【溫馨提示】 dwg后綴的文件為CAD圖,可編輯,無(wú)水印,高清圖,,壓縮包內(nèi)文檔可直接點(diǎn)開預(yù)覽,需要原稿請(qǐng)自助充值下載,請(qǐng)見(jiàn)壓縮包內(nèi)的文件及預(yù)覽,所見(jiàn)才能所得,請(qǐng)細(xì)心查看有疑問(wèn)可以咨詢QQ:414951605或1304139763
中國(guó)地質(zhì)大學(xué)長(zhǎng)城學(xué)院2012畢業(yè)設(shè)計(jì)
小型塑料擠出機(jī)設(shè)計(jì)
摘 要
單螺桿擠出機(jī)是一種嚙合型擠出設(shè)備,以其優(yōu)異的加工性能得到了越來(lái)越廣泛的應(yīng)用,并成為市場(chǎng)發(fā)展的主要趨勢(shì)。通過(guò)參閱了許多文獻(xiàn),分析了現(xiàn)有常規(guī)單螺桿擠出機(jī)和加料段機(jī)筒開直槽單螺桿擠出機(jī)(IKV單螺桿擠出機(jī))的固體輸送段存在的物料輸送問(wèn)題,設(shè)計(jì)了一種加料段機(jī)筒配置螺旋溝槽襯套的單螺桿擠出機(jī)。通過(guò)合理的溝槽設(shè)計(jì),克服了現(xiàn)有加料襯套采用直槽產(chǎn)生的襯套剪切力大、溫升高,導(dǎo)致擠出機(jī)強(qiáng)制輸送能力下降的缺陷,提高了擠出機(jī)的產(chǎn)量。
本文的工作對(duì)于單螺桿擠出機(jī)的研究、設(shè)計(jì)和應(yīng)用具有很好的參考價(jià)值。
關(guān)鍵詞: 單螺桿擠出機(jī); 機(jī)筒; 設(shè)計(jì)。
ABSTRACT
As a kind of engaged device,single screw extrude has been gained widespread availability,for its extremely excellent attribute for processing,and single screw extruder has became the main tendency of market development.By referring to a lot of literature available and analysis the conveying problems existing in the solid conveying zone of the conventional single screw extruders and the single screw extruders that use the IKV system, a kind of single extruder whose feed section was comprising of a feed bushing that has several helical grooves in its inner surface was designed. Its conveying theory was also studied. It can realize positive conveying in the solid conveying zone. Besides, it can also overcome the defects that the existing feed bushings have, such as high shearing force, high melt temperatures, which can decrease the solid conveying capacity of the extruder. So it can highly increase the output of the extruder.
The works of the paper will play a positive role for designs,studies and applications of single screw extruder.
Key words: Single Screw Extrude; Barrel; Design
目 錄
1.緒論 1
1.1課題背景 1
1.1.1普通單螺桿擠出機(jī) 1
1.1.2加料段機(jī)筒開軸向溝槽的單螺桿擠出機(jī) 1
1.2 研究目標(biāo)及內(nèi)容 4
2.主要機(jī)構(gòu)及零部件的方案對(duì)比、選擇 5
2.1單螺桿擠出機(jī)的結(jié)構(gòu) 5
2.1.1單螺桿擠出機(jī)組成 5
2.2傳動(dòng)方案的設(shè)計(jì)和選擇 5
2.2.1擠出機(jī)驅(qū)動(dòng)功率的確定 5
2.2.2擠出機(jī)的轉(zhuǎn)速要求及調(diào)速范圍 5
2.2.3擠出機(jī)的傳動(dòng)系統(tǒng)的組成 6
2.3 螺桿的結(jié)構(gòu)及材料 7
2.3.1螺桿的材料的選擇 7
2.3.2螺桿結(jié)構(gòu)形式 7
2.3.3螺桿的表面處理 8
2.4機(jī)筒的結(jié)構(gòu)及材料 8
2.4.1機(jī)筒材料的選擇 8
2.4.2機(jī)筒的表面處理 8
2.4.3機(jī)筒的結(jié)構(gòu)形式 8
2.4.4機(jī)筒與機(jī)頭的連接形式 9
2.5加熱冷卻方案的對(duì)比和選擇 9
2.5.1加熱功率的確定 9
2.5.2擠出機(jī)的加熱方法 10
2.5.3擠出機(jī)的冷卻裝置 11
2.6機(jī)筒與支架間的連接 12
2.7擠出機(jī)加料系統(tǒng)的設(shè)計(jì) 12
3.重要結(jié)構(gòu)的設(shè)計(jì)及校核 13
3.1傳動(dòng)系統(tǒng)的設(shè)計(jì)及校核 13
3.1.1皮帶傳動(dòng)設(shè)計(jì) 13
3.1.2 V帶輪的結(jié)構(gòu)尺寸 15
3.2 加料套的設(shè)計(jì) 17
3.3 螺桿的設(shè)計(jì)及校核 20
3.3.1螺桿的設(shè)計(jì) 20
3.3.2螺桿的強(qiáng)度計(jì)算及校核 23
3.4 機(jī)筒的設(shè)計(jì)及強(qiáng)度校核 24
3.4.1機(jī)筒壁厚的選擇 24
3.4.2機(jī)筒的強(qiáng)度校核 24
3.5 螺桿尾部平鍵的強(qiáng)度計(jì)算 25
結(jié) 論 26
參考文獻(xiàn) 27
致 謝 28
1.緒論
1.1課題背景
擠出成型具有生產(chǎn)率高、適應(yīng)性強(qiáng)、用途廣泛等優(yōu)點(diǎn),幾乎適合于所有高分子材料的加工。螺桿擠出機(jī)是聚合物加工最基本的裝備之一。迄今為止, 對(duì)單螺桿擠出機(jī)的研究已有近90年的歷史。過(guò)去人們對(duì)單螺桿擠出機(jī)的研究?jī)H僅是停留在普通擠出機(jī)的理論研究和結(jié)構(gòu)完善上,這只能適當(dāng)提高產(chǎn)量、改善制品性能。
1.1.1普通單螺桿擠出機(jī)
