【溫馨提示】 dwg后綴的文件為CAD圖,可編輯,無水印,高清圖,,壓縮包內(nèi)文檔可直接點開預覽,需要原稿請自助充值下載,請見壓縮包內(nèi)的文件及預覽,所見才能所得,請細心查看有疑問可以咨詢QQ:414951605或1304139763
畢業(yè)設計(論文)開題報告
設計(論文)題目: 磁流變式汽車減振器設計
院 系 名 稱: 汽車與交通工程學院
專 業(yè) 班 級: 車輛工程
學 生 姓 名: 潘鵬山
導 師 姓 名: 安永東
開 題 時 間: 2011.2.28
指導委員會審查意見:
簽字: 年 月 日
畢業(yè)設計(論文)開題報告
學生姓名
潘鵬山
系部
汽車與交通工程學院
專業(yè)、班級
車輛工程07-11班
指導教師姓名
安永東
職稱
副教授
從事
專業(yè)
車輛工程
是否外聘
□是√否
題目名稱
磁流變式汽車減振器的設計
一、 課題研究現(xiàn)狀、選題目的和意義
(1)課題研究現(xiàn)狀
磁流變阻尼器因其具有結構簡單、控制方便、響應速度快、消耗功率小、抗污染能力強和輸出力大、阻尼力連續(xù)可調(diào)等優(yōu)點,它利用了磁流變液在磁場作用下能在毫秒級的時間內(nèi)從牛頓流體轉變成具有一定屈服強度的黏塑性體的智能特性,僅需要很小的能量輸入就能產(chǎn)生較大的阻尼力,尤其適合在土木結構的抗風抗震中應用。在汽車、機械、土木建筑等的振動領域得到了廣泛的應用和發(fā)展。現(xiàn)有的磁流變阻尼器的工作模式有閥式、剪切式、擠壓式、剪切閥式。磁流變阻尼器已成為汽車半主動懸架系統(tǒng)中的研究熱點。
近幾年,對于磁流變阻尼器研究主要關于兩個方面,對磁流變阻尼器優(yōu)化方面的研究和對磁流變阻尼器控制策略的研究。
對于磁流變阻尼器研究關于優(yōu)化方面的內(nèi)容主要集中于結構參數(shù)的優(yōu)化以及磁路優(yōu)化等方面?,F(xiàn)在就這兩方面內(nèi)容對其進行介紹。
1)磁流變阻尼器結構參數(shù)優(yōu)化
為了提高磁流變阻尼器的可調(diào)范圍和可控力值,需要對磁流變阻尼器的結構參數(shù)進行優(yōu)化,以使其阻尼性能達到最佳。在早期的磁流變阻尼器的研究中,主要對單一目標函數(shù)進行優(yōu)化,以得到最佳的結構關鍵尺寸,如間隙大小,有效長度及線圈匝數(shù)等。
西北工業(yè)大學的鄧長華等人對雙出桿磁流變阻尼器結構參數(shù)進行優(yōu)化,其僅選擇可調(diào)范圍作為目標函數(shù),利用MATLAB優(yōu)化出線圈匝數(shù)、阻尼通道厚度以及阻尼通道長度。
西安交通大學的吳龍等人從磁流變阻尼器設計原理入手,采用Bingham軸對稱理論模型對小型單出桿式磁流變阻尼器進行了結構參數(shù)的優(yōu)化研究。其選取推導出的有效長度公式為目標函數(shù),利用MATLAB優(yōu)化工具箱進行優(yōu)化,確定相關參數(shù)值代回原阻尼力及可調(diào)范圍公式反復比對,已達到最佳效果。
對于阻尼力或可調(diào)范圍的這種單目標優(yōu)化,涉及到的設計參數(shù)比較少,在計算過程上僅從磁學角度考慮結構參數(shù)對阻尼力的影響,優(yōu)化的效果上講,具有一定的局限性。近幾年的結果優(yōu)化中出現(xiàn)了一些針對阻尼力和可調(diào)范圍等從力學和磁學雙重角度考慮的多目標優(yōu)化方法。
比較早的是煙臺大學的陳義寶等人采用灰色系統(tǒng)理論的關聯(lián)度計算方法,對磁流變阻尼器的結構參數(shù)進行優(yōu)化設計,其選定阻尼力可調(diào)范圍、粘性阻尼力和可調(diào)阻尼力作為優(yōu)化目標,利用優(yōu)化軟件庫OPB2對設計主要參數(shù)進行多目標參數(shù)優(yōu)化。
哈爾濱工業(yè)大學的關新春等人以阻尼力和可調(diào)信數(shù)為優(yōu)化目標,以磁流變阻尼器關鍵結構參數(shù)為變量,;利用多目標遺傳算法,在優(yōu)化軟件modeFRONTIER中對磁流變阻尼器進行優(yōu)化設計和分析。以及南京理工大學的張莉等人,安徽科技學院的易勇等人運用相應的軟件工具和方法,對磁流變阻尼器進行了相應的多目標優(yōu)化方面的研究。
2)磁流變阻尼器磁路優(yōu)化
