JX013多用途氣動機器人結構設計
JX013多用途氣動機器人結構設計,jx013,多用途,氣動,機器人,結構設計
畢 業(yè) 設 計 任 務 書
2008 年 3 月 3 日
畢業(yè)設計題目
多用途氣動機器人結構設計
指導教師
俞云強
職稱
副教授
專業(yè)名稱
機電一體化技術
班級
機電50532
學生姓名
孫啟亮
學號
5020053223
設計要求
內容包括 :1、第一章為引言;
2、第二章為本選題總體設計方面的論述;
3、從第三章起為畢業(yè)設計總體設計框架和設計過程的詳細論述;
4、倒數第二章為畢業(yè)設計的結果和討論;
5、最后一章為展望與總結。
完成畢業(yè)課題的計劃安排
序號
內容
時間安排
1
外文資料翻譯
2008-2-20至2008-3-3
2
搜集課題相關資料
2008-3-4至2008-3-14
3
完成畢業(yè)設計說明書
2008-3-15至2008-3-31
4
預審,修改
2008-4-1至2008-4-11
5
答辯
2008-4-20
答辯提交資料
外文資料翻譯,畢業(yè)設計說明書
計劃答辯時間
2008-4-20
無錫職業(yè)技術學院機電技術學院
2008 年 3 月 3日
畢業(yè)設計調研報告
調 研 報 告
國外機器人領域發(fā)展近幾年有如下幾個趨勢:
(1)工業(yè)機器人性能不斷提高(高速度、高精度、高可靠性、便于操作和維修),而單機價格不斷下降,平均單機價格從91年的10.3萬美元降至97年的65萬美元。
(2)機械結構向模塊化、可重構化發(fā)展。例如關節(jié)模塊中的伺服電機、減速機、檢測系統(tǒng)三位一體化:由關節(jié)模塊、連桿模塊用重組方式構造機器人整機;國外已有模塊化裝配機器人產品問市。
(3)工業(yè)機器人控制系統(tǒng)向基于PC機的開放型控制器方向發(fā)展,便于標準化、網絡化;器件集成度提高,控制柜日見小巧,且采用模塊化結構:大大提高了系統(tǒng)的可靠性、易操作性和可維修性。
(4)機器人中的傳感器作用日益重要,除采用傳統(tǒng)的位置、速度、加速度等傳感器外,裝配、焊接機器人還應用了視覺、力覺等傳感器,而遙控機器人則采用視覺、聲覺、力覺、觸覺等多傳感器的融合技術來進行環(huán)境建模及決策控制;多傳感器融合配置技術在產品化系統(tǒng)中已有成熟應用。
(5)虛擬現(xiàn)實技術在機器人中的作用已從仿真、預演發(fā)展到用于過程控制,如使遙控機器人操作者產生置身于遠端作業(yè)環(huán)境中的感覺來操縱機器人。
(6)當代遙控機器人系統(tǒng)的發(fā)展特點不是追求全自治系統(tǒng),而是致力于操作者與機器人的人機交互控制,即遙控加局部自主系統(tǒng)構成完整的監(jiān)控遙控操作系統(tǒng),使智能機器人走出實驗室進入實用化階段。美國發(fā)射到火星上的“索杰納”機器人就是這種系統(tǒng)成功應用的最著名實例。
(7)機器人化機械開始興起。從94年美國開發(fā)出“虛擬軸機床”以來,這種新型裝置已成為國際研究的熱點之一,紛紛探索開拓其實際應用的領域。我國的工業(yè)機器人從80年代“七五”科技攻關開始起步,在國家的支持下,通過“七五”、“八五”科技攻關,目前己基本掌握了機器人操作機的設計制造技術、控制系統(tǒng)硬件和軟件設計技術、運動學和軌跡規(guī)劃技術,生產了部分機器人關鍵元器件,開發(fā)出噴漆、弧焊、點焊、裝配、搬運等機器人;其中有130多臺套噴漆機器人在二十余家企業(yè)的近30條自動噴漆生產線(站)上獲得規(guī)模應用,弧焊機器人己應用在汽車制造廠的焊裝線上。但總的來看,我國的工業(yè)機器人技術及其工程應用的水平和國外比還有一定的距離,如:可靠性低于國外產品:機器人應用工程起步較晚,應用領域窄,生產線系統(tǒng)技術與國外比有差距;在應用規(guī)模上,我國己安裝的國產工業(yè)機器人約200臺,約占全球已安裝臺數的萬分之四。以上原因主要是沒有形成機器人產業(yè),當前我國的機器人生產都是應用戶的要求,“一客戶,一次重新設計”,品種規(guī)格多、批量小、零部件通用化程度低、供貨周期長、成本也不低,而且質量、可靠性不穩(wěn)定。因此迫切需要解決產業(yè)化前期的關鍵技術,對產品進行全面規(guī)劃,搞好系列化、通用化、模塊化設計,積極推進產業(yè)化進程.我國的智能機器人和特種機器人在“863”計劃的支持下,也取得了不少成果。其中最為突出的是水下機器人,6000m水下無纜機器人的成果居世界領先水平,還開發(fā)出直接遙控機器人、雙臂協(xié)調控制機器人、爬壁機器人、管道機器人等機種:在機器人視覺、力覺、觸覺、聲覺等基礎技術的開發(fā)應用上開展了不少工作,有了一定的發(fā)展基礎。但是在多傳感器信息融合控制技術、遙控加局部自主系統(tǒng)遙控機器人、智能裝配機器人、機器人化機械等的開發(fā)應用方面則剛剛起步,與國外先進水平差距較大,需要在原有成績的基礎上,有重點地系統(tǒng)攻關,才能形成系統(tǒng)配套可供實用的技術和產品,以期在“十五”后期立于世界先進行列之中。
