【溫馨提示】 dwg后綴的文件為CAD圖,可編輯,無(wú)水印,高清圖,,壓縮包內(nèi)文檔可直接點(diǎn)開(kāi)預(yù)覽,需要原稿請(qǐng)自助充值下載,請(qǐng)見(jiàn)壓縮包內(nèi)的文件及預(yù)覽,所見(jiàn)才能所得,請(qǐng)細(xì)心查看有疑問(wèn)可以咨詢QQ:414951605或1304139763
編號(hào)
無(wú)錫太湖學(xué)院
畢業(yè)設(shè)計(jì)(論文)
相關(guān)資料
題目:圍板包裝箱自動(dòng)生產(chǎn)線合圍裝置設(shè)計(jì)
信機(jī) 系 機(jī)械工程及自動(dòng)化專業(yè)
學(xué) 號(hào): 0923113
學(xué)生姓名: 顧一濤
指導(dǎo)教師: 何雪明 (職稱:副教授)
2013年5月25日
目 錄
一、畢業(yè)設(shè)計(jì)(論文)開(kāi)題報(bào)告
二、畢業(yè)設(shè)計(jì)(論文)外文資料翻譯及原文
三、學(xué)生“畢業(yè)論文(論文)計(jì)劃、進(jìn)度、檢查及落實(shí)表”
四、實(shí)習(xí)鑒定表
無(wú)錫太湖學(xué)院
畢業(yè)設(shè)計(jì)(論文)
開(kāi)題報(bào)告
題目:圍板包裝箱自動(dòng)生產(chǎn)線合圍裝置設(shè)計(jì)
信機(jī) 系 機(jī)械工程及自動(dòng)化 專業(yè)
學(xué) 號(hào): 0923113
學(xué)生姓名: 顧一濤
指導(dǎo)教師: 何雪明 (職稱:副教授 )
2013年2月25日
課題來(lái)源
工廠
科學(xué)依據(jù)
(1)課題科學(xué)意義
圍板箱是由托盤(pán)、箱體和箱蓋三部分組成,組成每層圍板的四片木板用鉸鏈連接。由于裝箱的靈活性、對(duì)裝載物的適應(yīng)性和重復(fù)使用性,圍板箱被廣泛應(yīng)用與機(jī)械、化工、電子、五金一集其他領(lǐng)域的物流配送,具有能回收、降低成本、環(huán)保等優(yōu)點(diǎn)。
作為產(chǎn)品外包的物流設(shè)施,圍板箱越來(lái)越受客戶的歡迎,使用量巨大。然而, 現(xiàn)有的圍板箱生產(chǎn)方式落后,在生產(chǎn)中人為因素較大,這使得圍板箱的生產(chǎn)上存在著生產(chǎn)效率低,質(zhì)量不穩(wěn)定等缺陷。這嚴(yán)重影響著圍板箱的應(yīng)用。為了提高勞動(dòng)生產(chǎn)率,降低工人勞動(dòng)強(qiáng)度,節(jié)約生產(chǎn)成本,我們對(duì)圍板箱的現(xiàn)有生產(chǎn)工藝進(jìn)行了研究,設(shè)計(jì)出了適應(yīng)與圍板箱生產(chǎn)的自動(dòng)合圍裝置。
(2)圍板包裝箱生產(chǎn)的現(xiàn)狀及其發(fā)展前景
在現(xiàn)在的生產(chǎn)中采用的是人工鉆鉚的生產(chǎn)方式,生產(chǎn)效率很低。合圍是將用鉸鏈連接起來(lái)的木板 4 片木板兩端鉚接起來(lái)。連接起來(lái)的木板鏈一端是插好了鉚釘,另一端是僅鉚接了半面鉸鏈(另半面沒(méi)有鉚接),將兩端對(duì)齊,使插好鉚釘?shù)囊欢说你T釘頭,穿過(guò)沒(méi)有鉚接的半面鉸鏈上的孔,然后,人工在鉚接機(jī)上分別進(jìn)行鉚接(每次僅插入1個(gè)鉚釘,鉚接 4 次),完成合圍。
設(shè)計(jì)內(nèi)容
本論文主要設(shè)計(jì)的內(nèi)容是如何將四塊木板用鉚接的方式合圍起來(lái),首先是要將每?jī)蓧K木板用鉸鏈連接起來(lái),然后通過(guò)夾具夾緊旋轉(zhuǎn),將一組兩個(gè)木板鏈形成合圍的態(tài)勢(shì),在通過(guò)鉸鏈將合圍接口連接起來(lái),最終生產(chǎn)加工出圍板。
在設(shè)計(jì)合圍裝置中,首先要設(shè)計(jì)如何將圍板定位夾緊,其次如何將四塊板合圍起來(lái),最后在研究如何上鉚釘以及鉚接。通過(guò)機(jī)械的方式設(shè)計(jì)出如何完成以上步驟的裝置,通過(guò)研究所需要完成的工序從而設(shè)計(jì)機(jī)械設(shè)備。
擬采取的研究方法、技術(shù)路線、實(shí)驗(yàn)方案及可行性分析
研究方法
