高考數(shù)學(xué)一輪復(fù)習(xí) 第九章 平面解析幾何 9.8 圓錐曲線的綜合問題 課時3 定點、定值、探索性問題課件 文.ppt
《高考數(shù)學(xué)一輪復(fù)習(xí) 第九章 平面解析幾何 9.8 圓錐曲線的綜合問題 課時3 定點、定值、探索性問題課件 文.ppt》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)一輪復(fù)習(xí) 第九章 平面解析幾何 9.8 圓錐曲線的綜合問題 課時3 定點、定值、探索性問題課件 文.ppt(85頁珍藏版)》請在裝配圖網(wǎng)上搜索。
,§9.8 圓錐曲線的綜合問題,課時3 定點、定值、探索性問題,,,內(nèi)容索引,,,題型一 定點問題,題型二 定值問題,題型三 探索性問題,,思想方法 感悟提高,,思想與方法系列,練出高分,,,題型一 定點問題,(1)求橢圓的標準方程;,解 設(shè)橢圓的焦距為2c,由題意知b=1,且(2a)2+(2b)2=2(2c)2, 又a2=b2+c2,所以a2=3.,,,題型一 定點問題,,解析答案,(2)若λ1+λ2=-3,試證明:直線l過定點并求此定點.,,解析答案,思維升華,解 由題意設(shè)P(0,m),Q(x0,0),M(x1,y1),N(x2,y2), 設(shè)l方程為x=t(y-m),,∵λ1+λ2=-3,∴y1y2+m(y1+y2)=0, ①,,解析答案,思維升華,,∴由題意知Δ=4m2t4-4(t2+3)(t2m2-3)0, ②,③代入①得t2m2-3+2m2t2=0, ∴(mt)2=1, 由題意mt0,∴mt=-1,滿足②, 得l方程為x=ty+1,過定點(1,0),即Q為定點.,思維升華,,思維升華,圓錐曲線中定點問題的兩種解法 (1)引進參數(shù)法:引進動點的坐標或動線中系數(shù)為參數(shù)表示變化量,再研究變化的量與參數(shù)何時沒有關(guān)系,找到定點. (2)特殊到一般法:根據(jù)動點或動線的特殊情況探索出定點,再證明該定點與變量無關(guān).,(1)求橢圓E的方程;,跟蹤訓(xùn)練1,,解析答案,,解析答案,返回,即QC=QD, 所以Q點在y軸上,可設(shè)Q點的坐標為(0,y0). 當直線l與x軸垂直時,設(shè)直線l與橢圓相交于M,N兩點,,解 當直線l與x軸平行時,設(shè)直線l與橢圓相交于C、D兩點,,,解析答案,解得y0=1或y0=2, 所以,若存在不同于點P的定點Q滿足條件, 則Q點坐標只可能為(0,2),,當直線l的斜率不存在時,由上可知,結(jié)論成立, 當直線l的斜率存在時,可設(shè)直線l的方程為y=kx+1,A、B的坐標分別為(x1,y1),(x2,y2),,,解析答案,其判別式Δ=(4k)2+8(2k2+1)>0,,易知,點B關(guān)于y軸對稱的點B′的坐標為(-x2,y2),,,解析答案,,返回,,題型二 定值問題,,,題型二 定值問題,,解析答案,,解析答案,思維升華,證明 由題意可得A1(-2,0),A2(2,0).,設(shè)P(x0,y0),由題意可得-2x02,,,解析答案,思維升華,,思維升華,,思維升華,圓錐曲線中的定值問題的常見類型及解題策略 (1)求代數(shù)式為定值.依題意設(shè)條件,得出與代數(shù)式參數(shù)有關(guān)的等式,代入代數(shù)式、化簡即可得出定值; (2)求點到直線的距離為定值.利用點到直線的距離公式得出距離的解析式,再利用題設(shè)條件化簡、變形求得; (3)求某線段長度為定值.利用長度公式求得解析式,再依據(jù)條件對解析式進行化簡、變形即可求得.,(1)求動點Q的軌跡C的方程;,跟蹤訓(xùn)練2,,解析答案,解 依題意知,點R是線段FP的中點,且RQ⊥FP, ∴RQ是線段FP的垂直平分線. ∵點Q在線段FP的垂直平分線上, ∴PQ=QF, 又PQ是點Q到直線l的距離, 故動點Q的軌跡是以F為焦點,l為準線的拋物線,其方程為y2=2x(x0).,(2)設(shè)圓M過A(1,0),且圓心M在曲線C上,TS是圓M在y軸上截得的弦,當M運動時,弦長TS是否為定值?請說明理由.,解 弦長TS為定值.