進入21世紀,隨著我國人口老齡化的提前到來,近來在東南沿海還出現(xiàn)在大量的缺工現(xiàn)象,迫切要求我們提高勞動生產率,降低工人的勞動強度,提高我國工業(yè)自動化水平勢在必行,本設計的目的就是設計一個氣動搬運機械手,應用于工業(yè)自動化生產線,把工業(yè)產品從一條生產線搬運到另外一條生產線,實現(xiàn)自動化生產,減輕產業(yè)工人大量的重復性勞動,同時又可以提高勞動生產率。。
現(xiàn)在的機械手大多采用液壓傳動,液壓傳動存在以下幾個缺點:
(1)液壓傳動在工作過程中常有較多的能量損失(摩擦損失、泄露損失等):液壓傳動易泄漏,不僅污染工作場地,限制其應用范圍,可能引起失火事故,而且影響執(zhí)行部分的運動平穩(wěn)性及正確性。
(2)工作時受溫度變化影響較大。油溫變化時,液體粘度變化,引起運動特性變化。
(3)因液壓脈動和液體中混入空氣,易產生噪聲。
(4)為了減少泄漏,液壓元件的制造工藝水平要求較高,故價格較高;且使用維護需要較高技術水平。鑒于以上這些缺陷,本機械手擬采用氣壓傳動,
氣動技術有以下優(yōu)點:
(1)介質提取和處理方便。氣壓傳動工作壓力較低,工作介質提取容易,而后排入大氣,處理方便,一般不需設置回收管道和容器:介質清潔,管道不易堵存在介質變質及補充的問題.
(2)阻力損失和泄漏較小,在壓縮空氣的輸送過程中,阻力損失較小(一般不卜澆塞僅為油路的千分之一),空氣便于集中供應和遠距離輸送。外泄漏不會像液壓傳動那樣,造成壓力明顯降低和嚴重污染。
(3)動作迅速,反應靈敏。氣動系統(tǒng)一般只需要0.02s-0.3s即可建立起所需的壓力和速度。氣動系統(tǒng)也能實現(xiàn)過載保護,便于自動控制。
(4)能源可儲存。壓縮空氣可存貯在儲氣罐中,因此,發(fā)生突然斷電等情況時,機器及其工藝流程不致突然中斷。
(5)工作環(huán)境適應性好。在易燃、易爆、多塵埃、強磁、強輻射、振動等惡劣環(huán)境中,氣壓傳動與控制系統(tǒng)比機械、電器及液壓系統(tǒng)優(yōu)越,而且不會因溫度變化影響傳動及控制性能。
(6)成本低廉。由于氣動系統(tǒng)工作壓力較低,因此降低了氣動元、輔件的材質和加工精度要求,制造容易,成本較低。傳統(tǒng)觀點認為:由于氣體具有可壓縮性,因此,在氣動伺服系統(tǒng)中要實現(xiàn)高精度定位比較困難(尤其在高速情況下,似乎更難想象)。此外氣源工作壓力較低,抓舉力較小。雖然氣動技術作為機器人中的驅動功能已有部分被工業(yè)界所接受,而且對于不太復雜的機械手,用氣動元件組成的控制系統(tǒng)己被接受,但由于氣動機器人這一體系己經取得的一系列重要進展過去介紹得不夠,因此在工業(yè)自動化領域里,對氣動機械手、氣動機器人的實用性和前景存在不少疑慮。
面對不斷飛速發(fā)展的社會以及經濟增長速度,讓我們很容易想到這是高速發(fā)展的科技快速發(fā)展的結果?,F(xiàn)代科技發(fā)展的主要都會圍繞著效率以及機械化。本課題就是利用PLC控制系統(tǒng)控制的生產線上的機械手,可以幫助人工進行貨物的運送。即可以將生產過程中的生產產品進行搬運,這樣可以減少勞動力,可以顯著地提高人民的生活水平。
3
外文翻譯資料
旋轉泵
旋轉泵應用于不同的設計中,在流體動力系統(tǒng)中極其常用。今天最常用的旋轉泵是外齒輪泵、內齒輪泵、擺線轉子泵、滑動葉片泵和螺旋泵。每種類型的泵都有優(yōu)點,適合于特定場合的應用。
直齒齒輪泵,這種泵有兩個嚙合的齒輪在密封殼體內轉動。第一個齒輪即主動輪的回轉引起第二個齒輪即從動輪的回轉。驅動軸通常連接到泵上面的齒輪上。
當泵首次啟動時,齒輪的旋轉迫使空氣離開殼體進入排油管。這種泵內空氣運動使泵吸入口處形成了真空,于是外部油箱的液體在大氣壓的作用下,由泵的入口進入,聚集在上下齒輪和泵殼體之間,齒輪連續(xù)的旋轉使液體流出泵的出口。
直齒齒輪泵的壓力的升高是由擠壓嚙合齒輪和腔體內的液體產生的。當齒輪脫開嚙合時,腔內形成真空,使更多的液體被吸入泵內。直齒齒輪泵是定排量的元件,當軸轉速不變時,輸出流量恒定。只有一種方法即改變輸入軸的轉速,能調節(jié)這種直齒齒輪泵的排量?,F(xiàn)代應用在流體動力系統(tǒng)的齒輪泵的壓力可達3000psi。