磁流變阻尼器設計磁路的目的是將磁通量引導并集中到環(huán)形間隙中的活性磁流變液區(qū),最大限度地降低磁芯材料及非工作磁流變液區(qū)中的能量損失,保證足夠的橫截面積降低磁芯材料中的磁阻。在磁路的設計過程中,所得到的結構參數(shù)結果是多樣化的,而且每種結果使磁流變減振器發(fā)揮的效能并不一樣,所以必須對結構參數(shù)進行優(yōu)化,使磁路系統(tǒng)發(fā)揮最佳的功能。目前,多數(shù)采用ANSYS有限元軟件進行分析,得到優(yōu)化前后的磁感應強度圖,優(yōu)化后的磁路系統(tǒng)在阻尼環(huán)內(nèi)的磁場強度基本都垂直于磁流變液流動的方向,有效地減少漏磁,提高了磁場利用率。除此之外,西安石油大學的王治國等人用正交試驗方法對磁流變阻尼磁路進行了優(yōu)化方面的研究,重慶工學院的富麗娟等人對電控信號變化的響應快、控制范圍大為設計目標用最小二乘法對磁流變阻尼器磁路進行了優(yōu)化方面的研究等等。
近年來,國內(nèi)外學者應用控制理論提供的方法在汽車半主動懸架控制系統(tǒng)的研究反面做了大量的研究工作。汽車半主動懸架是一個非線性系統(tǒng),動力學模型參數(shù)具有不確定性,考慮到半主動懸架控制的實時性,提高系統(tǒng)的響應時間是非常關鍵的,不宜采用過于復雜的算法。目前,在汽車半主動懸架中應用的懸架主要有以下幾種:
1)天棚阻尼控制方法
天棚阻尼控制方法是1974年由美國Karnopp教授提出的一種半主動懸架基本控制方法。該方法的原理是在車身上施加一個正比于車身絕對速度的阻尼力,通過合理選擇相關參數(shù),可徹底清除系統(tǒng)共振現(xiàn)象。天棚阻尼控制法簡單、易行,但由于粘度特性的限制,理想的天棚控制效果是無法實現(xiàn)的,且阻尼系數(shù)的頻繁、小連續(xù)切換要求阻尼器具有較寬的頻率。
2)自適應控制方法
自適應控制研究始于80年代初,由于車輛懸架模型有誤差,存在非線性和受控車輛結構參數(shù)變化,許多學者認識到自適應控制的必要性。基于線性時不變控制方法能使系統(tǒng)當參數(shù)發(fā)生變化時,其性能趨于理性的系統(tǒng)。它主要用于受控對象及其參數(shù)存在嚴重不確定性的情況。
3)最優(yōu)控制方法
最優(yōu)控制是半主動懸架控制中應用比較廣泛的一種方法。通過建立半主動懸架系統(tǒng)的狀態(tài)方程,考慮不同的性能指標并提出控制目標函數(shù),來分析當汽車受到路面隨機激勵時,半主動懸架性能指標的最優(yōu)控制方案。應用于車輛懸架系統(tǒng)的最優(yōu)控制可以分為線性最優(yōu)控制,最優(yōu)預報控制等等。
4)智能控制方法
智能控制是一個新興的研究領域,善于解決那些傳統(tǒng)方法難解決的復雜系統(tǒng)的控制問題,并具有較強的容錯能力、學習能力、自適應能力和自組織能力,是一類無需人為干預就能獨立地驅(qū)動智能機器,實現(xiàn)其目標的自動控制。它研究的對象不是被控對象而是控制器本身。智能控制主要包括模糊控制、神經(jīng)網(wǎng)絡控制以及遺傳算法控制等。
(2)選題目的和意義
汽車在行駛過程中,由于路面的不平坦,導致作用于車輪上的垂直反力、縱向反力和側向反力起伏波動,通過懸架傳遞到車身,從而產(chǎn)生振動與沖擊。這些振動與沖擊傳到車架與車身時可能引起汽車機件的早期損壞,傳給乘員和貨物時,將使乘員感到極不舒適,貨物也可能受損傷,嚴重影響車輛的平順性和操縱穩(wěn)定性以及車輛零部件的疲勞壽命。為了緩解沖擊,在汽車懸架中裝有彈性元件,但彈性系統(tǒng)在沖擊時產(chǎn)生振動。持續(xù)的振動易使乘員感到不舒適和疲勞,因此汽車懸架中裝有阻尼器。
傳統(tǒng)被動懸架不能適應復雜的道路激勵和不斷變化的行駛工況,因此開發(fā)一種能夠根據(jù)路面情況和車輛運行狀態(tài)的變化、實時調(diào)節(jié)其特性,既能保證汽車的操縱穩(wěn)定性,又能使汽車的乘坐舒適性達到最佳狀態(tài)的智能懸架系統(tǒng)勢在必行。今年來,半主動懸架系統(tǒng),能夠大幅度提高車輛的乘坐舒適性和操縱穩(wěn)定性,非常適合用于車輛懸架系統(tǒng)的特點,使對它的研究有了較大發(fā)展。
磁流變阻尼器作為半主動懸架的執(zhí)行元件,以磁流變液為介質(zhì),通過對輸入電流的控制,使其外加磁場強度發(fā)生變化,進而可在毫秒級使磁流變液的磁流性能發(fā)生變化,實現(xiàn)流體和半固體之間的轉變,從而能夠提供可控阻尼力,因此,對雙筒式磁流變阻尼器的設計以及結構優(yōu)化的理論研究十分的必要。
