【溫馨提示】壓縮包內(nèi)含CAD圖有下方大圖片預(yù)覽,下拉即可直觀呈現(xiàn)眼前查看、盡收眼底縱觀。打包內(nèi)容里dwg后綴的文件為CAD圖,可編輯,無(wú)水印,高清圖,壓縮包內(nèi)文檔可直接點(diǎn)開預(yù)覽,需要原稿請(qǐng)自助充值下載,所見才能所得,請(qǐng)見壓縮包內(nèi)的文件及下方預(yù)覽,請(qǐng)細(xì)心查看有疑問(wèn)可以咨詢QQ:11970985或197216396
壓縮包內(nèi)含有CAD圖紙和說(shuō)明書,咨詢Q 197216396 或 11970985
摘 要
隨著人們生活水平的提高,能源節(jié)約、環(huán)境保護(hù)問(wèn)題日趨嚴(yán)重,人們的關(guān)注程度也越來(lái)越高。
本文以中國(guó)節(jié)能競(jìng)技車大賽為背景,以本校已有的競(jìng)技車為基礎(chǔ)。同時(shí)整個(gè)設(shè)計(jì)在滿足大賽要求的基礎(chǔ)上,以省油為主要指導(dǎo)思想,減少競(jìng)技車復(fù)雜程度和輕量化。本次設(shè)計(jì)對(duì)競(jìng)技車的轉(zhuǎn)向系、傳動(dòng)系和離合器進(jìn)行改進(jìn)設(shè)計(jì)。論文首先對(duì)競(jìng)技車的總體方案進(jìn)行了確定。然后對(duì)轉(zhuǎn)向機(jī)構(gòu)進(jìn)行設(shè)計(jì),運(yùn)用CATIA對(duì)其進(jìn)行實(shí)體建模,同時(shí)利用CATIA的運(yùn)動(dòng)仿真對(duì)轉(zhuǎn)向系進(jìn)行了仿真模擬運(yùn)動(dòng),驗(yàn)證了轉(zhuǎn)向機(jī)構(gòu)的合理性。通過(guò)對(duì)相關(guān)期刊的研讀,通過(guò)其中大量的實(shí)車試驗(yàn)數(shù)據(jù),確定了傳動(dòng)系傳動(dòng)方案為鏈傳動(dòng),也確定了離合器的改進(jìn)方案。
關(guān)鍵詞:轉(zhuǎn)向系;傳動(dòng)系;離合器;CATIA三維建模
I
ABSTRACT
As people's living standards improve, energy conservation and environmental protection are becoming more and more serious, and people are becoming more and more concerned.
Energy saving in China based on competitive car competition as the background, on the basis of our existing sports car.At the same time, the whole design is on the basis of satisfying the requirements of the competition, which is the main guiding principle of oil saving, reducing the complexity and light weight of the competitive vehicle.This design is designed to improve the steering, transmission and clutch of competitive vehicles.The paper first identified the overall scheme of competitive vehicles.And then to design of steering mechanism, using CATIA to entity modeling, at the same time, using CATIA movement simulation of steering system has carried on the simulation, the rationality of the steering mechanism was verified.Through the study of related journals, through which a large number of real vehicle test data, determine the drivetrain transmission scheme for the chain, also identified the improvement scheme of the clutch.
Key Words:Write Criterion; Typeset Format; Dissertation;CATIA 3 d modeling
III
目 錄
摘 要 I
ABSTRACT II
1 緒論 1
1.1 課題研究背景及意義 1
1.2 國(guó)內(nèi)外發(fā)展概況及趨勢(shì) 2
1.3 課題的主要研究?jī)?nèi)容 2
2 節(jié)能競(jìng)技車的總體設(shè)計(jì)方案確定 4
2.1 總體布置方案的選擇 4
2.2 車架材料的確定 6
2.3 車輛驅(qū)動(dòng)方式的確定 6
2.4 車輛轉(zhuǎn)向形式的確定 6
2.5 車輛車輪的選擇 8
2.6 車架參數(shù)的確定和計(jì)算 8
2.7 各總成的相關(guān)計(jì)算 12
2.8 整體參數(shù)的確定 14
2.9 本章小結(jié) 14
3 轉(zhuǎn)向機(jī)構(gòu)設(shè)計(jì) 16
3.1 汽車轉(zhuǎn)向梯形機(jī)構(gòu)設(shè)計(jì)理論 16
3.2 轉(zhuǎn)向梯形參數(shù)確定 18
3.3 轉(zhuǎn)向阻力距計(jì)算 19
3.4 轉(zhuǎn)向裝置的設(shè)計(jì)計(jì)算 20
3.4 轉(zhuǎn)向梯形的仿真 20
3.5 本章小結(jié) 21
4 傳動(dòng)系設(shè)計(jì) 22
4.1 設(shè)計(jì)理論 22
4.2 實(shí)際傳動(dòng)比的確定 22
4.3 鏈傳動(dòng)的選取和設(shè)計(jì)計(jì)算 23