圖示為直齒齒輪泵的典型特性曲線。這些曲線表明了泵在不同速度下的流量和輸入功率。當速度給定時,流量曲線接近于一條水平的直線。泵的流量隨出口壓力的升高而稍有降低,這是由于泵的出油口到吸油口的齒輪徑向泄漏所增加而造成的。滲漏有時定義為泄漏,泵出口壓力的增加也會使泄漏增加。表征泵的出口壓力和流量之間關系曲線常叫做水頭流量曲線或泵的HQ曲線;泵的輸入功率和泵流量關系曲線叫做功率流量特性曲線或PQ曲線。
直齒齒輪泵的輸入功率隨輸入速度和出口壓力的增加而增加。隨著齒輪泵速度的增加,流量(加侖/分)也增加。于是在出口壓力為120psi,轉速為200rpm時,輸入功率是5馬力。在轉速為600rpm時,輸入功率是13馬力??v坐標壓力是120psi,橫坐標是200rpm和600rpm時,在HQ曲線上可以讀出相應的流量分別為40gpm和95gpm。
圖示是直齒齒輪泵在粘度不變時的情況。隨著流體粘度的增加(即流體變稠,不易流動),齒輪泵的流量降低。粘稠的流體在油泵高速運轉時,因為這種流體在油泵中不能迅速進入泵體完全充滿真空區(qū),所以油流量受到限制。圖示為在流體動力系統(tǒng)中流體粘度的增大對旋轉泵工作情況的影響。當流體的粘度值為100SSU,出口壓力為80psi時,泵流量為220gpm。當流體的粘度值為500SSU時,泵流量減少到150gpm。由功率特性曲線可知,泵輸入功率也會增加。
可以用齒輪或其他內部元件每轉一圈輸出多少加侖來表示泵的流量。如果封閉定量泵的出口,則出口壓力將會增加,直至驅動馬達停止或泵內其他部分或排油管破裂。由于存在著破裂的危險,幾乎所有的流體動力系統(tǒng)都安裝壓力溢流閥。這種溢流閥可安裝在泵內,也可安裝在排油管路。
滑動式葉片泵
這些泵有大量的葉片,葉片能在轉子的槽內自由的滑進滑出。當驅動轉子時,離心力,彈簧或壓力油使葉片伸出槽子,頂在泵殼體的內腔或凸輪環(huán)上。隨著轉子的旋轉,葉片之間的流體經過吸油口時,完成吸油。流體順著泵殼體到達排出口。在排出口,流體被排出,進入排油管。
圖示的滑動式葉片泵中的葉片安裝在橢圓形的腔內。當轉子開始旋轉時,離心力使葉片伸出槽子。同時葉片又受到其底部腔內壓力油的作用力,壓力油來源于槽子端部的配流盤。吸油口通過A和A1口相通,他們位于直徑的相對位置。同樣兩排油口位于類似的位置。油口這樣配置,使葉片轉子保持壓力平衡,從而使軸承不受重載影響。當轉子逆時針旋轉時,從吸油管出來的流體進入A和A1口,聚集在葉片之間,沿周向流動后,通過B和B1口排出。這樣設計的泵壓力可達2500psi。的泵必須分級才能達到這么大的壓力,而現(xiàn)在用一級泵即可達到。在轉子上應用均流均壓閥可以達到高壓。轉速通常限制在2500rpm這是因為考慮到離心力和凸輪環(huán)表面葉片之間的磨損。圖示為泵在轉速為1200rpm粘度在100F的條件下的特性曲線。
每個槽內安裝兩個葉片可以控制其作用于殼體內部和凸輪環(huán)上的力。雙葉片會產生更緊的密封,能減少從排油口到吸油口之間的泄漏這種入口和出口相對應的設計也能維持液壓平衡。這些都是定量泵。
不改變轉速就不能改變葉片泵的流量,除非油泵采用特殊設計。圖示為滑動式變量葉片泵。它不用雙吸油和排油口。轉子在壓力腔內轉動,轉子形成的偏心量是可調的。隨著偏心的程度或偏心率的變化,流體的流量也隨著變化。圖示為轉子在旋轉180°范圍內,產生一真空度以便于油液進入,同時壓油區(qū)也在180°范圍內旋轉。吸油區(qū)和壓油區(qū)的起始段梢有重疊。
圖示,在最小的工作壓力下可以得到最大的流量。隨著壓力的升高,流量按預設的規(guī)律減少。當流量減到最小值,壓力增大到最大值。泵只需要提供補充回路中元件滑動配合間隙中泄漏流體。
這種變量泵的設計可以保護管路,溢流閥不是必須的。其他回路中,為阻止局部壓力超過正常壓力水平,可以用安全閥或溢流閥來控制。
為了自動控制流量,采用可變彈簧負載調節(jié)器。安裝這種調節(jié)器,泵的出口壓力作用于活塞或定子內表面,壓縮的彈簧產生位移。如果泵的出口壓力高于調節(jié)器彈簧的設定值時,彈簧被壓縮。這使壓力環(huán)(定子)移動,減少相對于定子的偏心量,于是,泵的流量減少,得到所需的壓力。這種油泵設計的出口壓力在100psi和2500psi之間。
圖示為變量泵補償器的特性,標出輸入功率值,可以準確計算所需的輸入功率。變量泵可以預先設定不同壓力值的變化規(guī)律。高低壓泵控制既能提供有效的卸荷回路,也能為先導控制回路提供足夠壓力。
圖示陰影區(qū)域為變量泵在背壓100psi壓力下的閉式回路。油液以100psi卸荷閥或溢流閥排出,可以維持正常的控制回路壓力,這些是消耗的功率。兩級壓力控制回路包括:先導液壓控制和電磁控制。圖示負號表示電磁鐵不帶電,先導控制油回油箱。于是泵排出的控制油的力小于調節(jié)器彈簧力,所以得到最小壓力。圖示正號為電磁鐵帶電,控制油的力大于調節(jié)器彈簧力。與簡單的溢流閥原理一樣,小球和彈簧決定控制力的大小。這樣預先設定最大工作壓力。