理由如下: 取曲線C上點M(x0,y0),M到y(tǒng)軸的距離為d=|x0|=x0,,,解析答案,返回,,題型三 探索性問題,例3 (2015·湖北)一種畫橢圓的工具如圖1所示.O是滑槽AB的中點,短桿ON可繞O轉(zhuǎn)動,長桿MN通過N處的鉸鏈與ON連結(jié),MN上的栓子D可沿滑槽AB滑動,且DN=ON=1,MN=3.當栓子D在滑槽AB內(nèi)作往復(fù)運動時,帶動N繞O轉(zhuǎn)動,M處的筆尖畫出的橢圓記為C.以O(shè)為原點,AB所在的直線為x軸建立如圖2所示的平面直角坐標系. (1) 求橢圓C的方程;,,,題型三 探索性問題,,解析答案,解 因為OM≤MN+NO=3+1=4, 當M,N在x軸上時,等號成立; 同理OM≥MN-NO=3-1=2, 當D,O重合,即MN⊥x軸時,等號成立.,(2) 設(shè)動直線l與兩定直線l1:x-2y=0和l2:x+2y=0分別交于P,Q兩點.若直線l總與橢圓C有且只有一個公共點,試探究:△OPQ的面積是否存在最小值?若存在,求出該最小值;若不存在,說明理由.,,解析答案,思維升華,,解析答案,思維升華,消去y,可得(1+4k2)x2+8kmx+4m2-16=0.,因為直線l總與橢圓C有且只有一個公共點,,所以Δ=64k2m2-4(1+4k2)(4m2-16)=0, 即m2=16k2+4.(*1),,解析答案,思維升華,,解析答案,思維升華,,解析答案,思維升華,,所以當k=0時,S△OPQ的最小值為8. 綜合①②可知,當直線l與橢圓C在四個頂點處相切時,△OPQ的面積取得最小值8.,思維升華,,思維升華,解決探索性問題的注意事項 探索性問題,先假設(shè)存在,推證滿足條件的結(jié)論,若結(jié)論正確則存在,若結(jié)論不正確則不存在. (1)當條件和結(jié)論不唯一時要分類討論; (2)當給出結(jié)論而要推導(dǎo)出存在的條件時,先假設(shè)成立,再推出條件; (3)當條件和結(jié)論都不知,按常規(guī)方法解題很難時,要開放思維,采取另外合適的方法.,,解 拋物線y2=8x的焦點為橢圓E的頂點,即a=2.,跟蹤訓(xùn)練3,,解析答案,,解析答案,返回,解 設(shè)A(x1,y1),B(x2,y2),,∴P(x1+x2,y1+y2),,,解析答案,得(4k2+3)x2+8kmx+4m2-12=0.,設(shè)T(t,0),Q(-4,m-4k),,,解析答案,∵4k2+3=4m2,,,解析答案,則1+t=0,∴t=-1,,,返回,,思想與方法系列,,,,思想與方法系列,20.設(shè)而不求,整體代換,,解析答案,規(guī)范解答 解 由于c2=a2-b2,,(2)點P是橢圓C上除長軸端點外的任一點,連結(jié)PF1,PF2,設(shè)∠F1PF2的角平分線PM交C的長軸于點M(m,0),求m的取值范圍;,,解析答案,解 設(shè)P(x0,y0) (y0≠0),,PF1,PF2,,解析答案,,,思維點撥,解析答案,返回,溫馨提醒,解 設(shè)P(x0,y0) (y0≠0), 則直線l的方程為y-y0=k(x-x0).,,解析答案,溫馨提醒,,溫馨提醒,,溫馨提醒,,返回,對題目涉及的變量巧妙地引進參數(shù)(如設(shè)動點坐標、動直線方程等),利用題目的條件和圓錐曲線方程組成二元二次方程組,再化為一元二次方程,從而利用根與系數(shù)的關(guān)系進行整體代換,達到“設(shè)而不求,減少計算”的效果,直接得定值.,,思想方法 感悟提高,1.求定值問題常見的方法有兩種 (1)從特殊入手,求出定值,再證明這個值與變量無關(guān). (2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值. 2.定點的探索與證明問題 (1)探索直線過定點時,可設(shè)出直線方程為y=kx+b,然后利用條件建立b、k等量關(guān)系進行消元,借助于直線系的思想找出定點. (2)從特殊情況入手,先探求定點,再證明與變量無關(guān).,方法與技巧,1.在解決直線與拋物線的位置關(guān)系時,要特別注意直線與拋物線的對稱軸平行的特殊情況. 2.中點弦問題,可以利用“點差法”,但不要忘記驗證Δ0或說明中點在曲線內(nèi)部. 3.