2019-2020年高中數(shù)學(xué) 第2章 圓錐曲線(xiàn)與方程 4.1拋物線(xiàn)的標(biāo)準(zhǔn)方程 蘇教版選修2-1.doc
《2019-2020年高中數(shù)學(xué) 第2章 圓錐曲線(xiàn)與方程 4.1拋物線(xiàn)的標(biāo)準(zhǔn)方程 蘇教版選修2-1.doc》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 第2章 圓錐曲線(xiàn)與方程 4.1拋物線(xiàn)的標(biāo)準(zhǔn)方程 蘇教版選修2-1.doc(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 第2章 圓錐曲線(xiàn)與方程 4.1拋物線(xiàn)的標(biāo)準(zhǔn)方程 蘇教版選修2-1 課時(shí)目標(biāo) 1.掌握拋物線(xiàn)的定義、四種不同標(biāo)準(zhǔn)形式的拋物線(xiàn)方程、準(zhǔn)線(xiàn)、焦點(diǎn)坐標(biāo)及對(duì)應(yīng)的幾何圖形.2.會(huì)利用定義求拋物線(xiàn)方程. 1.拋物線(xiàn)的定義 平面內(nèi)與一個(gè)定點(diǎn)F和一條定直線(xiàn)l(l不經(jīng)過(guò)點(diǎn)F)距離________的點(diǎn)的軌跡叫做拋物線(xiàn),點(diǎn)F叫做拋物線(xiàn)的________,直線(xiàn)l叫做拋物線(xiàn)的________. 2.拋物線(xiàn)的標(biāo)準(zhǔn)方程 (1)方程y2=2px,x2=2py(p>0)叫做拋物線(xiàn)的________方程. (2)拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)坐標(biāo)是__________,準(zhǔn)線(xiàn)方程是__________,開(kāi)口方向________. (3)拋物線(xiàn)y2=-2px(p>0)的焦點(diǎn)坐標(biāo)是________,準(zhǔn)線(xiàn)方程是__________,開(kāi)口方向________. (4)拋物線(xiàn)x2=2py(p>0)的焦點(diǎn)坐標(biāo)是________,準(zhǔn)線(xiàn)方程是__________,開(kāi)口方向________. (5)拋物線(xiàn)x2=-2py(p>0)的焦點(diǎn)坐標(biāo)是___________,準(zhǔn)線(xiàn)方程是__________,開(kāi)口方向________. 一、填空題 1.拋物線(xiàn)y2=ax(a≠0)的焦點(diǎn)到其準(zhǔn)線(xiàn)的距離為_(kāi)_______. 2.已知拋物線(xiàn)的頂點(diǎn)在原點(diǎn),對(duì)稱(chēng)軸為x軸,焦點(diǎn)在曲線(xiàn)-=1上,則拋物線(xiàn)方程為_(kāi)_____________. 3.與拋物線(xiàn)y2=x關(guān)于直線(xiàn)x-y=0對(duì)稱(chēng)的拋物線(xiàn)的焦點(diǎn)坐標(biāo)是________. 4.設(shè)拋物線(xiàn)y2=2x的焦點(diǎn)為F,過(guò)點(diǎn)M(,0)的直線(xiàn)與拋物線(xiàn)相交于A(yíng),B兩點(diǎn),與拋物線(xiàn)的準(zhǔn)線(xiàn)相交于點(diǎn)C,BF=2,則△BCF與△ACF的面積之比為_(kāi)_______. 5.拋物線(xiàn)x2+12y=0的準(zhǔn)線(xiàn)方程為_(kāi)_________. 6.