另一種兩級壓力控制系統(tǒng)是利用所謂的差動卸荷調節(jié)器。它應用于高低壓或雙泵回路中。調節(jié)器通過壓力傳感器自動卸荷大流量泵以達到最小的空載壓力設定值??蛰d壓力指的是由于變量泵控制機構工作所形成的特定壓力。泵的實際空載流量等于系統(tǒng)的泄漏量與控制流量之和。當泵空載時,即使液壓系統(tǒng)在提供加緊或保壓作用,也不會需要較大的功率。
調節(jié)器是液壓操縱的,差動活塞帶有雙壓力控制,當外部控制壓力作用于控制卸荷口時,差動活塞允許完全卸荷。
空載壓力的最小設定值由調節(jié)器主彈簧A控制。最大壓力由溢流閥調節(jié)點B控制。調節(jié)器的操作壓力由大容積泵提供,從小孔C進入。
為了說明如何使用這種裝置,假設回路需要1000psi的最大壓力,由一個5-gpm來提供。在壓力達到500psi時,需要大流量(40gpm),繼續(xù)上升到1000psi,流量減少。由流量為40-gpm的帶有卸荷調節(jié)器的泵組成的雙泵系統(tǒng)可滿足要求。
我們可以把40-gpm的泵從500psi卸荷壓力調整至200psi最小設定壓力(或另一需求值),這樣5-gpm泵可以使回路達到1000psi或更高壓力。
圖中為雙泵系統(tǒng)控制壓力源。由一個40-gpm的泵提供調節(jié)器腔內壓力,就可以達到最大設定壓力。彈簧設定力加上調節(jié)器的腔內壓力共同決定了40-gpm泵的最大壓力。第二個控制源是特殊的回路,它能達到1000psi??刂朴屯ㄟ^小孔D進入調節(jié)器作用于卸荷活塞E?;钊鸈面積比安全閥中提動閥F的有效面積大15%。因此卸荷差動力大約為15%。調節(jié)器將在500psi卸荷,會在500psi以下15%或425psi時起作用。這里所謂的卸荷,指的是40-gpm的泵無輸出量。
隨著回路中壓力從0到500psi的增加,調節(jié)器腔內的壓力也隨著增加,直到溢流閥的設定值時,溢流閥打開,流體流出油箱。
調節(jié)器腔內的壓力降是最大的疊加值,允許油泵達到卸荷狀態(tài)。同時,當系統(tǒng)壓力繼續(xù)增加超過700psi時,導致活塞E最底部的壓力比頂部的壓力大?;钊固嵘yF完全打開,溢流提升閥全部開啟導致調節(jié)器腔內壓力進一步下降至零。流體通過小孔C進入調節(jié)器腔,經過溢流提升閥直接回油箱,不增加調節(jié)器腔內的壓力。40-gpm的泵卸荷壓力可以減小至更低的設定值。調整卸荷調節(jié)器,40-gpm的泵達到卸荷。隨著壓力到1000psi,回路的流量減至5gpm。在1000psi時,5-gpm泵也達到卸荷設定,于是流量僅僅維持系統(tǒng)壓力。在500psi時,40-gpm的油泵卸荷。需要600psi的系統(tǒng)壓力把40gpm的泵卸荷到最小壓力200psi。600psi的先導控制油通過孔D進入并作用于差動活塞E。在500psi時,泵流量減少到零。100psi的附加壓力需要完全打開提升閥,使調節(jié)器腔內的壓力減小至零。當回路壓力減小時,兩個泵以同樣的方式來工作。
?
?
?
?
- 4 -
外文資料翻譯
Rotary pumps
旋轉泵
These are built in many different designs and are extremely popular in modern fluid-power system. The most common rotary-pump designs used today are spur-gear, generated-rotary , sliding-vane ,and screw pump ,each type has advantages that make it the most suitable for a given application .
旋轉泵應用于不同的設計中,在流體動力系統(tǒng)中極其常用。今天最常用的旋轉泵是外齒輪泵、內齒輪泵、擺線轉子泵、滑動葉片泵和螺旋泵。每種類型的泵都有優(yōu)點,適合于特定場合的應用。
Spur-gear pumps. these pumps have two mating gears are turned in a closely fitted casing. Rotation of one gear ,the driver causes the second ,or follower gear, to turn . the driving shaft is usually connected to the upper gear of the pump .