普通單螺桿擠出機(jī)的機(jī)筒的內(nèi)表面都是光滑的圓柱面,機(jī)筒中的物料向前輸送的動(dòng)力來(lái)源于物料與加料段機(jī)筒之間的摩擦力fb。由固體輸送理論可知,通過(guò)提高fb,可以增大輸送角?,進(jìn)而獲得較高的生產(chǎn)率Qs。但是對(duì)于普通單螺桿擠出機(jī)來(lái)說(shuō),fb一般較小,擠壓系統(tǒng)的固體輸送率Qs很低,進(jìn)而影響到擠出機(jī)的產(chǎn)量。
此外,加料段的冷卻一般只限于機(jī)筒的加料口附近,再加上該段與前面的熱機(jī)筒沒(méi)有隔熱措施,熱機(jī)筒的熱量就會(huì)傳導(dǎo)至該段,因此冷卻不充分,不但未能增大物料與機(jī)筒之間的摩擦系數(shù)fb,反而有可能在一定的條件下,雖然機(jī)筒表面溫度未達(dá)到物料的熔點(diǎn),但物料在摩擦熱作用下便已經(jīng)融化了,固體輸送率會(huì)更低。
1.1.2加料段機(jī)筒開軸向溝槽的單螺桿擠出機(jī)
在70年代以前,設(shè)計(jì)螺桿時(shí),螺桿的擠出量是按計(jì)量段的熔體輸送理論公式來(lái)考慮的。這時(shí),擠出量受機(jī)頭壓力影響較大,而與粘度有關(guān)。螺桿的幾個(gè)功能段(輸送、壓縮、熔融和均化)在螺桿的三段上是相互重疊的。由于種種原因它們相互影響。例如,如果料斗中存在架橋現(xiàn)象或加料口幾何形狀設(shè)計(jì)不合理,這些因素往往導(dǎo)致加料段充滿狀態(tài)的不穩(wěn)定,塑料的壓縮狀態(tài)也不穩(wěn)定,達(dá)到一定壓力的壓縮點(diǎn)的位置一會(huì)兒超前,一會(huì)兒延后。此外,由于塑料在螺桿上熔融起始點(diǎn)的位置不僅決定于機(jī)筒的熱傳導(dǎo)情況、剪切熱產(chǎn)生的情況和塑料的熱性能,而且還直接決定于塑料的壓縮狀態(tài),即決定于壓縮點(diǎn)達(dá)到位置和壓力升高的狀況。為此,如果壓縮點(diǎn)在螺桿上變化,勢(shì)必會(huì)導(dǎo)致熔融起始點(diǎn)也在螺桿上變化。由此壓力、溫度和產(chǎn)量都會(huì)產(chǎn)生波動(dòng),當(dāng)轉(zhuǎn)速提高后這個(gè)現(xiàn)象更為嚴(yán)重。
采取一些措施后雖然會(huì)對(duì)上述不足有所改進(jìn),例如,通過(guò)強(qiáng)制計(jì)量加料可以改善加料的穩(wěn)定性,采用混合元件和加長(zhǎng)計(jì)量段,會(huì)減少熔料的各種波動(dòng)。但另外一個(gè)問(wèn)題仍未很好地解決。例如:塑料在螺桿上壓實(shí)不足,壓力形成緩慢,塑料在螺桿上除了有軸向移動(dòng)外,還存在相當(dāng)大的徑向滑動(dòng),因此輸送率很低,一般只有0.3~0.5,擠出量受機(jī)頭壓力影響較大。
從20世紀(jì)70年代開始,德國(guó)亞琛工業(yè)大學(xué)塑料加工研究所(IKV)和巴登苯胺蘇打廠(BASF)的一些研究工作者對(duì)如何提高固體輸送生產(chǎn)率進(jìn)行了一系列研究,設(shè)計(jì)并生產(chǎn)了性能優(yōu)越的擠出機(jī)。這種機(jī)器的主要特征是,在螺桿加料段依靠強(qiáng)制加料來(lái)提高螺桿的輸送效率,依靠設(shè)置于熔融段和計(jì)量段上的混煉元件來(lái)保證輸送能力提高后的擠出質(zhì)量。螺桿的三個(gè)主要功能,輸送、塑化和均化,分別在螺桿上獨(dú)立地完成,它克服了普通螺桿幾個(gè)功能段相互重疊并由此帶來(lái)的不穩(wěn)定和波動(dòng)現(xiàn)象。
1—機(jī)筒;2—加料座;3—料斗;4—溝槽
5—加料套;6—冷卻水通道;7—隔熱墊
圖1-1 IKV系統(tǒng)的基本結(jié)構(gòu)
IKV螺桿的強(qiáng)制輸送作用主要依靠機(jī)筒在加料段處的特殊結(jié)構(gòu)來(lái)完成的。它的基本結(jié)構(gòu)是這樣的:在機(jī)筒的加料段上設(shè)置一段帶有內(nèi)錐孔的套筒,錐孔內(nèi)壁沿周圍開出若干條軸向溝槽,套筒的外表面開有冷卻循環(huán)水或者其他冷卻介質(zhì)的螺旋溝槽,料斗座與機(jī)筒間設(shè)有隔熱層,防止高溫機(jī)筒向后傳熱。
a—粉料的楔形結(jié)構(gòu) b—粒料的楔形結(jié)構(gòu)
1—螺桿;2—加料套;3—粉料;4—粒料
圖1-2 物料的楔形結(jié)構(gòu)斷面圖
它的工作原理如下:
物料隨螺桿轉(zhuǎn)動(dòng)的趨勢(shì)受溝槽側(cè)面的阻擋;
物料形成“架橋”或者“楔形”,使fi≈5fb的特性得到充分利用;
物料如同帶翅的螺母套在螺桿上,螺桿轉(zhuǎn)動(dòng),物料“螺母”軸向轉(zhuǎn)動(dòng),其效果相當(dāng)于提高了fb,而減小了打滑和回流,進(jìn)而提高了固體輸送率;
錐孔的內(nèi)孔、溝槽的斜度,使物料盡快壓實(shí),盡早建立壓力;
隔熱層可以防止高溫往后傳;
冷卻系統(tǒng)將高壓、高摩擦產(chǎn)生的熱量帶走,防止過(guò)早出現(xiàn)熔膜而破壞固體輸送機(jī)理;
此外, 普通擠出機(jī)在加料段建立的壓力是極小的, 其產(chǎn)量在很大程度上要依賴于背壓,而在開槽襯套擠出機(jī)中, 物料能在加料段末端建立起比背壓高的壓力, 這樣, 其產(chǎn)量受背壓的影響很小甚至沒(méi)有影響, 在加料段就完成了輸送物料的任務(wù)??偟膩?lái)說(shuō),加料段機(jī)筒開槽,可提高物料的輸送率,進(jìn)而提高擠出機(jī)的產(chǎn)量,此外,擠出機(jī)的性能更加穩(wěn)定。
但是它也有缺陷如下:
由于摩擦力正比于正壓力和摩擦系數(shù),螺桿和機(jī)筒的壽命又直接與摩擦副的相對(duì)運(yùn)動(dòng)速度有關(guān),而IKV系統(tǒng)的加料區(qū)正好具備高壓高摩擦和高速工作的條件,因此,IKV系統(tǒng)的螺桿和機(jī)筒磨損比較嚴(yán)重,需要采用耐磨性較高的螺桿材料和機(jī)筒材料;
由于高壓高摩擦和高速的工作條件,加料區(qū)產(chǎn)生了大量的熱量。為了保證高的輸送率和擠出質(zhì)量,必須對(duì)加料區(qū)進(jìn)行強(qiáng)制冷卻。物料出襯套后,需要對(duì)物料進(jìn)行重新加熱,冷卻又加熱,浪費(fèi)了能源;
冷卻水結(jié)垢后,使冷卻效率降低,甚至堵塞;
冷卻水壓、水溫變化使冷卻效果不一,使輸送效率產(chǎn)生波動(dòng);
冷卻水耗量大;
螺桿承受扭矩大,功耗大,需要提高螺桿的強(qiáng)度,增加了成本;
在加料段末端可能產(chǎn)生極高的壓力,有損壞帶有溝槽的薄壁機(jī)筒危險(xiǎn);
IKV系統(tǒng)是建立在固體摩擦理論基礎(chǔ)上的,因此這種系統(tǒng)顯然不適于熔料擠出機(jī),如造粒出機(jī)中的后處理擠出機(jī)和一些混煉機(jī);
在機(jī)筒需要排氣的場(chǎng)合,使用IKV系統(tǒng)時(shí)比較困難的。這時(shí)第二計(jì)量段的生產(chǎn)率得不得不由機(jī)頭壓力來(lái)確定,而第一計(jì)量段生產(chǎn)率過(guò)大將造成排氣口的冒料。IKV系統(tǒng)加大了第一階螺桿的生產(chǎn)率,為此排氣式擠出機(jī)使用IKV系統(tǒng)時(shí)困難的。