4.4 本章小結(jié) 24
5 離合器的設(shè)計(jì) 25
5.1 離合器的重新設(shè)計(jì)和選擇 25
5.2 離合器需要傳遞扭矩的計(jì)算 25
5.3 摩擦片參數(shù)與尺寸計(jì)算 25
5.4 離合器彈簧與尺寸計(jì)算 26
5.5 離合器其他參數(shù)與尺寸的選用 27
5.6 設(shè)計(jì)小結(jié) 27
6 結(jié) 論 28
參 考 文 獻(xiàn) 29
附錄1:外文翻譯 30
附錄2:外文原文 34
致 謝 39
壓縮包內(nèi)含有CAD圖紙和說(shuō)明書,咨詢Q 197216396 或 11970985 本田節(jié)能競(jìng)技賽車轉(zhuǎn)向及傳動(dòng)系統(tǒng)設(shè)計(jì)
1 緒論
1.1 課題研究背景及意義
本田節(jié)能競(jìng)技車大賽是將參賽團(tuán)隊(duì)設(shè)計(jì)制作的汽車在規(guī)定時(shí)間、規(guī)定路線下,行駛一定距離,并由此換算出一升油能夠行駛的公里數(shù),耗油量少則勝出的一項(xiàng)賽事。其中參賽車輛俊需搭載本田開發(fā)的Honda彎梁車125cc化油器低油耗發(fā)動(dòng)機(jī)。
Honda節(jié)能競(jìng)技大賽于1981年在日本創(chuàng)辦,至今已有36年的歷史。比賽要求參賽車輛使用統(tǒng)一的發(fā)動(dòng)機(jī),發(fā)動(dòng)機(jī)以外的車架和車身等完全由各車隊(duì)自行創(chuàng)作,每支參賽隊(duì)帶來(lái)的都是世界上獨(dú)一無(wú)二的賽車。賽車在指定的賽道內(nèi)跑完賽程,比賽誰(shuí)消耗的燃油最少。由于有著極高的樂(lè)趣性和廣泛的參與性,在日本,每年都有來(lái)自初中、高中和大學(xué)的學(xué)校代表隊(duì)、企業(yè)代表隊(duì),以及來(lái)自社會(huì)上的共約500支車隊(duì),創(chuàng)作出具有新穎構(gòu)思的和創(chuàng)意的賽車參加比賽。迄今為止創(chuàng)下最高的記錄為3435.325Km/h,相當(dāng)于北京到重慶的直線往返距離。同時(shí),這項(xiàng)比賽也逐漸向海外擴(kuò)展。
中國(guó)作為繼日本泰國(guó)之后的第三個(gè)舉辦地,于2006年在上海舉行了試行大賽,2007年11月11日,第一屆Honda中國(guó)節(jié)能競(jìng)技大賽在上海國(guó)際賽車場(chǎng)圓滿舉行。Honda節(jié)能競(jìng)技大賽的目的是通過(guò)比賽提高社會(huì)的節(jié)能和環(huán)保意識(shí),參賽車隊(duì)通過(guò)各項(xiàng)獨(dú)創(chuàng)技術(shù)不斷發(fā)現(xiàn)一升汽油的無(wú)限潛能,從中體會(huì)節(jié)能的重要性。同時(shí)也提高了參賽選手的實(shí)踐能力。
節(jié)能、環(huán)保一直是Honda致力解決的重要課題之一。在產(chǎn)品領(lǐng)域,Honda通過(guò)電池、混合動(dòng)力、生物乙醇彈性燃料、清潔柴油等先進(jìn)的節(jié)能、環(huán)保型產(chǎn)品時(shí)刻走在行業(yè)前列。在生產(chǎn)領(lǐng)域,Honda在全球推行“綠色工廠,制定獨(dú)自的企業(yè)目標(biāo),努力降低產(chǎn)品生產(chǎn)環(huán)節(jié)的能源消耗和污染物以及溫室氣體的排放。節(jié)能競(jìng)技大賽作為環(huán)保領(lǐng)域的社會(huì)活動(dòng)之一今后將繼續(xù)在中國(guó)舉辦,Honda希望通過(guò)這項(xiàng)賽事,為節(jié)能環(huán)保做出貢獻(xiàn)。
在石油資源日益枯竭,全球石油儲(chǔ)備急劇下降的背景下,我國(guó)汽車保有量卻平均每年12.07%的速度增加,我國(guó)對(duì)燃油的消費(fèi)需求日益增長(zhǎng),很大一部分依賴進(jìn)口。一方面,我國(guó)汽車節(jié)油技術(shù)的應(yīng)用有限,燃油利用率較低;另一方面,機(jī)動(dòng)車排放污染已經(jīng)成為我國(guó)污染物的主要來(lái)源之一。因此,汽車節(jié)油環(huán)保問(wèn)題日益突出,面對(duì)有限的石油資源和國(guó)家能源戰(zhàn)略遇到的威脅與挑戰(zhàn),汽車節(jié)能環(huán)保技術(shù)已成為汽車設(shè)計(jì)領(lǐng)域的研發(fā)熱點(diǎn)。
節(jié)能競(jìng)技車與普通賽車的結(jié)構(gòu)布局相似,由發(fā)動(dòng)機(jī)、底盤和車身三大部分組成。發(fā)動(dòng)機(jī)的改造無(wú)疑是各賽車隊(duì)的重點(diǎn),也是節(jié)能減排技術(shù)發(fā)展的主導(dǎo)性方向;底盤的設(shè)計(jì)關(guān)鍵在于減少摩擦損失和提高機(jī)械的傳動(dòng)效率;車身的設(shè)計(jì)重點(diǎn)在于減少重量和降低空氣阻力系數(shù)。
1.2 國(guó)內(nèi)外發(fā)展概況及趨勢(shì)
動(dòng)力傳動(dòng)系統(tǒng)即發(fā)動(dòng)機(jī)一變速器一驅(qū)動(dòng)橋一驅(qū)動(dòng)輪系統(tǒng),它是汽車重要組成部分。選擇動(dòng)力傳動(dòng)系統(tǒng)參數(shù)的方法有兩種:一種是整車主要參數(shù)和傳動(dòng)系參數(shù)含輪胎確定后,選擇合適的發(fā)動(dòng)機(jī);另一種是整車參數(shù)和發(fā)動(dòng)機(jī)確定后,選擇合適的傳動(dòng)系。能與發(fā)動(dòng)機(jī)合理匹配的傳動(dòng)系可以使發(fā)動(dòng)機(jī)經(jīng)常在其理想工作區(qū)附近工作。這樣不僅可以減少燃油消耗,減輕發(fā)動(dòng)機(jī)磨損,提高發(fā)動(dòng)機(jī)的使用壽命,而且可以取得良好的排放效果。