通過(guò)查找資料,并運(yùn)用UG制圖軟件完成對(duì)圍板合圍裝置的整體結(jié)構(gòu)的構(gòu)建。然后根據(jù)要求不斷的進(jìn)行修改或改進(jìn),先是整體模型構(gòu)建,然后是各零部件的具體結(jié)構(gòu)設(shè)計(jì),是整個(gè)裝置理論上可以運(yùn)行。
設(shè)計(jì)計(jì)劃及預(yù)期成果
研究計(jì)劃:
20012年11月12日-2013年1月1日:確定畢業(yè)設(shè)計(jì)課題,并通過(guò)用UG繪制減速器來(lái)熟悉UG軟件的操作。
2013年1月1日-2013年3月5日:填寫(xiě)畢業(yè)實(shí)習(xí)報(bào)告。
2013年3月8日-2013年3月14日:按照要求修改畢業(yè)設(shè)計(jì)開(kāi)題報(bào)告。
2013年3月15日-2013年3月21日:學(xué)習(xí)并翻譯一篇與畢業(yè)設(shè)計(jì)相關(guān)的英文材料。
2013年3月22日-2013年4月11日:合圍裝置的整體模型的構(gòu)建。
2013年4月12日-2013年4月25日:合圍裝置的具體設(shè)計(jì)及作圖。
2013年4月26日-2013年5月21日:畢業(yè)論文撰寫(xiě)和修改工作。
預(yù)期成果:
達(dá)到預(yù)期的實(shí)驗(yàn)結(jié)論:在理論上能夠完成木板的合圍,使設(shè)計(jì)出的裝置可以運(yùn)行。
特色或創(chuàng)新之處
UG制圖工具方便構(gòu)建三維模型,看起來(lái)簡(jiǎn)單方便,另外遇到不合理的地方也方便修改。
已具備的條件和尚需解決的問(wèn)題
設(shè)計(jì)的整體思路明確,可以運(yùn)用UG制圖工具進(jìn)行建模,修改和繪制工程圖。沒(méi)能看到現(xiàn)實(shí)中相關(guān)的生產(chǎn)設(shè)備,設(shè)計(jì)時(shí)沒(méi)有一個(gè)具體的參照,設(shè)計(jì)時(shí)會(huì)出現(xiàn)很多不合理的地方,設(shè)計(jì)時(shí)也會(huì)走彎路。
指導(dǎo)教師意見(jiàn)
指導(dǎo)教師簽名:
年 月 日
教研室(學(xué)科組、研究所)意見(jiàn)
教研室主任簽名:
年 月 日
系意見(jiàn)
主管領(lǐng)導(dǎo)簽名:
年 月 日
英文原文
A
Envelope Method of Gearing
Following Stosic 1998, screw compressor rotors are treated here as helical gears with nonparallel and nonintersecting, or crossed axes as presented at Fig. A.1. x01, y01 and x02, y02are the point coordinates at the end rotor section in the coordinate systems fixed to the main and gate rotors, as is presented in Fig. 1.3. Σ is the rotation angle around the X axes. Rotation of the rotor shaft is the natural rotor movement in its bearings. While the main rotor rotates through angle θ, the gate rotor rotates through angle τ = r1w/r2wθ = z2/z1θ, where r w and z are the pitch circle radii and number of rotor lobes respectively. In addition we define external and internal rotor radii: r1e= r1w+ r1 and r1i= r1w? r0. The distance between the rotor axes is C = r1w+ r2w. p is the rotor lead given for unit rotor rotation angle. Indices 1 and 2 relate to the main and gate rotor respectively.