為了解決加料段機(jī)筒開槽擠出機(jī)的這些問(wèn)題,美國(guó)發(fā)明專利(專利號(hào)5909958)披露了一種新技術(shù),與常規(guī)開槽機(jī)筒不同,機(jī)筒溝槽上設(shè)置有鍵,鍵的徑向高度小于溝槽的徑向深度,用獨(dú)立的控制機(jī)構(gòu)來(lái)調(diào)節(jié)鍵在溝槽中的徑向高度位置,槽深可從零變?yōu)槿疃?。這樣就能夠依據(jù)塑料顆粒的形狀、大小來(lái)精確調(diào)節(jié)溝槽的深度,形成適宜的摩擦,獲得最佳的輸送效率。槽深可獨(dú)立調(diào)節(jié)的加料段開槽擠出機(jī)的優(yōu)點(diǎn)有:較高的產(chǎn)量,加工過(guò)程更加穩(wěn)定,可以加工高分子量聚乙烯,比如HDPE。此外,開槽部分的輸送效率可以和聚合物及螺桿的特性相匹配。由于槽和鍵的這種組合式溝槽流道,當(dāng)更換物料時(shí),可以輕易地清洗料筒,單有溝槽的加料段機(jī)筒不具備這種特性。在實(shí)際的工藝條件下,可以通過(guò)調(diào)節(jié)溝槽的深度使得加工過(guò)程得到優(yōu)化。此外,通過(guò)機(jī)頭壓力波動(dòng)的反饋機(jī)制,可以對(duì)溝槽深度進(jìn)行自動(dòng)優(yōu)化。溝槽深度可調(diào)節(jié)的加料段機(jī)筒開槽擠出機(jī)的主要優(yōu)勢(shì)在于能夠更加精確的控制擠出系統(tǒng)的輸送效率、壓力、溫度等,從而實(shí)現(xiàn)高效穩(wěn)定擠出。
1—螺桿;2—機(jī)筒;3—鍵;4—控制機(jī)構(gòu)
圖1-3 槽深可獨(dú)立改變的加料段結(jié)構(gòu)
美國(guó)的這一發(fā)明技術(shù)的另一種結(jié)構(gòu)形式是:溝槽傾斜,即槽深全長(zhǎng)不等,而鍵的全長(zhǎng)厚度相同;或者溝槽全長(zhǎng)深度一致,而鍵全長(zhǎng)厚度不等,上游端薄,下游端厚(下游端厚度略小于溝槽深度),放在溝槽里形成了上游槽深,下游槽淺。兩種形式都構(gòu)成了漸變形槽深。每一條溝槽上也設(shè)置有執(zhí)行機(jī)構(gòu)來(lái)與鍵連接,用來(lái)調(diào)節(jié)溝槽中鍵的徑向深度,這樣就能夠控制所形成的溝槽的深度和機(jī)筒的中心孔的尺寸。通過(guò)監(jiān)測(cè)工藝參數(shù),比如用傳感器來(lái)監(jiān)測(cè)機(jī)筒壓力,形成控制環(huán)。將這些數(shù)據(jù)傳送給加工控制器,然后控制器調(diào)節(jié)執(zhí)行機(jī)構(gòu)獨(dú)立控制溝槽的槽深,同時(shí)也就能夠控制工藝參數(shù)。
綜上所述,為了提高加料段的固體輸送效率,通常的做法是在加料機(jī)筒內(nèi)設(shè)置開槽襯套,槽的形式主要是直槽式,但是正如前面所述,這種形式的擠出機(jī)的輸送效率還是不夠高,且存在諸如剪切熱過(guò)大的問(wèn)題。因此,這一課題的目的是通過(guò)研究單螺桿擠出機(jī)的固體輸送理論,設(shè)計(jì)一種可以實(shí)現(xiàn)類似于雙螺桿擠出機(jī)的正位移輸送的單螺桿擠出機(jī),這種擠出機(jī)的加料段的襯套是螺旋型的,而不是直槽型的,可以通過(guò)設(shè)計(jì)螺旋溝槽式襯套,使其與擠出機(jī)螺桿有一定的幾何參數(shù)的相匹配關(guān)系,從而提高固體輸送效率,提高擠出機(jī)的產(chǎn)量。
1.2 研究目標(biāo)及內(nèi)容
研究高產(chǎn)量的單螺桿擠出機(jī)是當(dāng)前擠出機(jī)發(fā)展的主要方向,它能很大程度地提高企業(yè)的生產(chǎn)效率,進(jìn)而有助于提高企業(yè)效益。本文的目標(biāo)就是在總結(jié)借鑒前人研究的基礎(chǔ)上,通過(guò)研究高產(chǎn)量擠出機(jī)的機(jī)理,試圖設(shè)計(jì)單螺桿擠出機(jī)的傳動(dòng)系統(tǒng),加料系統(tǒng)和擠壓系統(tǒng)的設(shè)計(jì),使其能夠完成較高的產(chǎn)量擠出機(jī)的工作。
2.主要機(jī)構(gòu)及零部件的方案對(duì)比、選擇
2.1單螺桿擠出機(jī)的結(jié)構(gòu)
2.1.1單螺桿擠出機(jī)組成
(1) 傳動(dòng)系統(tǒng):由驅(qū)動(dòng)電機(jī)、減速器、止推軸承等構(gòu)成,作用是驅(qū)動(dòng)螺桿旋轉(zhuǎn),提供螺桿轉(zhuǎn)動(dòng)所需的扭矩和轉(zhuǎn)速,并承受螺桿的軸向力;
(2) 加料系統(tǒng):由料斗、料斗座等組成,料斗座的作用是儲(chǔ)料,料斗由料斗座支撐,機(jī)筒和減速器通過(guò)加料座連接;
(3) 擠壓系統(tǒng):由螺桿、機(jī)筒等組成,它是擠出機(jī)的“心臟”,對(duì)塑料進(jìn)行連續(xù)輸送、塑化、均化、定壓定量地?cái)D出;
(4) 加熱冷卻系統(tǒng):由加熱器、冷卻器、冷卻通道等組成,保證擠出機(jī)工藝溫度要求;
(5)控制系統(tǒng):有電控柜、檢測(cè)元件、儀表、電氣元件等組成,作用是對(duì)擠出機(jī)的運(yùn)轉(zhuǎn)及工藝條件進(jìn)行控制。
2.2傳動(dòng)方案的設(shè)計(jì)和選擇
傳動(dòng)系統(tǒng)是擠出機(jī)的主要組成部分之一,它的作用是驅(qū)動(dòng)螺桿,并使螺桿能在選定的工藝條件下(如壓力、溫度和轉(zhuǎn)速)獲得所必須的扭矩且能均勻地旋轉(zhuǎn),以完成對(duì)物料的輸送和塑化。
2.2.1擠出機(jī)驅(qū)動(dòng)功率的確定
影響擠出機(jī)驅(qū)動(dòng)功率的因素是很多的,雖然沒(méi)有精確有效地方法來(lái)確定擠出機(jī)的驅(qū)動(dòng)功率,但是可以利用經(jīng)驗(yàn)公式來(lái)估算,然后再進(jìn)行確定。
N=KD2n (2-1)
式中 N——擠出機(jī)的驅(qū)動(dòng)功率,kw
D——螺桿的直徑,cm
n——螺桿的轉(zhuǎn)速,r/min
K——系數(shù),它根據(jù)實(shí)驗(yàn)和統(tǒng)計(jì)分析進(jìn)行確定。根據(jù)我國(guó)生產(chǎn)的擠出機(jī)進(jìn)行統(tǒng)計(jì),對(duì)D≤90mm擠出機(jī),一般K≈0.0354;對(duì)于D>90mm的擠出機(jī),K≈0.008
N=KD2n=0.00354×4.52×50=3.58kw
2.2.2擠出機(jī)的轉(zhuǎn)速要求及調(diào)速范圍