直齒齒輪泵,這種泵有兩個嚙合的齒輪在密封殼體內轉動。第一個齒輪即主動輪的回轉引起第二個齒輪即從動輪的回轉。驅動軸通常連接到泵上面的齒輪上。
When the pump is first started ,rotation of gears forces air out the casing and into the discharge pipe. this removal of air from the pump casing produces a partial vacuum on the pump inlet ,here the fluid is trapped between the teeth of the upper and lower gears and the pump casing .continued rotation of the gears forces the fluid out of the pump discharge .
當泵首次啟動時,齒輪的旋轉迫使空氣離開殼體進入排油管。這種泵內空氣運動使泵吸入口處形成了真空,于是外部油箱的液體在大氣壓的作用下,由泵的入口進入,聚集在上下齒輪和泵殼體之間,齒輪連續(xù)的旋轉使液體流出泵的出口。
Pressure rise in a spur-gear pump is produced by the squeezing action on the fluid ad it is expelled from between the meshing gear teeth and casing ,.a vacuum is formed in the cavity between the teeth ad unmesh, causing more fluid to be drawn into the pump ,a spur-gear pump is a constant-displacement unit ,its discharge is constant at a given shaft speed. the only way the quantity of fluid discharge by a spur-gear pump of type in figure can be regulated is by varying the shaft speed .modern gear pumps used in fluid-power systems develop pressures up to about 3000psi.
直齒齒輪泵的壓力的升高是由擠壓嚙合齒輪和腔體內的液體產生的。當齒輪脫開嚙合時,腔內形成真空,使更多的液體被吸入泵內。直齒齒輪泵是定排量的元件,當軸轉速不變時,輸出流量恒定。只有一種方法即改變輸入軸的轉速,能調節(jié)這種直齒齒輪泵的排量?,F(xiàn)代應用在流體動力系統(tǒng)的齒輪泵的壓力可達3000psi。
Figure shows the typical characteristic curves of a spur-gear rotary pump. These curves show the capacity and power input for a spur-gear pump at various speeds. At any given speed the capacity characteristic is nearly a flat line the slight decrease in capacity with rise in discharge pressure is caused by increased leakage across the gears from the discharge to the suction side of the pump. leakage in gear pumps is sometimes termed slip. Slip also increase with arise pump discharge pressure .the curve showing the relation between pump discharge pressure and pump capacity is often termed the head-capacity or HQ curve .the relation between power input and pump capacity is the power-capacity or PQ curve .
圖示為直齒齒輪泵的典型特性曲線。這些曲線表明了泵在不同速度下的流量和輸入功率。當速度給定時,流量曲線接近于一條水平的直線。泵的流量隨出口壓力的升高而稍有降低,這是由于泵的出油口到吸油口的齒輪徑向泄漏所增加而造成的。滲漏有時定義為泄漏,泵出口壓力的增加也會使泄漏增加。表征泵的出口壓力和流量之間關系曲線常叫做水頭流量曲線或泵的HQ曲線;泵的輸入功率和泵流量關系曲線叫做功率流量特性曲線或PQ曲線。
Power input to a squr-gear pump increases with both the operating speed and discharge pressure .as the speed of a gear pump is increased. Its discharge rate in gallons per minute also rise . thus the horsepower input at a discharge pressure of 120psi is 5hp at 200rpm and about 13hp at 600rpm.the corresponding capacities at these speed and pressure are 40 and 95gpm respectively, read on the 120psi ordinate where it crosses the 200-and 600-rpm HQ curves .
直齒齒輪泵的輸入功率隨輸入速度和出口壓力的增加而增加。隨著齒輪泵速度的增加,流量(加侖/分)也增加。于是在出口壓力為120psi,轉速為200rpm時,輸入功率是5馬力。在轉速為600rpm時,輸入功率是13馬力。縱坐標壓力是120psi,橫坐標是200rpm和600rpm時,在HQ曲線上可以讀出相應的流量分別為40gpm和95gpm。
Figure is based on spur-gear handing a fluid of constant viscosity , as the viscosity of the fluid handle increases (i.e. ,the fluid becomes thicker and has more resistance to flow ),the capacity of a gear pump decreases , thick ,viscous fluids may limit pump capacity t higher speeds because the fluid cannot into the casing rapidly enough fill it completely .figure shows the effect lf increased fluid biscosity on the performance of rotary pump in fluid-power system .at 80-psi discharge pressure the pp has a capacity lf 220gpm when handling fluid of 100SSU viscosity lf 500SSU . the power input to the pump also rises ,as shown by the power characteristics.
圖示是直齒齒輪泵在粘度不變時的情況。隨著流體粘度的增加(即流體變稠,不易流動),齒輪泵的流量降低。粘稠的流體在油泵高速運轉時,因為這種流體在油泵中不能迅速進入泵體完全充滿真空區(qū),所以油流量受到限制。圖示為在流體動力系統(tǒng)中流體粘度的增大對旋轉泵工作情況的影響。當流體的粘度值為100SSU,出口壓力為80psi時,泵流量為220gpm。當流體的粘度值為500SSU時,泵流量減少到150gpm。由功率特性曲線可知,泵輸入功率也會增加。
Capacity lf rotary pump is often expressed in gallons per revolution of the gear or other internal element .if the outlet of a positive-displacement rotary pump is completely closed, the discharge pressure will increase to the point where the pump driving motor stalls or some part of the pump casing or discharge pipe ruptures .because this danger of rupture exists systems are filled with a pressure –relief valve. This relief valve may be built as of the pump or it may be mounted in the discharge piping.