Fig. A.1. Coordinate system of helical gears with nonparallel and nonintersecting
Axes
The procedure starts with a given, or generating surface r1(t, θ) for which a meshing, or generated surface is to be determined. A family of such gener-ated surfaces is given in parametric form by: r2(t, θ, τ ), where t is a pro?le parameter while θ and τ are motion parameters.
r1 =r1(t, θ)=[ x1,y1,z1]
=x01cosθ-y01 sinθ, x01 sinθ+ y01 cosθ,p1θ] (A,.1)
= (A.2)
(A.3)
(A.4)
(A.5)
The envelope equation, which determines meshing between the surfaces r1 and r2:
(A.6)
together with equations for these surfaces, completes a system of equations. If a generating surface 1 is de?ned by the parameter t, the envelope may be used to calculate another parameter θ, now a function of t, as a meshing condition to define a generated surface 2, now the function of both t and θ. The cross product in the envelope equation represents a surface normal and ?r2 ?τ is the relative, sliding velocity of two single points on the surfaces 1 and 2 which together form the common tangential point of contact of these two surfaces. Since the equality to zero of a scalar triple product is an invariant property under the applied coordinate system and since the relative velocity may be concurrently represented in both coordinate systems, a convenient form of the meshing condition is de?ned as:
(A.7)
Insertion of previous expressions into the envelope condition gives:
(A.8)
This is applied here to derive the condition of meshing action for crossed helical gears of uniform lead with nonparallel and nonintersecting axes. The method constitutes a gear generation procedure which is generally applicable. It can be used for synthesis purposes of screw compressor rotors, which are electively helical gears with parallel axes. Formed tools for rotor manufacturing are crossed helical gears on non parallel and non intersecting axes with a uniform lead, as in the case of hobbing, or with no lead as in formed milling and grinding. Templates for rotor inspection are the same as planar rotor hobs. In all these cases the tool axes do not intersect the rotor axes.
Accordingly the notes present the application of the envelope method to produce a meshing condition for crossed helical gears. The screw rotor gearing is then given as an elementary example of its use while a procedure for forming a hobbing tool is given as a complex case.
The shaft angle Σ, centre distance C, and unit leads of two crossed helical gears, p1 and p2 are not interdependent. The meshing of crossed helical gears is still preserved: both gear racks have the same normal cross section pro?le, and the rack helix angles are related to the shaft angle as Σ = ψr1+ ψr2. This is achieved by the implicit shift of the gear racks in the x direction forcing them to adjust accordingly to the appropriate rack helix angles. This certainly includes special cases, like that of gears which may be orientated so that the shaft angle is equal to the sum of the gear helix angles: Σ = ψ1+ ψ2. Furthermore a centre distance may be equal to the sum of the gear pitch radii :C = r1+ r2.
Pairs of crossed helical gears may be with either both helix angles of the same sign or each of opposite sign, left or right handed, depending on the combination of their lead and shaft angle Σ.