對(duì)擠出機(jī)的速度要求有兩方面,一方面是能無(wú)級(jí)調(diào)速,另外就是應(yīng)該有一定的調(diào)速范圍,前者是為了控制擠出質(zhì)量及于輔機(jī)的配合一致;后者針對(duì)擠出機(jī)應(yīng)具有適應(yīng)各種加工而提出來(lái)的。所謂擠出機(jī)的調(diào)速范圍,就是指螺桿的最高轉(zhuǎn)速與最低轉(zhuǎn)速的比值(nmaxnmin)。轉(zhuǎn)速范圍的確定很重要,因?yàn)樗苯佑绊懙剿芗庸の锪虾椭破返姆秶C(jī)器的生產(chǎn)率、功率消耗、制品的質(zhì)量、設(shè)備的成本和操作是否方便等。
在本設(shè)計(jì)中取擠出機(jī)的最大轉(zhuǎn)速為nmax=50rmin。對(duì)大多數(shù)擠出機(jī)來(lái)說(shuō),其調(diào)速范圍在1:10內(nèi),因此在這里取擠出機(jī)的最低轉(zhuǎn)速為nmin=5rmin。
2.2.3擠出機(jī)的傳動(dòng)系統(tǒng)的組成
擠出機(jī)的傳動(dòng)系統(tǒng)通常由原動(dòng)機(jī)(如電動(dòng)機(jī)等)、調(diào)速裝置和減速裝置組成。 本設(shè)計(jì)中傳動(dòng)系統(tǒng)由電機(jī)、皮帶和減速箱組成。
傳動(dòng)鏈組成形式:電動(dòng)機(jī)皮帶減速箱雙鍵螺桿
(1)電機(jī)的選擇
由于IKV擠出機(jī)所需的電機(jī)功率比普通的擠出機(jī)大,由前面的計(jì)算的擠出機(jī)的驅(qū)動(dòng)功率,初步選定電機(jī)功率為7.5kW。電機(jī)選用三相異步電動(dòng)機(jī),型號(hào)為Y132-M-4-B3。
表2-1 Y132-M-4-B3電機(jī)的主要技術(shù)參數(shù) JB/T 96161—999
電機(jī)型號(hào)
額定功率
滿載轉(zhuǎn)速
滿載電流A
功率
因素
重量
Y132-M-4-B35
7.5
1440
15.4
0.85
81
(2)減速器的選擇
從電機(jī)到螺桿的總傳動(dòng)比為
i總=n電機(jī)額定轉(zhuǎn)速nmax=144050=28.8
可選減速箱傳動(dòng)比為i減速箱=20,則皮帶輪的傳動(dòng)比為i=1.44
根據(jù)電機(jī)的功率和螺桿的轉(zhuǎn)速,減速箱選用ZLYJ系列減速箱。ZLYJ系列減速箱是為塑料螺桿擠出機(jī)配套設(shè)計(jì)的高精度硬齒面帶推力座的傳動(dòng)部件。產(chǎn)品設(shè)計(jì)采用了JB/T8853-2001所規(guī)定的各項(xiàng)技術(shù)規(guī)范。其特點(diǎn)是齒輪和軸類零件采用了高強(qiáng)度合金鋼。齒輪經(jīng)滲碳、淬火、磨齒工藝加工。齒輪精度為GB10095-88.6級(jí)。齒面硬度HRC54-62。在空心輸出軸前端配置有超規(guī)格的推力軸承,承受螺桿的工作軸向力。軸承和油封等主要標(biāo)準(zhǔn)件皆采用國(guó)內(nèi)優(yōu)質(zhì)產(chǎn)品。整機(jī)具有體積小、承載能力高、傳動(dòng)平穩(wěn)、噪聲低、效率高等特點(diǎn)。產(chǎn)品性能已達(dá)到國(guó)際先進(jìn)水平,可替代同類型進(jìn)口產(chǎn)品使用。
本設(shè)計(jì)選用的減速箱為:ZLYJ 146-20。
減速箱的裝配形式有以下幾種:
圖2-1 減速箱的裝配形式
根據(jù)擠出機(jī)的安裝要求,在這里選擇第一種裝配形式。
螺桿的軸向推力為Pz=99KN<153KN,ZLYJ 146-20能承受此軸向推力。
潤(rùn)滑方式采用飛濺潤(rùn)滑,冷卻方式采用自然冷卻。
表2-2 ZLYJ 146-20-Ⅰ減速器的主要技術(shù)參數(shù)
產(chǎn)品型號(hào)
公稱傳動(dòng)比
公稱轉(zhuǎn)速
許用輸入功率
輸出扭矩
輸入
輸出
ZLYJ 146-20-Ⅰ
20
1000
50
8.11
1549
2.3 螺桿的結(jié)構(gòu)及材料
2.3.1螺桿的材料的選擇
對(duì)螺桿材料的性能有以下要求:
(1) 加工性良好,也即切削性能良好和拋光性能良好,前者是為了減少螺桿加工工時(shí),后者是為了增加螺桿表面光潔度;
(2) 熱處理性能良好,主要是指熱處理時(shí)變形要小,這是保證螺桿正常工作的必要條件;
(3) 耐磨性和耐腐蝕性良好,這是保證螺桿壽命的基本要求;
(4) 有足夠的芯部強(qiáng)度;
(5) 附著性好良好,例如,在鍍鉻,噴涂,堆焊等工序中必須保證螺桿基本金屬和附加物的附著性;
(6) 成本盡可能低廉。
基于以上要求的考慮,選擇螺桿的常用材料:38CrMoAlA。
2.3.2螺桿結(jié)構(gòu)形式
由于擠出機(jī)主要用于加工聚烯烴,尤其是LDPE,其結(jié)晶度較低,屬于無(wú)定形物料,因此螺桿結(jié)構(gòu)形式采用漸變式,加料段等距等深,熔融段等距變深,計(jì)量段等距等深。螺桿加工制造容易,成本低,由于螺紋升程相等,物料與機(jī)筒的接觸面積大,從外加熱的機(jī)筒上吸收的熱量多,有利于固體塑料的熔融和均勻壓縮,塑化物料;加料段的第一個(gè)螺槽深度大,有利于進(jìn)料。關(guān)于螺桿的具體結(jié)構(gòu)設(shè)計(jì)在下一章進(jìn)行介紹。
2.3.3螺桿的表面處理
(7) 氮化深度0.3-0.6mm,硬度HV=700~900,脆性:≤2,調(diào)質(zhì): HB=260~290
2.4機(jī)筒的結(jié)構(gòu)及材料
2.4.1機(jī)筒材料的選擇
與螺桿的相似,38GrMoAlA的綜合性能較好,故選用它作為機(jī)筒的材料。
2.4.2機(jī)筒的表面處理
氮化深度0.4-0.7mm,硬度HV>940,脆性≤2 級(jí)。
2.4.3機(jī)筒的結(jié)構(gòu)形式
a b
c d
a—整體式;b—分段式;c—襯套式;d—雙金屬式
圖2-2 常見(jiàn)的機(jī)筒結(jié)構(gòu)形式
由于本設(shè)計(jì)在加料段設(shè)置了加料套,因此機(jī)筒采用分段組合式b。關(guān)于機(jī)筒的具體結(jié)構(gòu)設(shè)計(jì)在下一章進(jìn)行介紹。
2.4.4機(jī)筒與機(jī)頭的連接形式
a—鉸狀連接;b—螺釘連接;c—剖分連接;d—冕狀螺母連接
圖2-3 幾種常見(jiàn)的機(jī)筒與機(jī)頭的形式
鉸狀螺釘連接拆裝機(jī)頭快速,方便,故本設(shè)計(jì)采用這種連接方式。
2.5加熱冷卻方案的對(duì)比和選擇
加熱與冷卻是塑料擠出成型過(guò)程能夠進(jìn)行的必要條件。隨著螺桿的轉(zhuǎn)速、擠出壓力、外加熱功率以及擠出機(jī)周圍介質(zhì)的溫度變化,機(jī)筒中物料的溫度也會(huì)相應(yīng)地發(fā)生變化。因此,為了使塑料始終能在其加工工藝所要求的溫度范圍內(nèi)擠出,一般是通過(guò)加熱或冷卻的方式不斷地調(diào)節(jié)機(jī)筒內(nèi)塑料的溫度來(lái)實(shí)現(xiàn)的。
2.5.1加熱功率的確定
按機(jī)筒內(nèi)表面積計(jì)算
H=11000πDb2LDA (2-2)
式中:Db——機(jī)筒的直徑(cm)