可以用齒輪或其他內部元件每轉一圈輸出多少加侖來表示泵的流量。如果封閉定量泵的出口,則出口壓力將會增加,直至驅動馬達停止或泵內其他部分或排油管破裂。由于存在著破裂的危險,幾乎所有的流體動力系統(tǒng)都安裝壓力溢流閥。這種溢流閥可安裝在泵內,也可安裝在排油管路。
Sliding-Vane Pumps
滑動式葉片泵
These pumps have a number of vanes which are free to slide into or out of slots in the pup rotor . when the rotor is turned by the pump driver , centrifugal force , springs , or pressurized fluid causes the vanes to move outward in their slots and bear against the inner bore of the pump casing or against a cam ring . as the rotor revolves , fluid flows in between the vanes when they pass the suction port. This fluid is carried around the pump casing until the discharge port is reached. Here the fluid is forced out of the casing and into the discharge pipe.
這些泵有大量的葉片,葉片能在轉子的槽內自由的滑進滑出。當驅動轉子時,離心力,彈簧或壓力油使葉片伸出槽子,頂在泵殼體的內腔或凸輪環(huán)上。隨著轉子的旋轉,葉片之間的流體經過吸油口時,完成吸油。流體順著泵殼體到達排出口。在排出口,流體被排出,進入排油管。
In the sliding-vane pump in Figure the vanes in an oval-shaped bore. Centrifugal force starts the vanes out of their slots when the rotor begins turning. The vanes are held out by pressure which is bled into the cavities behind the vanes from a distributing ring at the end of the vane slots. Suction is through two ports A and AI, placed diametrically opposite each other. Two discharge ports are similarly placed. This arrangement of ports keeps the rotor in hydraulic balance, reliving the bearing of heavy loads. When the rotor turns counterclockwise, fluid from the suction pipe comes into ports A and AI is trapped between the vanes, and is carried around and discharged through ports B and BI. Pumps of this design are built for pressures up to 2500 psi. earlier models required staging to attain pressures approximating those currently available in one stage. Valving , uses to equalize flow and pressure loads as rotor sets are operated in series to attain high pressures. Speed of rotation is usually limited to less than 2500rpm because of centrifugal forces and subsequent wear at the contact point of vanes against the cam-ring surface..
圖示的滑動式葉片泵中的葉片安裝在橢圓形的腔內。當轉子開始旋轉時,離心力使葉片伸出槽子。同時葉片又受到其底部腔內壓力油的作用力,壓力油來源于槽子端部的配流盤。吸油口通過A和A1口相通,他們位于直徑的相對位置。同樣兩排油口位于類似的位置。油口這樣配置,使葉片轉子保持壓力平衡,從而使軸承不受重載影響。當轉子逆時針旋轉時,從吸油管出來的流體進入A和A1口,聚集在葉片之間,沿周向流動后,通過B和B1口排出。這樣設計的泵壓力可達2500psi。的泵必須分級才能達到這么大的壓力,而現(xiàn)在用一級泵即可達到。在轉子上應用均流均壓閥可以達到高壓。轉速通常限制在2500rpm這是因為考慮到離心力和凸輪環(huán)表面葉片之間的磨損。圖示為泵在轉速為1200rpm粘度在100F的條件下的特性曲線。
Two vanes may be used in each slot to control the force against the interior of the casing or the cam ring. Dual vanes also provide a tighter seal , reducing the leakage from the discharge side to the suction side of the pump . the opposed inlet and discharge port in this design provide hydraulic balance in the same way as the pump, both these pumps are constant-displacement units.
每個槽內安裝兩個葉片可以控制其作用于殼體內部和凸輪環(huán)上的力。雙葉片會產生更緊的密封,能減少從排油口到吸油口之間的泄漏這種入口和出口相對應的設計也能維持液壓平衡。這些都是定量泵。
The delivery or capacity of a vane-type pump in gallons per minute cannot be changed without changing the speed of rotation unless a special design is used. Figure shows a variable-capacity sliding-vane pump. It dose not use dual suction and discharge ports. The rotor rums in the pressure-chamber ring, which can be adjusted so that it is off-center to the rotor. As the degree of off-center or eccentricity is changed, a variable volume of fluid is discharged. Figure shows that the vanes create a vacuum so that oil enters through 180 of shaft rotation. Discharge also takes place through 180 of rotation. There is a slight overlapping of the beginning of the fluid intake function and the beginning of the fluid discharge.
不改變轉速就不能改變葉片泵的流量,除非油泵采用特殊設計。圖示為滑動式變量葉片泵。它不用雙吸油和排油口。轉子在壓力腔內轉動,轉子形成的偏心量是可調的。隨著偏心的程度或偏心率的變化,流體的流量也隨著變化。圖示為轉子在旋轉180°范圍內,產生一真空度以便于油液進入,同時壓油區(qū)也在180°范圍內旋轉。吸油區(qū)和壓油區(qū)的起始段梢有重疊。
Figure shows how maximum flow is available at minimum working pressure. As the pressure rises, flow diminishes in a predetermined pattern. As the flow decreases to a minimum valve, the pressure increases to the maximum. The pump delivers only that fluid needed to replace clearance floes resulting from the usual slide fit in circuit components.