The meshing condition can be solved only by numerical methods. For the given parameter t, the coordinates x01 and y01 and their derivatives ?x01?t and ?y01?t are known. A guessed value of parameter θ is then used to calculate x1, y1, ?x1 ?t and ?y1?t. A revised value of θ is then derived and the procedure repeated until the difference between two consecutive values becomes sufficiently small.
For given transverse coordinates and derivatives of gear 1 pro?le, θ can be used to calculate the x1, y1, and z1 coordinates of its helicoid surfaces. The gear 2 helicoid surfaces may then be calculated. Coordinate z2 can then be used to calculate τ and ?nally, its transverse pro?le point coordinates x2, y2 can be obtained.
A number of cases can be identi?ed from this analysis.
(i) When Σ = 0, the equation meets the meshing condition of screw machine rotors and also helical gears with parallel axes. For such a case, the gear helix angles have the same value, but opposite sign and the gear ratio i = p2/p1 is negative. The same equation may also be applied for the gen-eration of a rack formed from gears. Additionally it describes the formed planar hob, front milling tool and the template control instrument.122 A Envelope Method of Gearing
(ii) If a disc formed milling or grinding tool is considered, it is suffcient to place p2= 0. This is a singular case when tool free rotation does not affect the meshing process. Therefore, a reverse transformation cannot be obtained directly.
(iii) The full scope of the meshing condition is required for the generation of the pro?le of a formed hobbing tool. This is therefore the most compli-cated type of gear which can be generated from it.
B
Reynolds Transport Theorem
Following Hanjalic, 1983, Reynolds Transport Theorem de?nes a change of variable φ in a control volume V limited by area A of which vector the local normal is dA and which travels at local speed v. This control volume may, but need not necessarily coincide with an engineering or physical material system. The rate of change of variable φ in time within the volume is:
(B.1)
Therefore, it may be concluded that the change of variable φ in the volume V is caused by:
– change of the speci?c variable in time within the volume because of sources (and sinks) in the volume, dV which is called a local change and
– movement of the control volume which takes a new space with variable in it and leaves its old space, causing a change in time of for ρv.dA and which is called convective change
The ?rst contribution may be represented by a volume integral:.
(B.2)
while the second contribution may be represented by a surface integral:
(B.3)
Therefore:
( B.4)
which is a mathematical representation of Reynolds Transport Theorem.
Applied to a material system contained within the control volume V m which has surface A m and velocity v which is identical to the fluid velocity w, Reynolds Transport Theorem reads:
(B.5)
If that control volume is chosen at one instant to coincide with the control volume V , the volume integrals are identical for V and Vm and the surface integrals are identical for A and Am , however, the time derivatives of these integrals are different, because the control volumes will not coincide in the next time interval. However, there is a term which is identical for the both times intervals:
(B.6)
therefore,
(B.7)
or:
(B.8)
If the control volume is ?xed in the coordinate system, i.e. if it does not move, v = 0 and consequently:
(B.9)
therefore:
(B.10)
Finally application of Gauss theorem leads to the common form:
(B.11)
As stated before, a change of variable φ is caused by the sources q within the volume V and influences outside the volume. These effects may be proportional to the system mass or volume or they may act at the system surface.
The ?rst effect is given by a volume integral and the second effect is given by a surface integral.
(B.12)
q can be scalar, vector or tensor.
The combination of the two last equations gives:
Or:
(B.13)
Omitting integral signs gives:
(B.14)
This is the well known conservation law form of variable . Since for = 1, this becomes the continuity equation: ?nally it is:
Or:
(B.15)
is the material or substantial derivative of variable . This equation is very convenient for the derivation of particular conservation laws. As previously mentioned = 1 leads to the continuity equation, = u to the momentum equation, = e, where e is speci?c internal energy, leads to the energy equation, = s, to the entropy equation and so on.