在實(shí)際設(shè)計(jì)中,要想通過(guò)轉(zhuǎn)向機(jī)構(gòu)使所有車輪在每一個(gè)轉(zhuǎn)向角度都能繞同一個(gè)瞬心轉(zhuǎn)動(dòng)是無(wú)法實(shí)現(xiàn)的。通常的做法是依靠經(jīng)驗(yàn)公式來(lái)設(shè)計(jì)。在研究中,則采用優(yōu)化算法,建立目標(biāo)函數(shù),求解出最優(yōu)值。眾多的優(yōu)化研究方法都認(rèn)為,對(duì)于特定轉(zhuǎn)向機(jī)構(gòu),可以將整個(gè)系統(tǒng)拆分成幾個(gè)小系統(tǒng)來(lái)考慮,即每一個(gè)轉(zhuǎn)向橋均可由一個(gè)轉(zhuǎn)向梯形機(jī)構(gòu)來(lái)保證左右轉(zhuǎn)向輪按轉(zhuǎn)向規(guī)律偏轉(zhuǎn),而兩前橋之間的運(yùn)動(dòng)協(xié)調(diào)關(guān)系則需要根據(jù)具體情況設(shè)計(jì)搖臂機(jī)構(gòu)來(lái)加以保證,通常研究者認(rèn)為,梯形機(jī)構(gòu)是無(wú)須進(jìn)行優(yōu)化的,左右車輪的關(guān)系完全可以由獨(dú)立設(shè)計(jì)的梯形機(jī)構(gòu)來(lái)實(shí)現(xiàn)。主要影響多軸轉(zhuǎn)向特性的是搖臂機(jī)構(gòu)。因此大多數(shù)轉(zhuǎn)向機(jī)構(gòu)的研究將搖臂機(jī)構(gòu)作為優(yōu)化設(shè)計(jì)研究的重點(diǎn),并根據(jù)優(yōu)化理論編寫了許多有效的計(jì)算軟件。
在未來(lái),節(jié)能競(jìng)技車的發(fā)展從結(jié)構(gòu)上來(lái)說(shuō),必然是減小汽車在行駛過(guò)程中的自身消耗,通過(guò)以下途徑可以來(lái)實(shí)現(xiàn):減少行駛阻力,通過(guò)改進(jìn)車身造型、改善車身結(jié)構(gòu)來(lái)減少空氣阻力通過(guò)改進(jìn)輪胎結(jié)構(gòu)減少滾動(dòng)阻力;底盤輕量化,采用新型輕質(zhì)材料,通過(guò)可靠性設(shè)計(jì)技術(shù)使整車輕量化,使各總成部件、附件緊湊;提高驅(qū)動(dòng)效率,采用自動(dòng)或無(wú)級(jí)變速系統(tǒng),減少軸承和齒輪的摩擦損失,提高傳動(dòng)系統(tǒng)的傳動(dòng)效率。
1.3 課題的主要研究?jī)?nèi)容
首先在以往參賽賽車的基礎(chǔ)上對(duì)轉(zhuǎn)向系進(jìn)行各關(guān)鍵部件進(jìn)行改進(jìn)設(shè)計(jì),然后根據(jù)大賽要求和發(fā)動(dòng)機(jī)的各項(xiàng)參數(shù)對(duì)傳動(dòng)系的各關(guān)鍵部件進(jìn)行改進(jìn)設(shè)計(jì),最后設(shè)計(jì)匹配發(fā)動(dòng)機(jī)轉(zhuǎn)速和傳動(dòng)系的離合器。
(1)通過(guò)查閱各種資料,了解本設(shè)計(jì)的意義、研究概況和發(fā)展趨勢(shì);
(2)對(duì)轉(zhuǎn)向系、傳動(dòng)系、離合器進(jìn)行設(shè)計(jì)
(3)運(yùn)用CATIA對(duì)傳動(dòng)系、轉(zhuǎn)向系、離合器的各關(guān)鍵部件進(jìn)行三維設(shè)計(jì);
(4)通過(guò)改進(jìn)后的參數(shù)得出結(jié)論。
2 節(jié)能競(jìng)技車的總體設(shè)計(jì)方案確定
2.1 總體布置方案的選擇
在節(jié)能競(jìng)技車總體布置方案確定中應(yīng)充分考慮到節(jié)能競(jìng)技車的的行駛穩(wěn)定性,簡(jiǎn)易性和行駛阻力小。根據(jù)比賽規(guī)則,參賽車輛的車輪必須為3輪以上(包括3輪),并要求其結(jié)構(gòu)必須滿足無(wú)論競(jìng)技車輛停止時(shí)還是行駛時(shí)都能自行站立,這樣便有以下幾種總體布置方案供選擇:
前面兩個(gè)輪后面兩個(gè)兩輪如圖2.1所示,這種布置下無(wú)論是前面兩個(gè)輪驅(qū)動(dòng)還是后面兩個(gè)輪驅(qū)動(dòng)都無(wú)法回避轉(zhuǎn)彎時(shí)兩個(gè)輪的速度差問(wèn)題,也就是說(shuō)需要設(shè)計(jì)一個(gè)非常小的差速器且滿足摩托車發(fā)動(dòng)機(jī)經(jīng)過(guò)變速后輸出的轉(zhuǎn)矩。需要銜接高精度的差速器和半軸。即使做出來(lái)它的傳動(dòng)效率的損失相比三輪來(lái)說(shuō)也是非常大的,同時(shí)四輪的轉(zhuǎn)向和行駛阻力也是比三輪車大的,總的來(lái)說(shuō)四輪布置除了穩(wěn)定性好之外沒(méi)有其他優(yōu)勢(shì)。
圖2.1 前兩輪后兩輪
如圖2.1所示,這種布置形式類似于平時(shí)所見的三輪車,其他隊(duì)伍也有使用并也取得比較好的成績(jī)。這種布置形式有如下優(yōu)點(diǎn):
(1) 轉(zhuǎn)向輕便;
(2) 正因?yàn)楹驼蛉営泻芏嘞嗨?,所以在?gòu)件的采購(gòu)和加工方面相對(duì)方便;
(3) 不需要設(shè)置車輪定位方案如內(nèi)傾,外傾,前束,后傾等。
缺點(diǎn):
(1) 在高速下容易翻車,穩(wěn)定性不好;
(2) 在加工工藝上要求較高;
(3) 如果發(fā)動(dòng)機(jī)前置前驅(qū)會(huì)影響駕駛員的視野,而且需要差速器等機(jī)構(gòu);
(4) 如果采用后輪驅(qū)動(dòng)會(huì)和兩輪前驅(qū)的問(wèn)題一樣;
(5) 運(yùn)用空氣動(dòng)力學(xué)分析最好的風(fēng)阻系數(shù)應(yīng)該時(shí)仿水滴型這樣的前一輪布置方式很難實(shí)現(xiàn)。
圖2.2 前一輪后兩輪
前面一個(gè)輪后面一個(gè)輪,外加兩個(gè)輔助輪,如圖2.3。根據(jù)節(jié)能競(jìng)技大賽的賽規(guī)則,在車輛行駛時(shí),必須要有三個(gè)以及三個(gè)車輪以上接觸地面,這種布置形式在比賽中極有可能是兩個(gè)車輪與地面接觸,有可能被判違規(guī),所以放棄這一布置形式。
圖2.3 前一輪后一輪加倆輔助輪