LD——螺桿的長(zhǎng)徑比
A——單位面積的加熱功率(Wcm2),一般取A=3~4Wcm2
在這里,取A=3.8Wcm2,則
H=11000πDb2LDA=11000×π×4.52×25×3.8=6.04kw
根據(jù)擠出機(jī)機(jī)筒的長(zhǎng)度和所計(jì)算得到的加熱功率,可以將機(jī)筒分為3段加熱,每段的加熱功率為2kW,也即加熱段數(shù)。
2.5.2擠出機(jī)的加熱方法
目前擠出機(jī)的加熱方法有:載體加熱、電阻加熱和電感應(yīng)加熱等。
(1)熱載體加熱
利用熱載體作為加熱介質(zhì)的加熱方法稱為熱載體加熱。這種方法加熱均勻,但需要配置一套專門設(shè)備,故較少應(yīng)用。
(2)電阻加熱
電阻加熱是用得最廣泛的加熱方式,其裝置具有尺寸小、重量輕、安裝方便等優(yōu)點(diǎn)。
由于電阻加熱器是采用電阻絲加熱機(jī)簡(jiǎn)后再把熱傳到塑料上,而機(jī)筒又是一個(gè)具有一定厚寬的筒體,因此在機(jī)筒的徑向方向上便形成較大的溫度梯度。另外,用它來(lái)加熱也而要較長(zhǎng)的時(shí)間。同時(shí),使用云母片作絕緣材料的電阻加熱器其電阻絲易氧化受潮等,也會(huì)使其壽命縮短。由于要使用大量的云母片作絕緣材料,加熱器的成本也較高。
近年來(lái),在許多擠出機(jī)上采用了鑄鋁加熱器。它是將電阻絲裝于金屬管中,并填進(jìn)氧化鎂粉之類的絕緣材料,然后將此金屬管鑄于鋁合金中。實(shí)際上它是一種改進(jìn)了的電阻加熱器。它與舊式的電阻加熱器相比較,既保持了原來(lái)電阻加熱器的體積小、裝設(shè)方便及加熱溫度較高的優(yōu)點(diǎn)。而由于省去了云母片,便降低了加熱器的成本。此外,由于電阻絲是裝于加熱金屬管的密實(shí)的氧化鎂粉中,就使得它有防氧化、防潮、防震和防爆等性能,因而提高了加熱器的使用壽命,傳熱效果也比舊式加熱器好。
鑄鋁加熱器的最大加熱溫度一股力350~370℃,如要求有更高的加熱溫度,則可采用鑄鐵或鑄銅加熱器,以提高加熱裝置的耐久性。
(3)電感應(yīng)加熱
電感應(yīng)加熱時(shí)通過(guò)電磁感應(yīng)在機(jī)筒內(nèi)產(chǎn)生電的渦流而使機(jī)筒發(fā)熱,從而達(dá)到加熱機(jī)筒中物料的作用。
電感應(yīng)加熱與電阻絲加熱相比具有如下幾個(gè)特點(diǎn):
①它是由機(jī)筒直接加熱塑料的,因此預(yù)熱外觀的時(shí)間較短(大約7分鐘左右)。在機(jī)筒的徑向方向上的溫度梯度較小。
②由于以上特點(diǎn),采用此加熱器時(shí)對(duì)溫度調(diào)節(jié)的反應(yīng)較電阻加熱的靈敏,從而有較大的溫度穩(wěn)定性,對(duì)制品的質(zhì)量很有利。
③由于感應(yīng)線圈的溫度不會(huì)超過(guò)機(jī)筒的溫度等原因,它比電阻加熱器可節(jié)省電能;
④在正確的冷卻和使用的情況下,感應(yīng)加熱器的壽命比較長(zhǎng)。
感應(yīng)加熱器也有其不足之處,如加熱溫度會(huì)受感應(yīng)線包絕緣性能的限制,這對(duì)成型加工溫度要求比較高的塑料尤其是一些工程塑料是不適合的。其次是它的徑向尺寸大,用在大型擠出機(jī)上必然會(huì)使機(jī)器的體積龐大,而且需要大量的矽鋼片等材料。另外,它在形狀復(fù)雜的機(jī)頭上裝設(shè)也不方便。當(dāng)同一臺(tái)機(jī)器上其機(jī)頭不得不用電阻絲加熱時(shí),因機(jī)頭升溫時(shí)間較長(zhǎng),則機(jī)筒采用感應(yīng)加熱也就顯不出其預(yù)熱升溫快的優(yōu)點(diǎn)。同時(shí),它在裝拆方面也不很方便。
綜上所述,本設(shè)計(jì)采用鑄鋁加熱器對(duì)擠出機(jī)進(jìn)行分段加熱。
2.5.3擠出機(jī)的冷卻裝置
在設(shè)計(jì)風(fēng)冷裝置時(shí),每一個(gè)加熱段都單獨(dú)配有冷卻用鼓風(fēng)機(jī),而且在機(jī)筒表面都有一定通道,防止空氣無(wú)規(guī)則地流動(dòng),而出現(xiàn)冷卻不均勻現(xiàn)象。采用鼓風(fēng)機(jī)進(jìn)行冷卻,其結(jié)構(gòu)形式如圖:
1—鑄鋁加熱器;2—機(jī)筒;3—螺桿;4—鼓風(fēng)機(jī)
圖2-4 風(fēng)冷加熱
表2-3 DF-3型風(fēng)機(jī)的參數(shù)性能
型號(hào)
流量
()
全壓
(Pa)
轉(zhuǎn)速
(r/min)
噪音
(dB)
電動(dòng)機(jī)
電機(jī)重量
功率(kW)
電壓
(V)
三相
DF-3
405
450
2840
75
0.18
380或220
5.3
2.6機(jī)筒與支架間的連接
1—調(diào)整螺釘;2—機(jī)筒;3—螺桿;4—支架
圖2-5 機(jī)筒與支架間的連接結(jié)構(gòu)
為了調(diào)節(jié)機(jī)筒的中心以及防止軸向竄動(dòng),支架上有3個(gè)調(diào)節(jié)螺釘。
2.7擠出機(jī)加料系統(tǒng)的設(shè)計(jì)
加料裝置的作用是給擠出機(jī)提供物料。它一般由料斗部分和上料部分組成,料斗裝于擠出機(jī)的加料座上,將物料不斷地提供給擠出機(jī)。上料部分主要是將物料輸送到料斗上,不斷向料斗提供物料。
料斗的形狀一般做成對(duì)稱的,常見(jiàn)的有圓錐形、矩形和正方形等。料斗的側(cè)面開有視鏡孔.以便觀察料位變化情況。料斗底部設(shè)開合門,用以停止和調(diào)節(jié)加料量。料斗上方安有蓋子,以免灰塵和雜物進(jìn)入。
本設(shè)計(jì)用的料斗如下圖所示。
1—料斗蓋;2—料斗;3—視鏡;4—開合門
圖2-6 加料斗
3.重要結(jié)構(gòu)的設(shè)計(jì)及校核
3.1傳動(dòng)系統(tǒng)的設(shè)計(jì)及校核
3.1.1皮帶傳動(dòng)設(shè)計(jì)
現(xiàn)在已知電機(jī)功率P=7.5kw,轉(zhuǎn)速n1=1440rmin,皮帶傳動(dòng)比i=1.44
(1) 確定計(jì)算功率Pc
取工作情況系數(shù)KA=1.3,故
Pc=KAP=1.3×7.5=9.75kw (3-3)
(2) 選擇V帶的帶型
根據(jù)Pc和n1,選用基準(zhǔn)寬度制SPZ型窄V型帶
(3)確定帶輪的基準(zhǔn)直徑dd,并驗(yàn)算帶速v
初選小帶輪的基準(zhǔn)直徑dd1=112mm
驗(yàn)算帶速v
v=πdd1n160×1000=π×112×144060×1000=8.44ms (3-4)
因?yàn)?ms
0.7dd1+dd2=0.7×112+160=190.4mm (3-7)
a0<2dd1+dd2=2×112+160=544mm (3-8)
初定中心距a0=540mm
(6)確定帶基準(zhǔn)長(zhǎng)度
Ld0=2a0+π2dd1+dd2+dd2-dd124a0
=2×540+π2112+160+160-11224×540=1508.07mm (3-9)
取 Ld=1600mm
(7)實(shí)際中心距a