若動(dòng)點(diǎn)P在y=2x2+1上,則點(diǎn)P與點(diǎn)Q(0,-1)連線(xiàn)中點(diǎn)的軌跡方程是__________. 7.已知拋物線(xiàn)x2=y(tǒng)+1上一定點(diǎn)A(-1,0)和兩動(dòng)點(diǎn)P,Q,當(dāng)PA⊥PQ時(shí),點(diǎn)Q的橫坐標(biāo)的取值范圍是______________. 二、解答題 8.已知拋物線(xiàn)的頂點(diǎn)在原點(diǎn),對(duì)稱(chēng)軸為x軸,拋物線(xiàn)上的點(diǎn)M(-3,m)到焦點(diǎn)的距離等于5,求拋物線(xiàn)的方程和m的值,并寫(xiě)出拋物線(xiàn)的焦點(diǎn)坐標(biāo)和準(zhǔn)線(xiàn)方程. 9.某大橋在漲水時(shí)有最大跨度的中央橋孔,已知上部呈拋物線(xiàn)形,跨度為20米,拱頂距水面6米,橋墩高出水面4米.現(xiàn)有一貨船欲過(guò)此孔,該貨船水下寬度不超過(guò)18米,目前吃水線(xiàn)上部分中央船體高5米,寬16米,且該貨船在現(xiàn)在狀況下還可多裝1000噸貨物,但每多裝150噸貨物,船體吃水線(xiàn)就要上升0.04米,若不考慮水下深度,問(wèn):該貨船在現(xiàn)在狀況下能否直接或設(shè)法通過(guò)該橋孔?為什么? 能力提升 10.已知拋物線(xiàn)y2=2px(p>0)的準(zhǔn)線(xiàn)與圓(x-3)2+y2=16相切,則p的值為_(kāi)_______. 11.已知拋物線(xiàn)y2=2x的焦點(diǎn)是F,點(diǎn)P是拋物線(xiàn)上的動(dòng)點(diǎn),又有點(diǎn)A(3,2),求PA+PF的最小值,并求出取最小值時(shí)P點(diǎn)的坐標(biāo). 1.四個(gè)標(biāo)準(zhǔn)方程的區(qū)分:焦點(diǎn)在一次項(xiàng)字母對(duì)應(yīng)的坐標(biāo)軸上,開(kāi)口方向由一次項(xiàng)系數(shù)的符號(hào)確定.當(dāng)系數(shù)為正時(shí),開(kāi)口方向?yàn)樽鴺?biāo)軸的正方向;系數(shù)為負(fù)時(shí),開(kāi)口方向?yàn)樽鴺?biāo)軸的負(fù)方向. 2.焦點(diǎn)在y軸上的拋物線(xiàn)的標(biāo)準(zhǔn)方程x2=2py通常又可以寫(xiě)成y=ax2,這與以前學(xué)習(xí)的二次函數(shù)的解析式是完全一致的,但需要注意的是,由方程y=ax2來(lái)求其焦點(diǎn)和準(zhǔn)線(xiàn)時(shí),必須先化成標(biāo)準(zhǔn)形式. 2.4 拋物線(xiàn) 2.4.1 拋物線(xiàn)的標(biāo)準(zhǔn)方程 知識(shí)梳理 1.相等 焦點(diǎn) 準(zhǔn)線(xiàn) 2.(1)標(biāo)準(zhǔn) (2)(,0) x=- 向右 (3)(-,0) x= 向左 (4)(0,) y=- 向上 (5)(0,-) y= 向下 作業(yè)設(shè)計(jì) 1. 解析 因?yàn)閥2=ax,所以p=,即該拋物線(xiàn)的焦點(diǎn)到其準(zhǔn)線(xiàn)的距離為. 2.y2=8x 解析 由題意知拋物線(xiàn)的焦點(diǎn)為雙曲線(xiàn)-=1的頂點(diǎn),即為(-2,0)或(2,0),所以?huà)佄锞€(xiàn)的方程為y2=8x或y2=-8x. 3.(0,) 解析 兩拋物線(xiàn)關(guān)于x-y=0對(duì)稱(chēng),其焦點(diǎn)也關(guān)于x-y=0對(duì)稱(chēng),y2=x的焦點(diǎn)坐標(biāo)為,故所求拋物線(xiàn)焦點(diǎn)為. 4. 