前面兩個(gè)輪后面一個(gè)輪,這種布置形式也被稱為逆三輪布置,絕大多數(shù)參賽隊(duì)伍中選擇這種布置形式,也就是說(shuō)在實(shí)際比賽中已經(jīng)被證實(shí)最好的布置形式。在理論上它有如下的優(yōu)點(diǎn):
(1) 直線行駛平穩(wěn);
(2) 后輪驅(qū)動(dòng)不需要在設(shè)計(jì)差速器,傳動(dòng)效率高;
(3) 行駛阻力與四輪布置相比較要小的多;
(4) 轉(zhuǎn)彎時(shí)前軸所受側(cè)向力比單輪布置小的多;
(5) 空氣動(dòng)力學(xué)外形可以得到保證。
圖2.4 前兩輪后一輪
2.2 車架材料的確定
車架的輕重對(duì)油料的消耗有直接的影響,但從安全和順利完成比賽的角度來(lái)說(shuō)強(qiáng)度越高越好。這樣就需要在這其中做出取舍,經(jīng)考察可供挑選的材料有:鋼管,鋁管,鈦合金管材,碳纖維等。但考慮到資金問(wèn)題,最后選擇鋁作為車架的主要材料,鋁型材料有如下優(yōu)點(diǎn):
(1) 鋁型材料的密度是鋼型材的二分之一,相同體積的材料比鋼材輕,同時(shí)在結(jié)構(gòu)設(shè)計(jì)合理的情況下車架的強(qiáng)度足夠;
(2) 現(xiàn)鋁型材加工方便,可以用鋁焊,氬弧焊等;
(3) 鋁材料的價(jià)格相對(duì)于其他高強(qiáng)度的復(fù)合材料要低,能大大降低制作成本。
2.3 車輛驅(qū)動(dòng)方式的確定
由于采用了前面兩個(gè)輪后面一個(gè)輪的整體布置形式,故驅(qū)動(dòng)方式定為發(fā)動(dòng)機(jī)后置后驅(qū),這樣駕駛?cè)藛T的視野可以得到保障,也不需要安裝差速器同時(shí)也可以對(duì)質(zhì)心的位置進(jìn)行配重(駕駛?cè)藛T前置),制作難度也相對(duì)降低。
2.4 車輛轉(zhuǎn)向形式的確定
因?yàn)檐囕v為比賽車輛,應(yīng)該同時(shí)考慮轉(zhuǎn)向形式的輕便性,靈活性,加工簡(jiǎn)易性和比賽場(chǎng)地的因素
中央支撐式,如圖。這種方式結(jié)構(gòu)簡(jiǎn)單,但把整個(gè)車軸作為轉(zhuǎn)向裝置使得轉(zhuǎn)向笨重。
圖2.5 中央支撐式
梯形結(jié)構(gòu)的阿卡曼式,如圖2.6所示。其中轉(zhuǎn)向臂的角度能在理想情況下能隨時(shí)使前輪的中心與后輪的中心連成線,此機(jī)構(gòu)轉(zhuǎn)向相對(duì)輕便,靈活。比較兩種機(jī)構(gòu),確定阿卡曼式為最終轉(zhuǎn)向形式。
圖2.6 阿卡曼式
圖2.7 阿卡曼式
2.5 車輛車輪的選擇
在競(jìng)技車設(shè)計(jì)中,車輪的選擇選擇至關(guān)重要,因?yàn)樗鼘?duì)車輛的滾動(dòng)阻力,迎風(fēng)面積,操作穩(wěn)定性等等都有一定的影響。
首先選擇車輪尺寸,它直接影響到車輪的迎風(fēng)面積,轉(zhuǎn)動(dòng)慣量,接近角。大車輪穩(wěn)定性較高,但滾動(dòng)阻力大。小車輪滾動(dòng)阻力小,靈活,但穩(wěn)定性低。經(jīng)過(guò)比較選擇20英寸自行車專用輪。
圖2.8 自行車在轉(zhuǎn)彎時(shí)離心力,重力,合力示意圖
從圖中我們可以看出,自行車轉(zhuǎn)彎時(shí),重力與離心力的合力與車輪的旋轉(zhuǎn)面平行。而競(jìng)技車不可能傾斜,所以側(cè)向力會(huì)對(duì)車輪有影響,進(jìn)而影響到車軸,所以對(duì)三根車軸也要有強(qiáng)度上的考慮。
2.6 車架參數(shù)的確定和計(jì)算
2.6.1 參數(shù)的影響
節(jié)能競(jìng)技車的總體布置的主要參數(shù)包括車的長(zhǎng)度、寬度、高度、離地間隙、輪距、軸距等,以及發(fā)動(dòng)機(jī)的額定功率,變速器的最大最小傳動(dòng)比。整車的主要尺寸對(duì)整車的性能有如下影響:
軸距:對(duì)總長(zhǎng)、最小轉(zhuǎn)彎半徑、整備質(zhì)量以及每根軸的載荷分配有影響。假如輪距過(guò)短,這會(huì)使得車輛的軸荷在剎車、爬坡、加速時(shí)變化過(guò)大,進(jìn)而使得競(jìng)技車的操作性和制動(dòng)性變壞,縱向角振動(dòng)變大。
輪距:對(duì)競(jìng)技車的寬度、總重量、側(cè)傾剛度、最小轉(zhuǎn)彎半徑有影響,輪距大對(duì)整車剛度的上升,橫向穩(wěn)定性的變好有利,但輪距不宜過(guò)大。
技能競(jìng)技車對(duì)整車的設(shè)計(jì)有如下要求,如表2.1所示
表2.1 車身整體要求
全高
1.8以下
排氣管
超出車身10com以上
軸距
1.0以上
全長(zhǎng)
3.5以下
輪距
0.5以上
倒視鏡
看到車尾其面積小于40com
全寬
2.5以下
座椅
要求臀部和地面之間有隔板
在明確了總體要求及原有競(jìng)技車的基礎(chǔ)上,對(duì)計(jì)算的總體思路有了大致的方向。在保證駕駛?cè)藛T安全性,舒適性的基礎(chǔ)上,對(duì)轉(zhuǎn)向系,傳動(dòng)系,離合器進(jìn)行改進(jìn),同時(shí)保持整車的行駛性能。
2.6.2 轉(zhuǎn)彎特性相關(guān)參數(shù)計(jì)算
為了得到最好的輪距和軸距,對(duì)轉(zhuǎn)彎特性進(jìn)行計(jì)算。轉(zhuǎn)向梯形的作用是:車輛在轉(zhuǎn)彎時(shí),保證車輛的所有車輪能繞同一瞬時(shí)轉(zhuǎn)向中心運(yùn)動(dòng),同時(shí)在不同半徑的圓周上做無(wú)滑動(dòng)的純滾動(dòng)。為了滿足兩軸車在轉(zhuǎn)向時(shí)車輪做純滾動(dòng)(不考慮輪胎的側(cè)向偏離),轉(zhuǎn)向梯形應(yīng)保證內(nèi)、外轉(zhuǎn)向車輪的理想轉(zhuǎn)角關(guān)系如圖2.9所示。表2.2記錄了競(jìng)技車寬度與內(nèi)偏角的關(guān)系。即轉(zhuǎn)彎空間隨內(nèi)偏角增大而增大。
圖2.9 轉(zhuǎn)彎特性簡(jiǎn)圖
(2.1)
(2.2)
式中:—兩注銷間的距離
—軸距
—前輪內(nèi)偏角
—前輪外偏角
—最小轉(zhuǎn)彎半徑
