式的幾何意義 探究:課本第110頁(yè)的“探究” 在右圖中,AB是圓的直徑,點(diǎn)C是AB上的一點(diǎn),AC=a,BC=b。過(guò)點(diǎn)C作垂直于AB的弦DE,連接AD、BD。你能利用這個(gè)圖形得出基本不等式的幾何解釋嗎? 易證Rt△ACD∽Rt△DCB,那么CD2=CACB 即CD=. 這個(gè)圓的半徑為,顯然,它大于或等于CD,即,其中當(dāng)且僅當(dāng)點(diǎn)C與圓心重合,即a=b時(shí),等號(hào)成立. 因此:基本不等式幾何意義是“半徑不小于半弦” 評(píng)述:1.如果把看作是正數(shù)a、b的等差中項(xiàng),看作是正數(shù)a、b的等比中項(xiàng),那么該定理可以敘述為:兩個(gè)正數(shù)的等差中項(xiàng)不小于它們的等比中項(xiàng). 2.在數(shù)學(xué)中,我們稱為a、b的算術(shù)平均數(shù),稱為a、b的幾何平均數(shù).本節(jié)定理還可敘述為:兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù). [補(bǔ)充例題] 例1 已知x、y都是正數(shù),求證: (1)≥2; (2)(x+y)(x2+y2)(x3+y3)≥8x3y3. 分析:在運(yùn)用定理:時(shí),注意條件a、b均為正數(shù),結(jié)合不等式的性質(zhì)(把握好每條性質(zhì)成立的條件),進(jìn)行變形. 解:∵x,y都是正數(shù) ∴>0,>0,x2>0,y2>0,x3>0,y3>0 (1)=2即≥2. (2)x+y≥2>0 x2+y2≥2>0 x3+y3≥2>0 ∴(x+y)(x2+y2)(x3+y3)≥222=8x3y3 即(x+y)(x2+y2)(x3+y3)≥8x3y3. 3.隨堂練習(xí) 1.已知a、b、c都是正數(shù),求證 (a+b)(b+c)(c+a)≥8abc 分析:對(duì)于此類題目,選擇定理:(a>0,b>0)靈活變形,可求得結(jié)果. 解:∵a,b,c都是正數(shù) ∴a+b≥2>0 b+c≥2>0 c+a≥2>0 ∴(a+b)(b+c)(c+a)≥222=8abc 即(a+b)(b+c)(c+a)≥8abc. 4.課時(shí)小結(jié) 本節(jié)課,我們學(xué)習(xí)了重要不等式a2+b2≥2ab;兩正數(shù)a、b的算術(shù)平均數(shù)(),幾何平均數(shù)()及它們的關(guān)系(≥).它們成立的條件不同,前者只要求a、b都是實(shí)數(shù),而后者要求a、b都是正數(shù).它們既是不等式變形的基本工具,又是求函數(shù)最值的重要工具(下一節(jié)我們將學(xué)習(xí)它們的應(yīng)用).我們還可以用它們下面的等價(jià)變形來(lái)解決問(wèn)題:ab≤,ab≤()2. 5.評(píng)價(jià)設(shè)計(jì) 課本第113頁(yè)習(xí)題[A]組的第1題 【板書(shū)設(shè)計(jì)】- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 基本不等式 2019-2020年高中數(shù)學(xué) 第三章基本不等式教案1 新人教A版必修5 2019 2020 年高 數(shù)學(xué) 第三 基本 不等式 教案 新人 必修
鏈接地址:http://m.szxfmmzy.com/p-2613777.html