解析 如圖所示,設(shè)過(guò)點(diǎn)M(,0)的直線(xiàn)方程為y=k(x-),代入y2=2x并整理, 得k2x2-(2k2+2)x+3k2=0, 則x1+x2=. 因?yàn)锽F=2,所以BB′=2. 不妨設(shè)x2=2-=是方程的一個(gè)根, 可得k2=,所以x1=2. =====. 5.y=3 解析 拋物線(xiàn)x2+12y=0,即x2=-12y,故其準(zhǔn)線(xiàn)方程是y=3. 6.y=4x2 解析 設(shè)PQ中點(diǎn)坐標(biāo)為(x,y),則P點(diǎn)坐標(biāo)為(2x,2y+1). 又∵點(diǎn)P在y=2x2+1上,∴2y+1=8x2+1, 即y=4x2. 7.(-∞,-3]∪[1,+∞) 解析 由題意知,設(shè)P(x1,x-1),Q(x2,x-1), 又A(-1,0),PAPQ,∴=0, 即(-1-x1,1-x)(x2-x1,x-x)=0, 也就是(-1-x1)(x2-x1)+(1-x)(x-x)=0. ∵x1≠x2,且x1≠-1, ∴上式化簡(jiǎn)得x2=-x1=+(1-x1)-1,由基本不等式可得x2≥1或x2≤-3. 8.解 設(shè)拋物線(xiàn)方程為y2=-2px (p>0), 則焦點(diǎn)F,由題意, 得 解得或 故所求的拋物線(xiàn)方程為y2=-8x,m=2. 拋物線(xiàn)的焦點(diǎn)坐標(biāo)為(-2,0),準(zhǔn)線(xiàn)方程為x=2. 9.解 如圖所示,建立直角坐標(biāo)系,設(shè)拋物線(xiàn)方程為y=ax2, 則A(10,-2)在拋物線(xiàn)上, 即-2=a102,a=-, 方程即為y=-x2. 讓貨船沿正中央航行,船寬16米, 而當(dāng)x=8時(shí),y=-82=-1.28(米). 又船體在x=8之間通過(guò),即B(8,-1.28),此時(shí)B點(diǎn)離水面高度為6+(-1.28)=4.72(米),而船體水面高度為5米,所以無(wú)法直接通過(guò);又5-4.72=0.28(米),0.280.04=7,而1507=1050(噸). ∴用多裝貨物的方法也無(wú)法通過(guò),只好等待水位下降. 10.2 解析 由拋物線(xiàn)的標(biāo)準(zhǔn)方程得準(zhǔn)線(xiàn)方程為x=-. ∵準(zhǔn)線(xiàn)與圓相切,圓的方程為(x-3)2+y2=16, ∴3+=4,∴p=2. 11.解 由定義知,拋物線(xiàn)上點(diǎn)P到焦點(diǎn)F的距離等于點(diǎn)P到準(zhǔn)線(xiàn)l的距離d,由圖可知,求PA+PF的問(wèn)題可轉(zhuǎn)化為求PA+d的問(wèn)題. 將x=3代入拋物線(xiàn)方程y2=2x,得y=. ∵>2,∴A在拋物線(xiàn)內(nèi)部. 設(shè)拋物線(xiàn)上點(diǎn)P到準(zhǔn)線(xiàn)l:x=-的距離為d, 由定義知PA+PF=PA+d, 由圖可知,當(dāng)PA⊥l時(shí),PA+d最小,最小值為,即PA+PF的最小值為, 此時(shí)P點(diǎn)縱坐標(biāo)為2,代入y2=2x,得x=2. ∴點(diǎn)P坐標(biāo)為(2,2). 故PA+PF的最小值為,且取最小值時(shí)P點(diǎn)坐標(biāo)為(2,2).- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高中數(shù)學(xué) 第2章 圓錐曲線(xiàn)與方程 4.1拋物線(xiàn)的標(biāo)準(zhǔn)方程 蘇教版選修2-1 2019 2020 年高 數(shù)學(xué) 圓錐曲線(xiàn) 方程 4.1 拋物線(xiàn) 標(biāo)準(zhǔn) 蘇教版 選修
鏈接地址:http://m.szxfmmzy.com/p-2597023.html