解決定值、定點問題,不要忘記特值法.,,失誤與防范,,返回,,練出高分,,又a2=b2+c2,所以b2=12,,1,2,3,4,5,,解析答案,(2)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點,且直線OA與l的距離等于4?若存在,求出直線l的方程;若不存在,請說明理由.,1,2,3,4,5,,解析答案,解 假設(shè)存在符合題意的直線l,,1,2,3,4,5,,解析答案,因為直線l與橢圓C有公共點, 所以Δ=(3t)2-4×3×(t2-12)≥0,,1,2,3,4,5,,解析答案,所以不存在符合題意的直線l.,1,2,3,4,5,1,2,3,4,5,,解析答案,1,2,3,4,5,解 由已知,點C、D的坐標分別為(0,-b),(0,b),,1,2,3,4,5,,解析答案,解 當直線AB的斜率存在時, 設(shè)直線AB的方程為y=kx+1,A,B的坐標分別為(x1,y1),(x2,y2),,1,2,3,4,5,,解析答案,其判別式Δ=(4k)2+8(2k2+1)>0,,=x1x2+y1y2+λ[x1x2+(y1-1)(y2-1)] =(1+λ)(1+k2)x1x2+k(x1+x2)+1,1,2,3,4,5,,解析答案,當直線AB斜率不存在時,直線AB即為直線CD,,1,2,3,4,5,,1,2,3,4,5,,解析答案,(2)過點 的動直線l交橢圓C于A,B兩點,試問:在坐標平面上是否存在一個定點Q,使得以線段AB為直徑的圓恒過點Q?若存在,求出點Q的坐標;若不存在,請說明理由.,1,2,3,4,5,,解析答案,當l與y軸平行時,以線段AB為直徑的圓的方程為x2+y2=1.,1,2,3,4,5,,解析答案,故若存在定點Q,則Q的坐標只可能為Q(0,1). 下面證明Q(0,1)為所求: 若直線l的斜率不存在,上述已經(jīng)證明.,A(x1,y1),B(x2,y2),,1,2,3,4,5,Δ=144k2+64(9+18k2)0,,,解析答案,1,2,3,4,5,1,2,3,4,5,,解析答案,1,2,3,4,5,,解析答案,1,2,3,4,5,(2)過圓O上任意一點P作橢圓E的兩條切線,若切線都存在斜率,求證兩切線斜率之積為定值.,1,2,3,4,5,,解析答案,證明 設(shè)點P(x0,y0),過點P的橢圓E的切線l0的方程為y-y0=k(x-x0)整理得y=kx+y0-kx0,,1,2,3,4,5,,解析答案,1,2,3,4,5,,解析答案,1,2,3,4,5,5.(2014·福建)已知曲線Γ上的點到點F(0,1)的距離比它到直線y=-3的距離小2. (1)求曲線Γ的方程;,1,2,3,4,5,,解析答案,解 方法一 (1)設(shè)S(x,y)為曲線Γ上任意一點, 依題意,點S到F(0,1)的距離與它到直線y=-1的距離相等, 所以曲線Γ是以點F(0,1)為焦點、直線y=-1為準線的拋物線, 所以曲線Γ的方程為x2=4y. 方法二 設(shè)S(x,y)為曲線Γ上任意一點,,1,2,3,4,5,,解析答案,依題意,點S(x,y)只能在直線y=-3的上方,,1,2,3,4,5,化簡,得曲線Γ的方程為x2=4y.,(2)曲線Γ在點P處的切線l與x軸交于點A,直線y=3分別與直線l及y軸交于點M,N.以MN為直徑作圓C,過點A作圓C的切線,切點為B.試探究:當點P在曲線Γ上運動(點P與原點不重合)時,線段AB的長度是否發(fā)生變化?證明你的結(jié)論.,1,2,3,4,5,,解析答案,返回,解 當點P在曲線Γ上運動時,線段AB的長度不變.證明如下:,1,2,3,4,5,,解析答案,1,2,3,4,5,,解析答案,所以點P在曲線Γ上運動時,線段AB的長度不變.,1,2,3,4,5,,返回,- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
14.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考數(shù)學(xué)一輪復(fù)習(xí) 第九章 平面解析幾何 9.8 圓錐曲線的綜合問題 課時3 定點、定值、探索性問題課件 高考 數(shù)學(xué) 一輪 復(fù)習(xí) 第九 平面 解析幾何 圓錐曲線 綜合 問題 課時 定點 探索 課件
鏈接地址:http://m.szxfmmzy.com/p-2194188.html