a≈a0+Ld-Ld02=540+1600-1508.072=585.97mm (3-10)
安裝時(shí)所需最小軸間距
amin=a-0.015Ld=585.97-0.015×1600=562mm (3-11)
張緊或者補(bǔ)償伸長(zhǎng)所需最大軸間距
amax=a+0.03Ld=585.97+0.03×1600=633.97mm (3-12)
(8)小帶輪包角
α1≈180°-dd2-dd157.3°a=175.31° (3-13)
(9) 單根帶所能傳遞的額定功率P0
根據(jù)帶型、dd1和n1,查的P0=2.77kw
(10) 考慮傳動(dòng)比的影響,額定功率的增量?P1=0.15
(11) V帶的根數(shù)Z
Z=PcP0+?P1KαKL=9.752.77+0.15×0.99×1.01=3.34 (3-14)
Kα--包角修正系數(shù),取Kα=0.99
KL--帶長(zhǎng)修正系數(shù),取KL=1.01
取Z=4,需要4根帶
(12)單根V帶的初拉力F0
F0=5002.5Kα-1PcZv+mv2
=500×2.50.99-19.754×8.44+0.07×8.442=220.6N (3-15)
--V帶單位長(zhǎng)度質(zhì)量,取m=0.07kgm
(13)有效圓周力
Ft=1000Pcv=1000×9.758.44=1155.2N (3-16)
作用在軸上的力
FQ=2F0Zsinα12=2×220.64×4×sin175.31°2=1763.3N (3-17)
Fmax=1.5F0=1.5×1763.3=2664.95N (3-18)
Fmax——考慮到新帶的初拉力為正常拉力的1.5倍
綜上所述,選用的V帶型號(hào)為SPZ-1600-GB/T 11544-1997
3.1.2 V帶輪的結(jié)構(gòu)尺寸
(1) 帶輪的材料
因帶輪的線速度較小,故可以采用HT200。
(2) 小帶輪的結(jié)構(gòu)形式:
根據(jù)帶型SPZ和小帶輪基準(zhǔn)直徑dd1,由機(jī)械設(shè)計(jì)手冊(cè)選小帶輪的結(jié)構(gòu)形式為實(shí)心式
小帶輪孔徑及其直徑偏差
d0=38H7=380+0.025mm (3-19)
小帶輪輪轂直徑d1
d1=1.8~2d=2×38=76mm (3-20)
因電機(jī)的伸出軸長(zhǎng)度為80mm,故取小帶輪長(zhǎng)L=80mm
小帶輪輪槽截面尺寸:
基準(zhǔn)寬度bd=8.5mm
基準(zhǔn)線上槽深hamin=2mm
基準(zhǔn)線下槽深hfmin=9mm
槽間距e=12±0.3mm
第一槽對(duì)稱面至端面的最小距離fmin=7mm
輪槽角φ=38°±1°
最小輪緣厚度δmin=5.5mm
小帶輪輪寬B=Z-1e+2f=4-1×12+2×7=50mm
小帶輪外徑da=dd1+2ha=112+2×2=116mm
圖3-1 小帶輪的結(jié)構(gòu)圖
(3) 大帶輪的結(jié)構(gòu)形式:
減速箱的輸入軸直徑為d'=32mm
則大帶輪孔徑及其偏差d0'=32H7=320+0.025mm
根據(jù)帶型SPZ和小帶輪基準(zhǔn)直徑dd1,由機(jī)械設(shè)計(jì)手冊(cè)選用大帶輪的結(jié)構(gòu)形式為腹板式,腹板厚度S=12mm
大帶輪輪轂直徑d1'=1.5~2d'=2×32=64mm
因減速箱的輸入軸的伸出長(zhǎng)度為80mm,故取大帶輪長(zhǎng)度L'=80mm
大帶輪輪槽截面尺寸:
基準(zhǔn)寬度bd'=8.5mm
基準(zhǔn)線上槽深 hamin'=2mm
基準(zhǔn)線下槽深hfmin'=9mm
槽間距e'=12±0.3mm
第一槽對(duì)稱面至端面的最小距離fmin=7mm
輪槽角φ=38°±1°
最小輪緣厚度δmin=5.5mm
大帶輪輪寬B'=Z-1e'+2f'=4-1×12+2×7=50mm
大帶輪外徑da'=dd2+2ha=160+2×2=164mm
圖3-2 大帶輪結(jié)構(gòu)圖
帶輪的技術(shù)要求:
輪槽工作面不應(yīng)有砂眼、氣孔;各輪槽間距的累積誤差不得超過(guò)±0.6mm,任意兩槽的基準(zhǔn)直徑差不得大于0.4mm。
3.2加料套的設(shè)計(jì)
3.2.1擠出機(jī)加料套的設(shè)計(jì)
⑴ 加料套結(jié)構(gòu)參數(shù)的確定
依據(jù)雙螺棱推動(dòng)理論可知,設(shè)計(jì)的機(jī)筒加料套的結(jié)構(gòu)特征為:機(jī)筒加料套為螺旋溝槽,槽寬且槽淺棱窄,螺槽深度小于粒料的粒徑,目的是避免剪切;為保證質(zhì)量流率恒定,加料套螺旋角是漸變的。
①加料套的長(zhǎng)度L
加料套的長(zhǎng)度指的是加料口到襯套出口的距離L。通常L=3~5D,本設(shè)計(jì)中取加料套的長(zhǎng)度L=5D=225mm。加料套的螺旋角是漸變的,而螺旋角為30°~50°時(shí)效果最佳,因此,本設(shè)計(jì)中取加料套的導(dǎo)程由144mm漸變?yōu)?0mm。
②加料套溝槽的形狀
由于本設(shè)計(jì)中的加料套溝槽是螺旋形的,而螺旋形溝槽的形狀一般有矩形和鋸齒形兩種,在本設(shè)計(jì)中,取矩形螺旋溝槽,這種形式溝槽的效果最佳。
③加料套螺紋頭數(shù)M2的確定
對(duì)于大型的擠出機(jī)來(lái)說(shuō),溝槽的數(shù)目大約是螺桿直徑的110,但是對(duì)于小型擠出機(jī)來(lái)說(shuō),溝槽的數(shù)目大約是螺桿直徑的15,因此,設(shè)計(jì)加料套的螺紋頭數(shù)M2=8。
④加料套的溝槽深度H
加料套的溝槽深度指的是螺槽底至螺棱頂面的距離。為了避免剪切,該距離不應(yīng)大于物料顆粒的最大尺寸。由于物料在溝槽中運(yùn)動(dòng),因此螺槽的深度還將影響到物料與摩擦力的大小。由TGL理論的受力分析可知,溝槽中的物料與溝槽三面接觸,也即螺槽底面和螺槽兩側(cè)面,而物料在螺槽中運(yùn)動(dòng)時(shí)受到的外摩擦來(lái)源于這三個(gè)地方,如果螺槽深度太大,則螺槽兩側(cè)面的面積就會(huì)增大,使得物料受到的摩擦力也將增大,而擠出機(jī)實(shí)現(xiàn)正位移輸送的邊界條件是弧板嵌入螺桿螺槽的部分與嵌入加料套螺槽的部分的分界面上的剪切力τ不能大于分界面上的摩擦力。因此螺槽的深度不宜太深。此外,由TGL理論的固體輸送率方程可知,螺槽深度的減小也有利于固體輸送率的提高。
因此,根據(jù)物料顆粒的大小以及經(jīng)驗(yàn),確定加料套的溝槽深度H2=2.5mm。
⑤加料套的螺槽寬度b
加料套的螺槽寬度應(yīng)大于物料顆粒的大小,還與螺桿的直徑有關(guān)。由TGL理論的固體輸送率公式知道,加料套螺棱寬度e2的大小也將影響到固體輸送率,因此螺槽的寬度不應(yīng)太小,否則螺棱的寬度e2就會(huì)太大。此外,由弧板模型的受力分析知道,螺槽的寬度也會(huì)影響固體塞與螺槽底面的摩擦力,進(jìn)而影響到正位移的實(shí)現(xiàn),因此螺槽寬度應(yīng)當(dāng)適宜。