圖示,在最小的工作壓力下可以得到最大的流量。隨著壓力的升高,流量按預設的規(guī)律減少。當流量減到最小值,壓力增大到最大值。泵只需要提供補充回路中元件滑動配合間隙中泄漏流體。
A relief valve is not essential with a variable-displacement-type pump of this design to protect pumping mechanism. Other conditions within the circuit may dictate the use of a safety or relief valve to prevent localized pressure buildup beyond the usual working levels.
這種變量泵的設計可以保護管路,溢流閥不是必須的。其他回路中,為阻止局部壓力超過正常壓力水平,可以用安全閥或溢流閥來控制。
For automatic control of the discharge , an adjustable spring-loaded governor is used . this governor is arranged so that the pump discharge acts on a piston or inner surface of the ring whose movement is opposed by the spring . if the pump discharge pressure rises above that for which the by governor spring is set , the spring is compressed. This allows the pressure-chamber ring to move and take a position that is less off center with respect to the rotor. The pump theb delivers less fluid, and the pressure is established at the desired level. The discharge pressure for units of this design varies between 100 and 2500psi.
為了自動控制流量,采用可變彈簧負載調節(jié)器。安裝這種調節(jié)器,泵的出口壓力作用于活塞或定子內表面,壓縮的彈簧產生位移。如果泵的出口壓力高于調節(jié)器彈簧的設定值時,彈簧被壓縮。這使壓力環(huán)(定子)移動,減少相對于定子的偏心量,于是,泵的流量減少,得到所需的壓力。這種油泵設計的出口壓力在100psi和2500psi之間。
The characteristics of a variable-displacement-pump compensator are shown in figure. Horsepower input values also shown so that the power input requirements can be accurately computed. Variable-volume vane pumps are capacity of multiple-pressure levels in a predetermined pattern. Two-pressure pump controls can provide an efficient method of unloading a circuit and still hold sufficient pressure available for pilot circuits.
圖示為變量泵補償器的特性,標出輸入功率值,可以準確計算所需的輸入功率。變量泵可以預先設定不同壓力值的變化規(guī)律。高低壓泵控制既能提供有效的卸荷回路,也能為先導控制回路提供足夠壓力。
The black area of the graph of figure shows a variable-volume pump maintaining a pressure of 100psi against a closed circuit. Wasted power is the result of pumping oil at 100psi through an unloading or relief valve to maintain a source of positive pilot pressure. Two-pressure –type controls include hydraulic, pilot-operated types and solenoid-controlled, pilot-operated types. The pilot oil obtained from the pump discharge cannot assist the governor spring. Minimum pressure will result. The plus figure shows the solenoid energized so that pilot oil assists compensator spring. The amount of assistance is determined by the small ball and spring, acting as a simple relief valve. This provides the predetermined maximum operating pressure.
圖示陰影區(qū)域為變量泵在背壓100psi壓力下的閉式回路。油液以100psi卸荷閥或溢流閥排出,可以維持正常的控制回路壓力,這些是消耗的功率。兩級壓力控制回路包括:先導液壓控制和電磁控制。圖示負號表示電磁鐵不帶電,先導控制油回油箱。于是泵排出的控制油的力小于調節(jié)器彈簧力,所以得到最小壓力。圖示正號為電磁鐵帶電,控制油的力大于調節(jié)器彈簧力。與簡單的溢流閥原理一樣,小球和彈簧決定控制力的大小。這樣預先設定最大工作壓力。
Another type of two-pressure system employs what is termed a differential unloading governor. It is applied in a high-low or two-pump circuit. The governor automatically, Through pressure sensing, unloads the large volume pump to a minimum deadhead pressure setting. Deadhead pressure refers to a specific pressure level established as resulting action of the variable-displacement-pump control mechanism. The pumping action and the resulting flow at deadhead condition are equal to the leakage in the system and pilot-control flow requirements. No major power movement occurs at this time, even though the hydraulic system may be providing a clamping or holding action while the pump is in deadhead position
另一種兩級壓力控制系統(tǒng)是利用所謂的差動卸荷調節(jié)器。它應用于高低壓或雙泵回路中。調節(jié)器通過壓力傳感器自動卸荷大流量泵以達到最小的空載壓力設定值。空載壓力指的是由于變量泵控制機構工作所形成的特定壓力。泵的實際空載流量等于系統(tǒng)的泄漏量與控制流量之和。當泵空載時,即使液壓系統(tǒng)在提供加緊或保壓作用,也不會需要較大的功率。
The governor is basically a hydraulically operated, two-pressure control with a differential piston that allows complete unloading when sufficient external pilot pressure is applied to pilot unload port.
調節(jié)器是液壓操縱的,差動活塞帶有雙壓力控制,當外部控制壓力作用于控制卸荷口時,差動活塞允許完全卸荷。
The minimum deadhead pressure setting is controlled by the main governor spring A. the maximum pressure is controlled by the relief-valve adjustment B. the operating pressure for the governor is generated by the large-volume pump and enters through orifice C.
