2019-2020年高二上學(xué)期期末考試 數(shù)學(xué)(文)含答案.doc
《2019-2020年高二上學(xué)期期末考試 數(shù)學(xué)(文)含答案.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高二上學(xué)期期末考試 數(shù)學(xué)(文)含答案.doc(4頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高二上學(xué)期期末考試 數(shù)學(xué)(文)含答案 一、選擇題:(每題5分) 1.若復(fù)數(shù)滿足,則等于 A.2+4i B.2-4i C.4-2i D.4+2i 2. 用反證法證明:若整系數(shù)一元二次方程ax2+bx+c=0(a≠0)有有理數(shù)根,那么a、b、c中至少有一個是偶數(shù).用反證法證明時,下列假設(shè)正確的是( ) A.假設(shè)a、b、c都是偶數(shù) B.假設(shè)a、b、c都不是偶數(shù) C.假設(shè)a、b、c至多有一個偶數(shù) D.假設(shè)a、b、c至多有兩個偶數(shù) 3.直線:3x-4y-9=0與圓:,(θ為參數(shù))的位置關(guān)系是(?? ) A.相切??? B.相交但直線不過圓心?? ?C.直線過圓心? D.相離 4.曲線的極坐標(biāo)方程ρ=4sinθ化 成直角坐標(biāo)方程為(??? ) A.x2+(y-2)2=4?? ??????? B.x2+(y+2)2=4? C.(x-2)2+y2=4????????? D.(x+2)2+y2=4 5.點(diǎn)M的直角坐標(biāo)為化為極坐標(biāo)為( ) A. B. C. D. 6. 參數(shù)方程表示什么曲線( ) A.一個圓 B.一個半圓 C.一條射線 D.一條直線 7.將曲線C按伸縮變換公式變換得曲線方程為,則曲線C的方程為( ) A. B . c. D. 4x=1 8.已知函數(shù)在上為減函數(shù),則實(shí)數(shù)的取值范圍是( ) A. B. C. D. (1) (2) (3) (4) (5) 9. 如圖,第(1)個圖案由1個點(diǎn)組成,第(2)個圖案由3個點(diǎn)組成,第(3)個圖案由7個點(diǎn)組成,第(4)個圖案由13個點(diǎn)組成,第(5)個圖案由21個點(diǎn)組成,……,依此類推,根據(jù)圖案中點(diǎn)的排列規(guī)律,第100個圖形由多少個點(diǎn)組成( ) A. 9901 B. 9902 C. 9903 D. 9900 10. 設(shè),若函數(shù),,有大于零的極值點(diǎn),則( ) A. B. C. D. 11. 已知,是區(qū)間上任意兩個值,恒成立,則M的最小值是( ) A. 0. B. 2 C. 4 D. -2 12.已知定義在R上的奇函數(shù)為f(x),導(dǎo)函數(shù)為,當(dāng)時,恒有 ,令F(x)=xf(x),則滿足F(3)>F(2x-1)的實(shí)數(shù)x的取值范圍是( ) A.(-1,2) B. (-1,) C. (-2,) D. (-2,1) 二、填空題:(每題5分) 13.函數(shù)在區(qū)間上的最小值是____. 14.設(shè)n為正整數(shù),f(n)=1+++…+,計(jì)算得f(2)=,f(4)>2,f(8)>,f(16)>3, 觀察上述結(jié)果,可推測一般的結(jié)論為_________________. 15.直線(t為參數(shù))被圓x2+y2=4所截得的弦長是_____ 16.已知二次函數(shù)的導(dǎo)數(shù)為,,對于任意實(shí)數(shù)都有,則的最小值為__________. 三、解答題: 17.(本小題滿分10分) 已知直線經(jīng)過點(diǎn)P(1,1),傾斜角。 (1)寫出直線的參數(shù)方程; (2)設(shè)與圓(為參數(shù))相交于兩點(diǎn)A,B,求P到A,B兩點(diǎn)的距離之積。 18.(本小題滿分12分) 已知曲線C的極坐標(biāo)方程為, (1)求曲線C的直角坐標(biāo)方程. (2)若P()是曲線C上的一動點(diǎn),求的最大值。 19.(本小題滿分12分) 已知a>0,b>0,求證: 20.(本小題滿分12分) 設(shè)函數(shù). (Ⅰ)若曲線在點(diǎn)處與直線相切,求的值; (Ⅱ)求函數(shù)的極值點(diǎn)與極值. 21. (本小題滿分12分) 設(shè)函數(shù). (1)求函數(shù)的單調(diào)區(qū)間. (2)若方程有且僅有三個實(shí)根,求實(shí)數(shù)的取值范圍. 22.(本小題滿分12分) 已知函數(shù),其中為實(shí)數(shù). (1)若時,求曲線在點(diǎn)處的切線方程; (2)當(dāng)時,若關(guān)于的不等式恒成立,試求的取值范圍. 高二期末數(shù)學(xué)(文科)試卷參考答案 一、選擇題:(每題5分) 題號 1 2 3 4 5 6 7 8 9 10 11 12 答案 C B B A D C D B A D C A 二、填空題:(每題5分) 13. 14.f()≥ 15. 16. 2 三、解答題: 17.(1)直線的參數(shù)方程是 (t是參數(shù))。 (2)∵點(diǎn)A,B都在直線上, ∴可設(shè)點(diǎn)A、B對應(yīng)的參數(shù)分別為和,則點(diǎn)A、B的坐標(biāo)分別為將直線的參數(shù)方程代入圓的方程整理得 ∵和是方程①的解,從而=-2, ∴ 18. (1) ……………………5分 (2)(x+2y)max=4 ……………………10分 19. 法1:∵a>0,b>0 ∴ ∴ 法2:要證: 只需證: 只需證: 只需證: 只需證:恒成立19.(本小題滿分12分) 20.(本小題滿分12分) 解:(Ⅰ),∵曲線在點(diǎn)處與直線相切, ∴ (Ⅱ)∵, 當(dāng)時,,函數(shù)在上單調(diào)遞增,此時函數(shù)沒有極值點(diǎn). 當(dāng)時,由, 當(dāng)時,,函數(shù)單調(diào)遞增, 當(dāng)時,,函數(shù)單調(diào)遞減, 當(dāng)時,,函數(shù)單調(diào)遞增, ∴此時是的極大值點(diǎn),是的極小值點(diǎn). 21. 解(1)和是增區(qū)間;是減區(qū)間--------6分 (2)由(1)知 當(dāng)時,取極大值 ; 當(dāng)時,取極小值 ;----------9分 因?yàn)榉匠虄H有三個實(shí)根.所以 解得:------------------12分 22.解析:(1).當(dāng)時,,從而得,故曲線在點(diǎn)處的切線方程為,即. (2).由,得,令則令則,即在上單調(diào)遞增.所以,因此,故在單調(diào)遞增.則,因此的取值范圍是.- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高二上學(xué)期期末考試 數(shù)學(xué)文含答案 2019 2020 年高 上學(xué) 期末考試 數(shù)學(xué) 答案
鏈接地址:http://m.szxfmmzy.com/p-1969394.html