分析磁流變減振器的工作模式,結合現(xiàn)有汽車液壓筒式減振器的結構和工作特點,對磁流變減振器進行結構設計,對磁流變減振器的磁路進行設計。
二、設計(論文)的基本內(nèi)容、擬解決的主要問題
1、主要設計內(nèi)容
(1)磁流變減振器的磁路設計;
(2)減振器的結構設計;
(3)對減振器的性能進行分析,磁流變減振器進行性能仿真,分析仿真結果。
2、擬解決的主要問題
(1)設計是在利用簡化模型設計出磁路結構的基礎上,對減振器進行磁飽和分析。
(2)確定減振器幾個主要結構尺寸對磁飽和現(xiàn)象的影響,在此基礎上對磁路結構尺寸進行優(yōu)化,以避免磁飽和現(xiàn)象過早發(fā)生,提高減振器的阻尼力可調(diào)范圍。
(3)磁流變減振器結構材料的選擇。
(4)磁流變阻尼器的動態(tài)范圍的確定。
(5)阻尼間隙的選取對減振器性能的影響,阻尼通道有效長度的選取對減振器性能的影響。
調(diào)查研究
三、技術路線(研究方法)
減振器工作要求、主要技術指標的分析
數(shù)據(jù)計算、分析、處理
磁流變減振器結構設計、磁路設計
基于Bingham模型的平板結構模型
工作缸外徑、內(nèi)徑以及活塞桿直徑基本尺寸確定。阻尼間隙、活塞有效長度、線圈匝數(shù)確定
磁流變減振器性能進行性能優(yōu)化仿真
一定振幅和頻率正弦激勵下的阻尼力-位移曲線、阻尼力-速度曲線
確定最終設計結果
四、進度安排
1、進行文獻檢索,查看相關資料,對課題的基本內(nèi)容有一定的認識了解。完成開題報告。第1-2周(2月28日—3月11日)
2、初步確定設計的總體方案,討論確定方案;對磁流變減振器進行初步設計和選取。第3-6周(3月14日—4月8日)
3、提交設計草稿,進行討論,修正。第7周(4月11日—4月15日)
4、詳細設計液壓系統(tǒng),設計非標件,繪制減振器裝配圖及零件圖。第8-12周(4月18日—5月20日)
5、提交正式設計,教師審核。第13-14周(5月23日—6月3日)
6、按照審核意見進行修改。第15周(6月6日—6月10日)
7、整理所有材料,裝訂成冊,準備答辯。第16周(6月13日—6月17日)
五、參考文獻
[1]賀建民等,磁流變減振器的分析與設計,第五屆全國磁流變液及其應用學術會議,2008.10
[2]徐偉,汽車懸架阻尼匹配研究機減振器設計,農(nóng)也裝備與車輛工程,2009.6
[3]李連進,磁流變阻尼器的參數(shù)優(yōu)化與特征仿真,蘭州理工大學學報,2006.4
[4]廖昌榮汽車懸架系統(tǒng)磁流變阻尼器研究[學位論文]2001
[5]王棋民.徐國梁.金建峰磁流變液的流變性能及其工程應用[期刊論文]-中國機械工程2002(3)
[6]關新春,歐進萍.磁流變耗能器的阻尼力模型及其參數(shù)確定,2001,20(1):5-8
[7]王金鋼,等.磁流變阻尼器阻尼性能仿真研究[J].石油機械,2006,34(10):19-23
[8]蒙延佩,等.汽車磁流變阻尼器磁路設計及相關問題[J].功能材料,2006(5):768-770
[9]司誥,等.磁流變阻尼器管道流動特性研究[J].功能材料,2006(5):831-833
[10]蔣建東.梁錫昌.張博適用于車輛的旋轉式磁流變阻尼器研究[期刊論文]-汽車工程2005(1)
[11]徐永興.曹民.磁流變減振器優(yōu)化的設計計算[J].上海交通大學學報,2004,38(8):1423-1427
[12]王乾龍.王昊.李延成磁流變阻尼器設計中的基本問題分析[期刊論文]-機床與液壓2004(11)
[13]郭大蕾車輛懸架振動的神經(jīng)網(wǎng)絡半主動控制[學位論文]2001
[14]Lai C Y,Liao W H.Vibration Control of a Suspension System Via a Magnetorheo logical FluidDamper.Journal of Vibration and Control,2002,8(4):527-547.
[15]Yang G,Spencer Jr BF,Carlson JD,et al.Large scale MR fluid Damper: Modeling and Dyamic Performance Considerations.Engineering Structures,2002,24:309-323
六、備注
指導教師意見:
簽字: 年 月 日