If the surfaces, where the fluid carrying variable Φ enters or leaves the control volume, can be identi?ed, a convective change may conveniently be written:
(B.16)
where the over scores indicate the variable average at entry/exit surface sections. This leads to the macroscopic form of the conservation law:
(B.17)
which states in words: (rate of change of Φ) = (inflow Φ) ? (outflow Φ) +(source of Φ)
中文譯文
A
包絡(luò)法的資產(chǎn)負(fù)債
螺桿壓縮機(jī)轉(zhuǎn)子Stosic 1998年之后,被視為非平行不相交的螺旋齒輪,或在圖的交叉軸。 A.1。 X01, y01和x02之前,y02是該點(diǎn)的坐標(biāo)的坐標(biāo)系統(tǒng)中的固定的主轉(zhuǎn)子和閘轉(zhuǎn)子的端部轉(zhuǎn)子段,如示于圖。 1.3。 Σ是繞X軸的旋轉(zhuǎn)角度。的轉(zhuǎn)子軸的旋轉(zhuǎn),在其軸承是天然的轉(zhuǎn)子運(yùn)動(dòng)。雖然主旋翼旋轉(zhuǎn)通過(guò)角度θ ,閘轉(zhuǎn)子的旋轉(zhuǎn)通過(guò)角度τ =r1w / rw θ = z2/z1θ ,其中rw和z是分別的轉(zhuǎn)子葉片的節(jié)距圓的半徑和數(shù)量。此外,我們定義外部和內(nèi)部的轉(zhuǎn)子半徑: r1e =r1w +r1和r1i=r1W –r0。轉(zhuǎn)子軸之間的距離是C =r1W + r2W 。 p是在給定的單元轉(zhuǎn)子旋轉(zhuǎn)角的轉(zhuǎn)子引線。標(biāo)1和2分別涉及的主要和閘轉(zhuǎn)子。
圖。 A.1。坐標(biāo)系與非平行交錯(cuò)軸斜齒輪
與一個(gè)給定的,或產(chǎn)生表面R1 (T, θ )的嚙合,或產(chǎn)生的表面以確定,該程序開(kāi)始。一個(gè)集合中仍將產(chǎn)生表面參數(shù)形式:R2 (T, θ, τ) ,其中t是一個(gè)配置參數(shù), θ和τ是運(yùn)動(dòng)參數(shù)。
包絡(luò)面r1和r2之間的嚙合方程,它決定:
r1 =r1(t, θ)=[ x1,y1,z1]
=x01cosθ-y01 sinθ, x01 sinθ+ y01 cosθ,p1θ] (A,.1)
= (A.2)
(A.3)
(A.4)
(A.5)
包絡(luò)方程,它決定了嚙合表面之間的r1和r2:
(A.6)
連同這些表面方程,完成方程系統(tǒng)。如果生成的表面1被定義的參數(shù)t ,系統(tǒng)可用于計(jì)算另一個(gè)參數(shù)θ ,現(xiàn)在t的函數(shù),作為一個(gè)嚙合條件來(lái)定義一個(gè)生成的表面2,現(xiàn)在, t和θ的函數(shù)的。在包絡(luò)方程的交叉乘積表示的表面法線和?R ?τ2是兩個(gè)表面1和2 ,它們一起構(gòu)成了這兩個(gè)表面的接觸,共同的切點(diǎn)上的單點(diǎn)的相對(duì)滑動(dòng)速度。由于平等到零的一個(gè)標(biāo)量三重積下施加的坐標(biāo)系,并是一個(gè)不變的屬性,因?yàn)橄鄬?duì)速度,可以同時(shí)在兩個(gè)坐標(biāo)系統(tǒng)的嚙合條件被定義為,以方便的形式表示:
(A.7)
插入前面的表達(dá)式到系統(tǒng)條件給:
(A.8)