本設(shè)計(jì)中螺槽較寬而螺棱較窄,根據(jù)經(jīng)驗(yàn)加料套總的螺槽寬度應(yīng)該在D到0.5πD之間,也即45mm到70mm之間,取螺槽寬度b=6.5mm,則總螺槽寬度為52mm,滿足這一條件,故合適。
根據(jù)這些參數(shù)設(shè)計(jì)出的加料套的結(jié)構(gòu)形式如下圖所示。
圖3-9 基于TGL理論的加料套結(jié)構(gòu)圖
⑵ 加料套的基本特點(diǎn):
①加料套的內(nèi)表面開設(shè)了8條螺旋溝槽,溝槽的旋向與螺桿螺槽的旋向相反;
②為了對(duì)加料段進(jìn)行冷卻,在加料套溝槽外圓開設(shè)有螺旋水槽;
③加料套與內(nèi)襯焊接后精加工至最后尺寸;
④內(nèi)襯上開有鍵槽,通過(guò)平鍵與加料座相連接,防止加料套發(fā)生旋轉(zhuǎn)。
3.3 螺桿的設(shè)計(jì)及校核
3.3.1螺桿的設(shè)計(jì)
⑴ 螺桿各段的長(zhǎng)度
螺桿各段的長(zhǎng)度主要與物料性能和工藝條件相關(guān)。由于本設(shè)計(jì)的擠出機(jī)的加料段配置了螺旋式加料套,加料套的長(zhǎng)度L=5D=225mm,因此,根據(jù)加料套的長(zhǎng)度取加料段長(zhǎng)度為L(zhǎng)1=3D=315mm。
無(wú)定形物料隨著溫度的升高,物料會(huì)逐漸軟化,當(dāng)溫度超過(guò)粘流溫度后,物料變成粘流態(tài),這個(gè)過(guò)程是在一個(gè)相當(dāng)大的范圍內(nèi)完成的,在此過(guò)程中,物料的密度變化平緩,因此壓縮段開始要早,長(zhǎng)度要長(zhǎng),根據(jù)經(jīng)驗(yàn),取壓縮段長(zhǎng)度為L(zhǎng)2=10D=450mm。
由于IKV擠出機(jī)的固體輸送率較大,導(dǎo)致物料停留的時(shí)間變短,因此就需要考慮物料的塑化均勻度問(wèn)題,為了使物料能在計(jì)量段中更好地均勻化,計(jì)量段的長(zhǎng)度應(yīng)取長(zhǎng)些,甚至需要在計(jì)量段設(shè)置混煉段,因此本設(shè)計(jì)取螺桿的計(jì)量段長(zhǎng)度為L(zhǎng)3=8D=360mm。
則螺桿的長(zhǎng)度為L(zhǎng)=L1+L2+L3=315+450+360=1125mm。
⑵螺槽深度及壓縮比
①對(duì)于IKV擠出機(jī)來(lái)說(shuō),其壓縮比較小,因此計(jì)量段的螺槽深度要比普通擠出機(jī)的小,而當(dāng)計(jì)量段的螺槽深度較淺時(shí),壓力波動(dòng)和溫度波動(dòng)都較小。
H3=KD=0.0445=1.8mm,
取K=0.04。
②加料段的螺槽深度
由于加料段有開螺旋溝槽的加料套,因此與常規(guī)的螺桿相比,螺桿加料段的螺槽深度要小些,雖然表面上螺桿的壓縮比因此而變小了,但是由于有螺旋溝槽的存在,其實(shí)際壓縮比還是比較大的。本設(shè)計(jì)取幾何壓縮比ε=2,則加料段的螺槽深度為
H1=εH3=2×1.8=3.6mm
⑶ 螺旋角θ和螺距S
為了設(shè)計(jì)和方便加工,取S=D=45mm
螺旋角θ=17°40'
⑷ 螺桿螺棱法向?qū)挾萫1和軸向?qū)挾萣
由TGL理論知道,螺桿的螺棱寬度影響固體輸送率,其值過(guò)大,則固體輸送率就會(huì)降低,因此我們希望螺桿螺棱的寬度小些,根據(jù)經(jīng)驗(yàn),計(jì)算其大小
e=0.1D=0.1×45=4.5mm
b=ecosθ=4.517°40'=4.72mm
⑸ 螺紋頭數(shù)M=1,單頭螺紋
⑹ 螺紋的斷面形狀
常見(jiàn)螺桿螺紋的斷面形狀有兩種,一種是矩形,另一種是鋸齒形,如圖3-11所示。前者在螺槽根部有一個(gè)很小的圓角半徑,它有最大的裝填體積,而且機(jī)械加工比較容易,適用于加料段;后者能改善塑料流動(dòng)情況,有利于攪拌塑化,也避免了物料的滯留.適用于壓縮段和均化段。
a—矩形斷面;b—鋸齒形斷面
圖3-11 常見(jiàn)螺紋斷面形狀
本設(shè)計(jì)采用矩形螺紋,螺紋根徑表面與螺棱推進(jìn)面成90°夾角,用小圓弧過(guò)渡,螺槽的容積較大。
⑺ 螺紋根徑處的圓角半徑:推力面R1<背面R2
R1=12H3=12×1.8=0.9mm
R2=2R1=2×0.9=1.8mm
圖3-12 螺紋斷面形狀
⑻ 螺桿的頭部形狀
當(dāng)塑料熔體從螺旋槽進(jìn)入機(jī)頭流道時(shí),其料流形態(tài)急劇改變。即由螺旋帶狀(其實(shí)物料流動(dòng)很復(fù)雜)的流動(dòng)變?yōu)橹本€運(yùn)動(dòng)。為了得到較好的擠出質(zhì)量,要求物料盡可能平穩(wěn)地從螺桿進(jìn)入機(jī)頭,使其改變流動(dòng)形態(tài),同時(shí)要避免物料局部受熱時(shí)間長(zhǎng)而產(chǎn)生熱分解等現(xiàn)象(也稱滯料現(xiàn)象)。這與螺桿頭部形狀、螺桿末端螺紋形狀以及機(jī)頭體中的流道和分流的流道和分流板的設(shè)計(jì)有關(guān)。目前國(guó)內(nèi)外常用的螺桿頭部結(jié)構(gòu)形式如圖3-13所示。
圖3-13 常見(jiàn)螺桿頭部的結(jié)構(gòu)
本設(shè)計(jì)采用圓頭形螺桿頭a,螺桿頭的球半徑為R=20mm,結(jié)構(gòu)如圖
圖3-14 螺桿頭部結(jié)構(gòu)
⑼ 螺桿尾部的密封結(jié)構(gòu)
目的:為了防止從料斗加入的物往螺桿尾部即傳動(dòng)方向漏出,在螺桿尾部的無(wú)螺紋部分往往設(shè)計(jì)有密封部分。
措施:采用與螺桿螺紋旋向相同的螺紋進(jìn)行密封,由于旋向相同,這種結(jié)構(gòu)不僅能起密封作用,而且還能將已漏入密封內(nèi)的物料推回到螺桿的工作部分。
圖3-15 螺紋尾部密封結(jié)構(gòu)
⑽ 螺桿整體結(jié)構(gòu)
圖3-16 螺桿的整體結(jié)構(gòu)圖
3.3.2螺桿的強(qiáng)度計(jì)算及校核
(1) 與常規(guī)的擠出機(jī)的機(jī)頭壓力不同,IKV擠出機(jī)的壓力峰值一般出現(xiàn)在加料段末端,而且該壓力數(shù)值較大,因此校核時(shí)所取的壓力也應(yīng)該是加料段處的壓力,根據(jù)經(jīng)驗(yàn)取螺桿的受到的壓力P=50MPa
圖3-17 螺桿受力分析圖
(2) 螺桿的軸向力Pz
Pz=0.98D2P≈D2P=0.0452×50×106=99KN (3-21)
(3)螺桿的強(qiáng)度計(jì)算
螺桿與主軸的連接方式:浮動(dòng)式連接,配合較松,擠出時(shí)螺桿可被物料浮起,可以近似為一端固定的懸臂梁,危險(xiǎn)斷面在加料段螺桿的根徑處。
①軸向力Pz產(chǎn)生的壓應(yīng)力σc
σc=PzA=1.25π4D2Ds2-d02=PD2Ds2=50×106×45237.82=69.3Mpa (3-22)
螺桿無(wú)冷卻孔,故d0=0
其中Ds為螺桿最小斷面的根徑,Ds=37.8mm
②重力G產(chǎn)生的彎應(yīng)力σb