空載壓力的最小設定值由調節(jié)器主彈簧A控制。最大壓力由溢流閥調節(jié)點B控制。調節(jié)器的操作壓力由大容積泵提供,從小孔C進入。
To use this device let us assume that the circuit require a maximum pressure of 1000psi, which will be supplied by a 5-gpm pump. It also needs a large flow (40gpm) at pressure up to 500psi; it continues to 1000pso at the reduced flow rate. A two-pump system with an unloading governor on the 40-gpm pump at 500psi to a minimum pressure setting of 200psi (or another desired value) , which the 5-gpm pump takes the circuit up to1000psi or more.
為了說明如何使用這種裝置,假設回路需要1000psi的最大壓力,由一個5-gpm來提供。在壓力達到500psi時,需要大流量(40gpm),繼續(xù)上升到1000psi,流量減少。由流量為40-gpm的帶有卸荷調節(jié)器的泵組成的雙泵系統(tǒng)可滿足要求。我們可以把40-gpm的泵從500psi卸荷壓力調整至200psi最小設定壓力(或另一需求值),這樣5-gpm泵可以使回路達到1000psi或更高壓力。
Note in figure that two sources of pilot pressure are required. One ,the 40-gpm pump, provides pressure within the housing so that maximum pressure setting can be obtained. The setting of the spring, plus the pressure within the governor housing, determines the maximum pressure capacity of the 40-gpm pump. The second pilot source is the circuit proper, which will go to 1000psi. this pilot line enters the governor through orifice D and acts on the unloading piston E . the area of piston E is 15 percent greater than the effective area of the relief poppet F. the governor will unload at 500psi and be activated at 15percent below 500psi, or 425psi. By unloading, we mean zero flow output of the 40-gpm pump.
圖中為雙泵系統(tǒng)控制壓力源。由一個40-gpm的泵提供調節(jié)器腔內壓力,就可以達到最大設定壓力。彈簧設定力加上調節(jié)器的腔內壓力共同決定了40-gpm泵的最大壓力。第二個控制源是特殊的回路,它能達到1000psi??刂朴屯ㄟ^小孔D進入調節(jié)器作用于卸荷活塞E?;钊鸈面積比安全閥中提動閥F的有效面積大15%。因此卸荷差動力大約為15%。調節(jié)器將在500psi卸荷,會在500psi以下15%或425psi時起作用。這里所謂的卸荷,指的是40-gpm的泵無輸出量。
As pressure in the circuit increases from zero to 500psi, the pressure within the governor housing also increases until the relief-valve setting is reached, at which time the relief valve cracks open, allowing flow to the tank.
隨著回路中壓力從0到500psi的增加,調節(jié)器腔內的壓力也隨著增加,直到溢流閥的設定值時,溢流閥打開,流體流出油箱。
The pressure drop in the hosing is a maximum additive value, allowing the pump to deadhead. Meanwhile, the system pressure continues to rise above 700psi, resulting in a greater force on the bottom of piston E than on the top. The piston then completely unseats poppet F, which results in a further pressure drop within the governor horsing to zero pressure because of the full-open position of the relief poppet F. flow entering the housing through orifice is directed to the tank pass the relief poppet without increasing the pressure in housing. The deadhead pressure of the 40-gpm pump then decreases to the lower set value. Thus , at the flow rate to the unloading governor ,the 40gpm pump goes to deadhead. The flow rate to the circuit decreases to 5gpm as the pressure to 1000psi, the 5-gpm pump is also at its deadhead setting, thus only holding system pressure.The 4-gpm pump unloads its volume at 500psi. It requires a system pressure of 600psi to unload the 40-gpm pump to its minimum pressure of 200psi. the 600-psi pilot supply enters through orifice D and acts on the differential piston E. The pumps volume is reduced to zero circuit-flow output at 500psi. The additional 100-psi pilot pressure is required to open poppet F completely and allow the pressure within the housing to decrease to zero.As circuit pressure decreases ,both pumps come back into service in a similar pattern.
調節(jié)器腔內的壓力降是最大的疊加值,允許油泵達到卸荷狀態(tài)。同時,當系統(tǒng)壓力繼續(xù)增加超過700psi時,導致活塞E最底部的壓力比頂部的壓力大。活塞使提升閥F完全打開,溢流提升閥全部開啟導致調節(jié)器腔內壓力進一步下降至零。流體通過小孔C進入調節(jié)器腔,經過溢流提升閥直接回油箱,不增加調節(jié)器腔內的壓力。40-gpm的泵卸荷壓力可以減小至更低的設定值。調整卸荷調節(jié)器,40-gpm的泵達到卸荷。隨著壓力到1000psi,回路的流量減至5gpm。在1000psi時,5-gpm泵也達到卸荷設定,于是流量僅僅維持系統(tǒng)壓力。在500psi時,40-gpm的油泵卸荷。需要600psi的系統(tǒng)壓力把40gpm的泵卸荷到最小壓力200psi。600psi的先導控制油通過孔D進入并作用于差動活塞E。在500psi時,泵流量減少到零。100psi的附加壓力需要完全打開提升閥,使調節(jié)器腔內的壓力減小至零。當回路壓力減小時,兩個泵以同樣的方式來工作。
?
?
?
?
- 10 -
收藏