表2.2 內(nèi)偏角與軸距的關(guān)系[1]
L(mm)
α
1500
1550
1600
車輪前端掃過(guò)距離
10°
R=8640
R=8929
R=9217
M=40
11°
R=7640
R=8129
R=8385
M=45
12°
R=7210
R=7930
R=8123
M=52
13°
R=6880
R=7124
R=7455
M=56
14°
R=6200
R=6621
R=6812
M=60
15°
R=6100
R=6132
R=6322
M=62
通過(guò)計(jì)算可知,當(dāng)外偏角變大,車輪與車架的距離就越遠(yuǎn)。而內(nèi)外偏角之差與的值相關(guān)[1],所以初步將輪距定為600mm。
2.6.3 質(zhì)心幾何坐標(biāo)的測(cè)量[2]
為了精確的確定節(jié)能競(jìng)技車的各個(gè)尺寸,質(zhì)心測(cè)量必不可少。要測(cè)量的參量如下:
——質(zhì)心距前軸的水平距離
——質(zhì)心距后軸的水平距離
——質(zhì)心到左前輪接地點(diǎn)的水平距離
——質(zhì)心到右前輪的水平距離
——質(zhì)心到地面高度
在水平面上,假設(shè)質(zhì)心到前軸的距離為ɑ,到后軸為b??闪谐鱿旅娣匠瘫磉_(dá)其平衡關(guān)系:
(2.3)
式中:—地面對(duì)前軸的反作用力
—地面對(duì)后軸的反作用力
—前軸載荷
—后軸載荷
測(cè)量原理:質(zhì)量反應(yīng)法。
測(cè)量工具:磅秤或車輛負(fù)荷計(jì),精度,卷尺精度。
測(cè)量步驟:(1)分別將前軸、后軸分別放到同一規(guī)格的臺(tái)秤上,并保持在同一水平面上。在前軸、后軸等高處分別確定記號(hào)點(diǎn)。測(cè)后軸重(或前軸重),值,每個(gè)輪的靜載半徑。(2)抬高前軸或后軸,在縱傾角11°,18°,20°的位置測(cè)前軸或后軸重和抬高高度。質(zhì)心高度計(jì)算式:
(2.4)
式中:—車輛被放置不同位置的質(zhì)心高度
—車輛各輪靜載半徑均值
—汽車在特定α值處,未被抬高車軸重量增量
—車輛總重
—軸距
—車輛在特定α值處,前后軸記號(hào)點(diǎn)離地高度增量均值絕對(duì)值之和
結(jié)合公式2.5
(2.5)
經(jīng)過(guò)測(cè)量得出合理數(shù)據(jù),質(zhì)心位置計(jì)算,由式(2.2)(2.3)可得:
G=890+330N a+b=1550mm
所以:ɑ=1131mm b=419mm
2.6.4 抗側(cè)翻計(jì)算
側(cè)翻是指車輛在一定速度過(guò)彎時(shí),在離心力的作用下,外側(cè)車輪附著力減少直至為零。當(dāng)離心力矩時(shí)側(cè)翻,時(shí)穩(wěn)定(A為轉(zhuǎn)彎時(shí)內(nèi)側(cè)輪接地點(diǎn)與中心的豎直線的距離)。其中F為離心力,公式如下:
` (2.6)
由于每個(gè)人的體態(tài)分布不均,我們不能準(zhǔn)確測(cè)出質(zhì)心位置。本次設(shè)計(jì)假設(shè)質(zhì)心位置不變,通過(guò)改變競(jìng)技車的輪距、軸距來(lái)增加抗側(cè)翻性。但輪距和軸距不能無(wú)限制增加,所以我們分析其關(guān)系,可以發(fā)現(xiàn)輪軸距、質(zhì)心與允許最大過(guò)彎速度的關(guān)系如表2.3。即提高抗側(cè)翻性的方法可以是:降低車速和質(zhì)心高度。
表2.3 允許最大過(guò)彎速度與質(zhì)心高度關(guān)系[2]
h
h
V(km/h)
輪距K
600
650
700
750
800
20
14.2
14.4
14.7
15.0
15.2
21
13.8
14.1
14.3
14.6
14.9
注:v為過(guò)彎速度 軸距L=1500mm 單位(mm)
h
h
V(km/h)
輪距K
600
650
700
750
800
20
14.5
14.7
14.9
15.1
15.3
21
14.1
14.3
14.5
14.7
14.9
注:軸距L=1550mm 單位(mm)
h
h
V(km/h)
輪距K
600
650
700
750
800
20
16.0
16.8
15.2
15.5
15.7
21
15.6
14.4
14.8
15.1
15.3
注:軸距L=1600mm 單位(mm)
2.7 各總成的相關(guān)計(jì)算
2.7.1發(fā)動(dòng)機(jī)最大功率及其轉(zhuǎn)速
因?yàn)榘l(fā)動(dòng)機(jī)功率對(duì)后面的傳動(dòng)系,離合器的設(shè)計(jì)起著不可或缺的作用,雖然本田給出了額定功率,但由于比賽不需要高速,所以發(fā)動(dòng)機(jī)不會(huì)達(dá)到原有功率。計(jì)算公式如下:
(2.7)
式中:—傳動(dòng)系效率
G—車輛總重
—滾動(dòng)阻力系數(shù)(由實(shí)驗(yàn)測(cè)定)
—風(fēng)阻系數(shù)
A—迎風(fēng)面積
—最高車速
根據(jù)目標(biāo)參數(shù): G=1000N CD=0.2 A=0.28m2
求得:Pmax=6.22kw
2.7.2 傳動(dòng)比的選擇
根據(jù)其他成績(jī)較好的比賽隊(duì)伍的競(jìng)技車對(duì)變速器的改進(jìn)和查閱資料,我們知道,發(fā)動(dòng)機(jī)油耗與檔位的關(guān)系。本次設(shè)計(jì)認(rèn)為拆除一檔二檔三檔,以減輕重量,變速機(jī)構(gòu)只采用四檔傳動(dòng)。為了使發(fā)動(dòng)機(jī)能夠運(yùn)行在5000r/min的經(jīng)濟(jì)轉(zhuǎn)速,且平均車速為30km/h。重新計(jì)算傳動(dòng)比,公式如下:
(2.8)
式中:—車速(km/h)
—發(fā)動(dòng)機(jī)轉(zhuǎn)速(r/min)
—車輪半徑(m)
—總傳動(dòng)比
r=0.25m。所以。
為使發(fā)動(dòng)機(jī)工作在5000r/min,車速在20-40km/h反向驗(yàn)證:此時(shí)i=11.85
當(dāng)=20km/h時(shí),n=4000r/min;
當(dāng)=30km/h時(shí),n=5000r/min;