σb=L2D+ds2γds3=4.5×2524.5+3.782×7.85×10-437.83=12.6MPa (3-23)
γ——螺桿的材料比重,鋼材取γ=7.85×10-4MPacm
③扭矩Mn產(chǎn)生的剪應(yīng)力
τ=MnWn=9550Nnmaxηπ161-d0Ds4=9550×7.550×0.9π16×0.03782=121.6Mpa (3-24)④合成應(yīng)力
σ=σc2+4τ2=69.3+12.62+4×121.62=256MPa (3-25)
材料屈服極限σs=850MPa
安全系數(shù)ns=2.8
許用應(yīng)力
σ=σsns=8502.8=303.61MPa
因?yàn)棣?σ,故螺桿強(qiáng)度足夠。
(4)螺桿推力面上的擠壓應(yīng)力σF
螺桿推力面上承受全部軸向力,故需校核其擠壓力
σF=PzF=4PzπD2-d2=4×99×103π0.0452-0.0382=217Mpa (3-26)
許用擠壓壓力
σ=0.3σs=0.3×850=255MPa
因?yàn)棣褾<σ,故安全。
3.4 機(jī)筒的設(shè)計(jì)及強(qiáng)度校核
3.4.1機(jī)筒壁厚的選擇
表3-1 我國(guó)某些擠出機(jī)的機(jī)筒壁厚 mm
螺桿直徑
30
45
65
90
120
150
200
機(jī)筒壁厚
20~25
20~25
30~45
40~45
40~45
40~45
50~60
選擇機(jī)筒的壁厚?=20mm,
機(jī)筒的內(nèi)徑Db=45mm,
機(jī)筒的外徑D0=85mm
螺桿與機(jī)筒的配合間隙δ=0.2mm
表3-2 螺桿與機(jī)筒之間的間隙值(mm)(JB/T 8061-1996)
螺桿直徑
20
25
30
35
40
45
50
55
60
偏差
上
+0.18
+0.20
+0.22
+0.24
+0.27
+0.30
+0.30
+0.32
+0.32
下
+0.08
+0.09
+0.10
+0.11
+0.13
+0.15
+0.15
+0.16
+0.16
螺桿直徑
65
70
80
90
100
120
150
200
偏差
上
+0.35
+0.35
+0.38
+0.40
+0.40
+0.43
+0.46
+0.54
下
+0.18
+0.18
+0.20
+0.22
+0.22
+0.25
+0.26
+0.29
3.4.2機(jī)筒的強(qiáng)度校核
由于機(jī)筒外徑與內(nèi)徑之比D0Db=k>1.1,因此可用厚壁圓筒理論進(jìn)行強(qiáng)度計(jì)算。
根據(jù)厚壁圓筒理論,機(jī)筒內(nèi)壁受物料的壓力P作用時(shí),機(jī)筒壁上每一點(diǎn)都處于三向應(yīng)力狀態(tài),即徑向應(yīng)力σγ?max、切向應(yīng)力στ?max和軸向應(yīng)力σz。
徑向應(yīng)力
σγ?max=-p=-50MPa (3-27)
切向應(yīng)力
στ?max=pR02+rb2R02-rb2=50×42.52+22.5242.52-22.52=89MP (3-28)
軸向應(yīng)力
Σz=prb2R02-rb2=50×22.5242.52-22.52=19.5MPa (3-29)
按第四強(qiáng)度理論——最大變形能量理論計(jì)算,其強(qiáng)度條件為
σ=12σr-στ2+στ-σz2+σz-σr2
=12-50-892+89-19.52+19.5+502=120MPa (3-30)
σp=2Mn×102kld=2×1289.25×1034×90×38=188.5Mpa
因?yàn)樵S用應(yīng)力 σ<σp,故安全。
3.5 螺桿尾部平鍵的強(qiáng)度計(jì)算
螺桿尾部與減速箱通過(guò)平鍵連接,平鍵的載荷性質(zhì)屬于輕微沖擊,其許用擠壓應(yīng)力為[σp]=100~120Mpa。
平鍵傳遞的扭矩
Mn=9550Nηnmax=9550×7.5×0.950=1289.25N?m (3-31)
選擇A型平鍵
鍵的寬度b=10mm
鍵的高度h=8mm
鍵的長(zhǎng)度L=100mm
鍵與輪轂鍵槽的接觸高度k=0.5h=4mm
鍵的工作長(zhǎng)度l=L-b=90mm
螺桿尾部軸的直徑d=38mm
σ=σsns=8502.8=303.6Mpa>σp (3-32)
由此可知,單個(gè)平鍵的擠壓強(qiáng)度不夠,考慮到相差較大,故采用雙鍵,兩個(gè)平鍵布置在沿周向180°的方向上。
雙鍵的工作長(zhǎng)度l=1.5L=150mm
σp=2Mn×1034×150×38=113.1Mpa<σp,因此合適。
所選用的平鍵為:鍵10×100 GB/T 1096—2000
表3-3 鍵連接的許用擠壓應(yīng)力、許用壓力 Mpa
許用擠壓應(yīng)力、許用壓力
連接工作方式
鍵或轂、軸的材料
載荷性質(zhì)
靜載荷
輕微沖擊
沖擊
靜連接
鋼
120~150
100~120
60~90
鑄鐵
70~80
50~60
20~45
動(dòng)連接
鋼
50
40
30
結(jié) 論
本設(shè)計(jì)完成了單螺桿擠出機(jī)的主要構(gòu)件的設(shè)計(jì),這些構(gòu)件與常規(guī)的IKV擠出:它的加料套開設(shè)的是螺旋溝槽,而傳統(tǒng)的IKV擠出機(jī)的加料套開設(shè)的是軸向溝槽,螺旋溝槽的優(yōu)勢(shì)在于能夠克服軸向溝槽剪切力大而導(dǎo)致物料溫升高進(jìn)而影響擠出機(jī)的產(chǎn)量的問(wèn)題。通過(guò)一系列的分析和計(jì)算,提高了加料段的固體輸送率,擠出機(jī)的產(chǎn)量得到大幅度的提高。本設(shè)計(jì)只是對(duì)擠出機(jī)主要構(gòu)件做了理論上的分析和計(jì)算,實(shí)際生產(chǎn)中該擠出機(jī)的這些構(gòu)件能否實(shí)現(xiàn),還需要做進(jìn)一步的實(shí)驗(yàn)驗(yàn)證。
參考文獻(xiàn)
[1] 濮良貴,紀(jì)名剛主編.機(jī)械設(shè)計(jì).第8版.北京:高等教育出版社. 2006.5
[2] 郭克希,王建國(guó).機(jī)械制圖.第7版.北京:機(jī)械工業(yè)出版社,2006.8.
[3] 左健民.液壓與氣壓傳動(dòng).第4版.北京:機(jī)械工業(yè)出版社,2007.5.
[4] 王伯平主編.互換性與測(cè)量技術(shù)基礎(chǔ).第2版.北京:機(jī)械工業(yè)出版社,2008.12.
[5] 劉鴻文主編.材料力學(xué).第4版.北京:高等教育出版社,2004.
[6] 孫恒,陳作模,葛文杰主編.機(jī)械原理.第7版.北京:高等教育出版社,2006.5
[7] 王先逵主編.機(jī)械制造工藝學(xué).第2版.北京:機(jī)械工業(yè)出版社,2006.1
[8] 熊詩(shī)波,黃長(zhǎng)藝主編.機(jī)械工程測(cè)試技術(shù)基礎(chǔ).第3版.北京:機(jī)械工業(yè)出版社,2006.5
[9] 鄧淮鈴,陳松星.螺桿擠出機(jī)傳動(dòng)系統(tǒng)的技術(shù)改造[J].廣東化纖,1999.4
[10] 魯?shù)希穸酄柣舴颍X輪