這是適用于這里的條件交叉均勻鉛與非平行交錯(cuò)軸斜齒輪的嚙合動(dòng)作。的方法構(gòu)成的齒輪的生成過(guò)程,這是普遍適用的。它可用于合成的目的,這是有效地與平行軸的螺旋齒輪的螺桿壓縮機(jī)轉(zhuǎn)子。非平行和非相交軸越過(guò)轉(zhuǎn)子制造的形成工具的螺旋齒輪上具有均勻的引線,在滾齒的情況下,或與如銑削和磨削形成不含鉛。轉(zhuǎn)子檢查模板平面轉(zhuǎn)子滾刀一樣。在所有這些情況下,刀具軸不相交的轉(zhuǎn)子軸。
因此,注意到提出的包絡(luò)的方法的應(yīng)用程序,以產(chǎn)生交叉的螺旋齒輪的嚙合條件。螺桿轉(zhuǎn)子齒輪,然后給出作為其使用一個(gè)基本例子的,而形成滾齒機(jī)工具的過(guò)程作為一個(gè)復(fù)雜的情況下給出。
軸角Σ ,中心距C ,和單元信息的兩個(gè)交叉的螺旋齒輪, p1和p2是相互依賴的。交錯(cuò)軸斜齒輪嚙合仍保存著兩個(gè)齒條正截面具有相同的配置文件,并在機(jī)架上的螺旋角與軸角Σ= ψr1 + ψr2 。這是通過(guò)在x方向上的齒條迫使他們相應(yīng)地調(diào)整到適當(dāng)?shù)臋C(jī)架螺旋角的隱式移位。這當(dāng)然也包括特殊情況下,這樣的齒輪可以是定向的,使得在軸角的齒輪的螺旋角的總和是等于: Σ = ψ1+ ψ2 。此外,中心距離可以等于齒輪節(jié)距半徑的總和:
成對(duì)的交叉斜齒輪可以與兩個(gè)螺旋角相同的符號(hào)或每個(gè)符號(hào)相反,左或右旋的,取決于其鉛和軸角Σ上的組合。
嚙合條件,可以解決只能通過(guò)數(shù)值方法。對(duì)于給定的參數(shù)t ,坐標(biāo)X01 , Y01和它們的衍生物?所述?X01和?Y01是已知的。甲猜到參數(shù)θ的值,然后用于計(jì)算X1,Y1 ,?T?所述?t1和? ? ?T1。經(jīng)修訂的θ值,然后推導(dǎo)和過(guò)程反復(fù)進(jìn)行,直到連續(xù)兩個(gè)值之間的差異變得足夠小。
對(duì)于給定的橫向坐標(biāo)和齒輪1的檔案中的衍生物,θ可以用來(lái)計(jì)算X1,Y1,和z1坐標(biāo)其螺旋表面。齒輪2的螺旋面的表面,然后可以被計(jì)算出來(lái)。坐標(biāo)z2的然后,可以使用計(jì)算τ和最后,其橫向的更新點(diǎn)坐標(biāo)X2,Y2,可以得到的。
從這樣的分析,可以發(fā)現(xiàn)多宗個(gè)案。
(i) 當(dāng)Σ = 0 ,方程滿足螺桿機(jī)轉(zhuǎn)子和也具有平行軸的螺旋齒輪的嚙合狀態(tài)。對(duì)于這樣的情況下,齒輪的螺旋角的有相同的值,但符號(hào)相反的齒比i = P2/P1為負(fù)。也可以應(yīng)用相同的方程的根憂思從齒輪形成的齒條。此外,它描述所形成的平面爐灶,前銑削刀具和模板控制儀器。
(ii) 如果光盤(pán)銑削或研磨工具被認(rèn)為形成的,它是足夠放置p2的= 0 。這是一個(gè)單一的情況下,工具自由轉(zhuǎn)動(dòng)時(shí),不影響嚙合過(guò)程。因此,反向變換不能直接獲得。
(iii) 全部范圍的嚙合條件是必需生成形成滾齒機(jī)工具的檔案。因此,這是最復(fù)雜的性態(tài)類型的齒輪,它可以從它產(chǎn)生。
B
雷諾運(yùn)輸定理
繼Hanjalic ,1983年,雷諾運(yùn)輸定理定義變量φ在有限的面積A的哪個(gè)矢量本地法線是dA和行進(jìn)速度v在當(dāng)?shù)卦摽刂屏靠赡艿目刂企w積V的變化,但不一定需要配合工程或材料物理系統(tǒng)。卷內(nèi)的時(shí)間的變量φ的變化率是:
(B.1)
因此,可以得出結(jié)論,變量φ的變化所造成的在體積V :
- 變化的特定的變量φ = Φ / m的時(shí)間內(nèi)的體積,因?yàn)榫碇械脑矗ê蛥R)dV這是所謂的局部變化.
- 一種空間在它的變量φ和離開(kāi)它的舊的空間,引起的變化在時(shí)間上的φρφv.dA稱為對(duì)流變化。
可表示的第一個(gè)貢獻(xiàn)可以所表示的體積積分:
(B.2)
而第二個(gè)貢獻(xiàn)可以表示由一個(gè)曲面積分:
(B.3)
因此:
( B.4)
這是雷諾運(yùn)輸定理的數(shù)學(xué)表示。應(yīng)用的材料系統(tǒng)內(nèi)控制音量Vm具有表面Am和速度v ,這是相同的流體速度w ,雷諾運(yùn)輸定理讀取:
(B.5)
如果該控制量選擇在一個(gè)瞬間,以配合控制體積V的體積積分是相同的為V和Vm和曲面積分是相同的,對(duì)于A和Am ,然而,這些積分的時(shí)間導(dǎo)數(shù)是不同的,因?yàn)樵诮酉聛?lái)的時(shí)間間隔,控制體積不相符。但是,是一個(gè)術(shù)語(yǔ),它的兩個(gè)時(shí)間間隔是相同的:
(B.6)
如果被固定的坐標(biāo)系中的控制量,即,如果它不移動(dòng)時(shí),v = 0 ,因此:
(B.7)
或:
(B.8)
如果被固定的坐標(biāo)系中的控制量,即,如果它不移動(dòng),v = 0和結(jié)果:
(B.9)
因此:
(B.10)
最后,高斯定理的應(yīng)用導(dǎo)致的常見(jiàn)形式:
(B.11)
如前所述,變量φ的變化所造成的來(lái)源q內(nèi)的體積V和以外的體積的影響。這些效應(yīng)可能是正比于系統(tǒng)的質(zhì)量或體積的,或者它們可以在系統(tǒng)表面行事。
由下式給出的體積積分的第一個(gè)效果,和由下式給出的表面積分的第二個(gè)效果。
(B.12)
q可以是標(biāo)量,矢量或張量。
組合的最后兩個(gè)方程給出:
或
(B.13)
省略不可分割的跡象給出:
(B.14)
這是眾所周知的守恒定律形式的變量。由于φ= 1 ,這將成為連續(xù)性方程:,最后卻是:
或
(B.15)
是變量φ的重大或衍生工具。這個(gè)等式特別守恒定律的推導(dǎo)是非常方便的。如前面提到的φ= 1導(dǎo)致的連續(xù)性方程,φ = u到動(dòng)量方程, φ= e,其中e是比內(nèi)能,導(dǎo)致了能量方程, φ = s時(shí),熵方程等。
如果的表面,其中的流體承載可變?chǔ)颠M(jìn)入或離開(kāi)控制量,可以被識(shí)別,對(duì)流的變化可方便采寫(xiě):
(B.16)
其中over scores表示變量的平均入口/出口表面秒。這導(dǎo)致的守恒定律的宏觀形式:
(B.17)
其中規(guī)定詞: ( Φ )= (流入Φ ) - (流出Φ )+ (源的Φ的變化率)