當(dāng)=40km/h時(shí),n=8000r/min,
由以上數(shù)據(jù)可以得出:車速范圍,轉(zhuǎn)速范圍,傳動(dòng)比11.85。
2.7.3 發(fā)動(dòng)機(jī)的最大扭矩
發(fā)動(dòng)機(jī)的功率對(duì)以節(jié)油為本次設(shè)計(jì)為最終目的有著至關(guān)重要的作用,發(fā)動(dòng)機(jī)的最大扭矩可用式2.9計(jì)算。
(2.9)
式中:Mmax——發(fā)動(dòng)機(jī)最大扭矩
α——扭矩適應(yīng)系數(shù)
Pmax——最大功率
np——發(fā)動(dòng)機(jī)最大轉(zhuǎn)速
取ɑ=1.2解得Mmax=6.45N·m
2.8 整體參數(shù)的確定
經(jīng)測(cè)量發(fā)現(xiàn)155-160cm的人躺下來(lái),膝蓋高度在250-270mm之間,所以龍門高度設(shè)為300mm,在前面的計(jì)算和以往競(jìng)技車的基礎(chǔ)上,本次設(shè)計(jì)整車關(guān)鍵尺寸重量參數(shù)如表2.4所示。最后的車架CATIA圖由圖2.10ɑ、b所示
表2.4 整體尺寸重量參數(shù)
基本形式
單排單座
驅(qū)動(dòng)形式
發(fā)動(dòng)機(jī)后置后驅(qū)
長(zhǎng)
2700
寬
400
高
550
前輪距/軸距
500/1550
整備質(zhì)量
50
滿載質(zhì)量
50
空載前后軸荷
25.36(50.1%) 24.53(49.5%)
滿載前后軸荷
45.6(54.3%) 45.6(45.6%)
圖2.10 車架ɑ
圖2.10 車架b
2.9 本章小結(jié)
(1) 確定了整體布置形式;
(2) 確定了鋁型材作為車架材料;
(3) 確定了自行車輪型號(hào);
(4) 確定了轉(zhuǎn)向形式為阿卡曼式轉(zhuǎn)向機(jī)構(gòu);
(5) 確定了競(jìng)技車車架的布置尺寸;
(6) 確定了最大扭矩,最大功率;初步確定了傳動(dòng)比;用CATIA繪制了競(jìng)技車的車架圖。
3 轉(zhuǎn)向機(jī)構(gòu)設(shè)計(jì)
3.1 汽車轉(zhuǎn)向梯形機(jī)構(gòu)設(shè)計(jì)理論
轉(zhuǎn)向梯形的作用是:車輛在轉(zhuǎn)彎時(shí),保證車輛的所有車輪能繞同一瞬時(shí)轉(zhuǎn)向中心運(yùn)動(dòng),同時(shí)在不同半徑的圓周上做無(wú)滑動(dòng)的純滾動(dòng)。為了滿足兩軸車在轉(zhuǎn)向時(shí)車輪做純滾動(dòng)(不考慮輪胎的側(cè)向偏離),轉(zhuǎn)向梯形應(yīng)保證內(nèi)、外轉(zhuǎn)向車輪的理想轉(zhuǎn)角關(guān)系如圖5.1所示。
圖3.1 理想轉(zhuǎn)角關(guān)系
由式3.1決定:
(3.1)
式中:—外轉(zhuǎn)向輪轉(zhuǎn)角;
—內(nèi)轉(zhuǎn)向輪轉(zhuǎn)角;
—兩主銷中心線與地面間的距離;
—軸距。
本次設(shè)計(jì)的轉(zhuǎn)向系統(tǒng)中采用的是整體式,因此只對(duì)整體式的轉(zhuǎn)向梯形進(jìn)行簡(jiǎn)單介紹。實(shí)際的設(shè)計(jì)中不能使得此機(jī)構(gòu)完全滿足(3.1)式,只能在工程上接近它。即(3.1)式中的不在是汽車的軸距,而是,如圖3.2。假設(shè),則該轉(zhuǎn)向梯形機(jī)構(gòu)就越能精確的滿足式(3.1),轉(zhuǎn)向也會(huì)越平順。
(1) (2)
圖3.2
內(nèi)、外轉(zhuǎn)向輪的理想轉(zhuǎn)角關(guān)系;(2)內(nèi)、外轉(zhuǎn)向輪的實(shí)際轉(zhuǎn)角關(guān)系
在圖3.2(2)中的三角形OAB可得
(3.2)
轉(zhuǎn)向梯形機(jī)構(gòu)的主要參數(shù)有:
—兩主銷中心線與地面間的距離;
—轉(zhuǎn)向橫拉桿兩端中心的距離;
—轉(zhuǎn)向臂長(zhǎng);
—梯形底角。如圖3.3所示。
圖3.3 轉(zhuǎn)向梯形簡(jiǎn)圖與和的關(guān)系[3]
1: 2: 3:
根據(jù)已有競(jìng)技車的總體布置,可先找出競(jìng)技車的軸距L和主銷間距k。在0.12,0.14,0.16在圖4.3上找出x,則有
(3.3)
當(dāng)轉(zhuǎn)向橫拉桿前置時(shí),則
在確定 和后,根據(jù)圖3.3的所示的的取值,由式(3.3)可得出轉(zhuǎn)向梯形的三種尺寸方案,然后用圖解法,每個(gè)對(duì)應(yīng)一個(gè),進(jìn)而得出值。接著在把三種梯形方案的隨的變化曲線及=1的直線繪制在同一圖紙上。最終使用最多的下其值最接近=1直線的方案為最佳方案。
3.2 轉(zhuǎn)向梯形參數(shù)確定
參照四輪車轉(zhuǎn)向系統(tǒng)設(shè)計(jì),假設(shè)把正常車輛的后倆輪合并為一輪,同時(shí)為了使橫拉桿不受壓縮力,所以本次設(shè)計(jì)把轉(zhuǎn)向梯形前置,如圖3.4所示
圖3.4 轉(zhuǎn)向機(jī)構(gòu)簡(jiǎn)圖
根據(jù)公式:
(3.4)
L=1550mm,給出y值,結(jié)合上訴方法和第二章參數(shù),確定的最合理方案,利用公式(3.4)計(jì)算出節(jié)能
表3.1 轉(zhuǎn)向系各參數(shù)
參數(shù)
最終設(shè)計(jì)參數(shù)值
n
692mm
m
90mm
K
375mm
α
60°
x
2/3
3.3 轉(zhuǎn)向阻力距計(jì)算
假定駕駛員的體重為50kg,車重50kg。對(duì)原地轉(zhuǎn)向力矩計(jì)算公式如下:
(3.5)
式中:—輪胎與地面的滑動(dòng)摩擦系數(shù),取0.7;
—轉(zhuǎn)向軸負(fù)荷,近似取100N;
—胎壓,自行車胎壓范圍,為減小滾動(dòng)阻力,這里取400KPa;
帶入公式得:Mr=368.9(N·mm)。
3.4 轉(zhuǎn)向裝置的設(shè)計(jì)計(jì)算
在以往大賽的參賽車的基礎(chǔ)上,從競(jìng)技車的操作輕便性、靈活性和整車的設(shè)計(jì)布局考慮,初設(shè)轉(zhuǎn)向裝置臂長(zhǎng)160mm。作用在車把手上的力由現(xiàn)有方向盤的計(jì)算公式:
(3.6)
式中:L1為轉(zhuǎn)向搖臂長(zhǎng)=90mm;
L2為轉(zhuǎn)向節(jié)臂長(zhǎng)=175mm;
Dsw為車把長(zhǎng)度=160mm;
為轉(zhuǎn)向器角傳動(dòng)比,在車上未使用轉(zhuǎn)向器故取1。
帶入公式得:Fh≈15N,符合實(shí)際。如圖3.5所示。
圖3.5 轉(zhuǎn)向器
3.4 轉(zhuǎn)向梯形的仿真
仿真能直觀的發(fā)現(xiàn)機(jī)構(gòu)之間的位置關(guān)系。所以這里利用CATIA對(duì)轉(zhuǎn)向機(jī)構(gòu)進(jìn)三維行實(shí)體建模,得到的總裝圖如下圖3.6所示。然后對(duì)轉(zhuǎn)向機(jī)構(gòu)進(jìn)行運(yùn)動(dòng)仿真如圖3.7所示。
圖3.6 轉(zhuǎn)向機(jī)構(gòu)裝配圖
圖3.7 轉(zhuǎn)向機(jī)構(gòu)仿真
通過(guò)CAITA對(duì)轉(zhuǎn)向機(jī)構(gòu)的運(yùn)動(dòng)仿真,我們可以看到,本次設(shè)計(jì)的轉(zhuǎn)向機(jī)構(gòu)轉(zhuǎn)向流暢,沒(méi)有出現(xiàn)機(jī)構(gòu)鎖死和運(yùn)動(dòng)干涉的問(wèn)題,這就驗(yàn)證了轉(zhuǎn)向機(jī)構(gòu)的合理性和可實(shí)現(xiàn)性。
3.5 本章小結(jié)
(1) 確定了轉(zhuǎn)向機(jī)構(gòu)的各個(gè)參數(shù);
(2) 繪制出了轉(zhuǎn)向機(jī)構(gòu)的CATIA裝配圖,并進(jìn)行了仿真。
4 傳動(dòng)系設(shè)計(jì)
4.1 設(shè)計(jì)理論
節(jié)能競(jìng)技車動(dòng)力傳動(dòng)系統(tǒng)包括:發(fā)動(dòng)機(jī),主動(dòng)輪,鏈條,從動(dòng)輪以及離合器。根據(jù)現(xiàn)有競(jìng)技車傳動(dòng)系的設(shè)計(jì)。傳動(dòng)系的設(shè)計(jì)要求工作可靠,兩軸距離相對(duì)較遠(yuǎn)。本次設(shè)計(jì)選用鏈傳動(dòng),鏈傳動(dòng)具有如下優(yōu)點(diǎn):
鏈傳動(dòng)與帶傳動(dòng)相比沒(méi)有彈性滑動(dòng)和整體打滑現(xiàn)象,因而使平均傳動(dòng)比的準(zhǔn)確性得到保證;
鏈條不需要像帶那樣張的很緊,所以只有較小的徑向壓力作用在軸上;
在同樣條件下,由于鏈條采用金屬材質(zhì),其整體尺寸較小,結(jié)構(gòu)較為緊湊;
鏈傳動(dòng)與齒輪傳動(dòng)相比,成本也低。
4.2 實(shí)際傳動(dòng)比的確定
根據(jù)以往大賽比賽經(jīng)驗(yàn),在實(shí)驗(yàn)的基礎(chǔ)上,本次設(shè)計(jì)選用兩組鏈傳動(dòng)做對(duì)比試驗(yàn)[7]:
第一組:發(fā)動(dòng)機(jī)配套原裝傳動(dòng)鏈,主動(dòng)鏈輪齒數(shù)14,從動(dòng)鏈輪齒數(shù)36。
第二組:根據(jù)競(jìng)技車載荷和行駛狀況,主動(dòng)鏈輪齒數(shù)14,從動(dòng)鏈輪齒數(shù)29。
試驗(yàn)結(jié)果如下表4.1所示
表4.1 試驗(yàn)結(jié)果[7]
主從齒數(shù)比
行駛方案(km/h)
檔位
成績(jī)(km/h)
14:36
40(熄火)—15(啟動(dòng))
無(wú)車身四檔
182
179
204
190
211
14:29
251
243
247
270
264
表4.2 變速機(jī)構(gòu)格擋傳動(dòng)比[7]
變速機(jī)構(gòu)
變速方式
四檔常嚙合循環(huán)變擋
曲軸至主軸減速比
3.35(67/20)
主副軸減速比
一檔
2.5(35/14)
二檔
1.55(31/20)
三檔
1.15(23/20)
四檔
0.923(24/26)
由試驗(yàn)結(jié)果明顯看出,后者成績(jī)更好。結(jié)合變速結(jié)構(gòu)各檔傳動(dòng)比表4.1所示,由此可以得出總傳動(dòng)比3.35×0.923×29/14=6.4。
4.3 鏈傳動(dòng)的選取和設(shè)計(jì)計(jì)算
4.3.1鏈傳動(dòng)種類的選取
由于傳遞功率在100KW以下,鏈速?zèng)]超過(guò)15Km/h。所以選用滾子鏈傳動(dòng)。
4.3.2設(shè)計(jì)計(jì)算
確定傳動(dòng)比:
(4.1)
當(dāng)量的單排鏈計(jì)算功率Pca的計(jì)算
(4.2)
式中:KA—工況系數(shù),這里取KA=1.1;
KZ—主動(dòng)鏈輪齒數(shù)系數(shù),這里取KZ=1.9;
Kp—多排鏈系數(shù),這里單排取KP=1;
P—傳遞功率(Kw)
4.3.3確定鏈條型號(hào)和節(jié)距p
鏈條型號(hào)根據(jù)計(jì)算功率、額定功率以及主動(dòng)鏈輪轉(zhuǎn)速。在查表時(shí)應(yīng)該保證:
(4.3)
查表可知鏈條型號(hào)取08B,節(jié)距為12.7mm。
鏈節(jié)數(shù)和中心距的計(jì)算
初選中心距,由式4.4計(jì)算鏈節(jié)數(shù)Lp0。
(4.4)
避免使用過(guò)度鏈節(jié),鏈節(jié)數(shù)圓整為74。
鏈傳動(dòng)最大中心距為:
(4.5)
式中:為中心距計(jì)算系數(shù),這里取=0.24931
4.4 本章小結(jié)
(1)確定了鏈傳動(dòng)的傳動(dòng)形式,并得出了鏈接節(jié)距,鏈條型號(hào),鏈輪等的相關(guān)參數(shù);
(2)繪制出了鏈傳動(dòng)的最終鏈條鏈輪裝配。如圖4.1所示。
圖4.1
5 離合器的設(shè)計(jì)
5.1 離合器的重新設(shè)計(jì)和選擇
根據(jù)上述數(shù)據(jù)我們可以知道,競(jìng)技車的車速要求在40Km/h以下,競(jìng)技車的發(fā)動(dòng)機(jī)在原有離合器的配合下不能達(dá)到最省油的狀態(tài),所以這里對(duì)離合器進(jìn)行重新設(shè)計(jì)。本次設(shè)計(jì)選取離合器為干式摩擦離合器,它的優(yōu)點(diǎn)如下:
(1)結(jié)構(gòu)簡(jiǎn)單緊湊,能減少競(jìng)技車的重量,有利于省油;
(2)通風(fēng)散熱性能好;
(3)此彈簧有較理想的非線性特性;
(4)壓力分布均勻,磨損均勻。
5.2 離合器需要傳遞扭矩的計(jì)算
已知離合器的設(shè)計(jì)需要滿足發(fā)動(dòng)機(jī)的功率6.22Kw。離合器需要傳遞的扭矩的計(jì)算公式如6.1所示
(5.1)
式中:—扭矩儲(chǔ)備系數(shù),這里取,結(jié)合第三章的數(shù)據(jù),通過(guò)計(jì)算可得Mf=98.5N·m。
5.3 摩擦片參數(shù)與尺寸計(jì)算
5.3.1參數(shù)的選定
摩擦盤的平均工作面積公式計(jì)算為(d為輸出軸直徑為32mm),工作面外徑為,工作面內(nèi)徑,由經(jīng)驗(yàn)和實(shí)際發(fā)動(dòng)機(jī)情況(系數(shù)取3)計(jì)算的到D1=120mm,D2=72mm。
摩擦片寬度=24mm,=96mm,摩擦片分開時(shí)間隙取1mm
5.3.2參數(shù)計(jì)算
(1) 計(jì)算轉(zhuǎn)矩根據(jù)公式:
(5.2)
其中:—為最大轉(zhuǎn)矩
—離合器工況系數(shù),由《機(jī)械手冊(cè)》查得=1.2
—離合器結(jié)合頻率系數(shù),由《機(jī)械手冊(cè)》查得=1
—離合器滑動(dòng)系數(shù),由《機(jī)械手冊(cè)》查得=0.924
代入公式可得Te=102.6N·m。
壓緊力計(jì)算
(5.3)
其中:—摩擦面系數(shù),本次設(shè)計(jì)采用黃銅為材料,故=0.25
—摩擦面對(duì)數(shù),m=3
代入后Q=5689N
參數(shù)校核
①許用傳遞轉(zhuǎn)矩應(yīng)滿足公式:
(5.4)
其中:—摩擦片修正系數(shù)取
代入?yún)?shù)可得Tep=112.01N·m≧Te。設(shè)計(jì)滿足條件
②摩擦面壓強(qiáng)應(yīng)滿足公式:
(5.5)
代入?yún)?shù)可得P=38.09N·cm-2,查手冊(cè)可知黃銅需用壓強(qiáng)20~40N·cm-2.,因此滿足校核條件。
5.4 離合器彈簧與尺寸計(jì)算
5.4.1原始條件
工作載荷,工作行程,端部并緊,磨平,兩端各一支撐圈,碳素彈簧鋼絲C級(jí)。
5.4.2參數(shù)計(jì)算
彈簧剛度: (5.6)
極限載荷Pf取5689N,根據(jù)有關(guān)參數(shù)可查的表5.1。
表5.1
d
D
Pf
f
P
10mm
40mm
6432N
2.991
1543
有效圈數(shù):=3.22圈,這里取標(biāo)準(zhǔn)值3.25。
總?cè)?shù):n總=n+2=5.25
彈簧剛度:
最大變形量:
節(jié)距:
自由高度:,這里取標(biāo)準(zhǔn)值H=58mm
彈簧外徑:
彈簧內(nèi)徑:
螺旋角:°
展開長(zhǎng)度:
5.5 離合器其他參數(shù)與尺寸的選用
軸端面螺栓選M6
墊片:平墊圈C級(jí)
5.6 設(shè)計(jì)小結(jié)
結(jié)合相關(guān)數(shù)據(jù),利用CATIA繪制出離合器裝配圖如下圖5.1所示。
圖5.1 離合器裝配圖
6 結(jié) 論
本文在本田節(jié)能競(jìng)技大賽和現(xiàn)有節(jié)能競(jìng)技車的基礎(chǔ)上,通過(guò)廣泛的查閱文獻(xiàn),對(duì)本校的節(jié)能競(jìng)技車的轉(zhuǎn)向系,傳動(dòng)系,離合器進(jìn)行了改進(jìn)設(shè)計(jì)。利用CATIA對(duì)這幾部分進(jìn)行了三維建模,繪制出了整個(gè)節(jié)能競(jìng)技車的總裝圖。同時(shí)利用CATIA對(duì)轉(zhuǎn)向系進(jìn)行運(yùn)動(dòng)仿真,通過(guò)不斷修改設(shè)計(jì)參數(shù),使得轉(zhuǎn)向系運(yùn)動(dòng)沒(méi)有干涉,運(yùn)行流暢。通過(guò)本次設(shè)計(jì),深刻的體會(huì)到CATIA三維建模和仿真相結(jié)合解決工程問(wèn)題優(yōu)勢(shì)。本次設(shè)計(jì)主要設(shè)計(jì)結(jié)果如下:
(1) 得出了前兩輪后一輪,發(fā)動(dòng)機(jī)后置后驅(qū)的布置形式,鋁型材作為車架材料,自行車輪20英寸,轉(zhuǎn)向形式為阿卡曼式轉(zhuǎn)向機(jī)構(gòu)。
(2) 得出了了競(jìng)技車車架的布置尺寸,確定了最大扭矩,最大功率;用CATIA繪制了競(jìng)技車的車架圖。
(3) 得出了轉(zhuǎn)向系的各參數(shù)值和裝配圖。得出了鏈傳動(dòng)的傳動(dòng)形式,型號(hào)為08B并繪制出了鏈傳動(dòng)的裝配圖。
(4) 得出了離合器為干式摩擦離合器并繪制了裝配圖。
結(jié)論分析:本次設(shè)計(jì)各部件均能在保證競(jìng)技車復(fù)合大賽要求和行駛安全的前提下,對(duì)競(jìng)技車的省油效果有很大改觀。
本次設(shè)計(jì)的欠缺:
由于本人對(duì)CATIA的運(yùn)用不是那么熟練,在三維建模和仿真上花了太多時(shí)間,沒(méi)能把傳動(dòng)系的仿真做出來(lái)。
- 29 -
參 考 文 獻(xiàn)
[1]張建雄. 競(jìng)技車轉(zhuǎn)向系的工作原理及故障分析[J]. 民營(yíng)科技,2015,11:45-46.
[2]馮帆,劉優(yōu). 競(jìng)技車轉(zhuǎn)向系硬點(diǎn)布置[J]. 科技風(fēng),2016,08:175-177.
[3]趙寶平,劉曉雪,鄧飛虎. 電子助力轉(zhuǎn)向系及四輪轉(zhuǎn)向系淺析(一)[J]. 汽車維修與保養(yǎng),2016,08:103-105.
[4]趙國(guó)才. 汽車節(jié)能技術(shù)路徑分析[J]. 西南師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,12:117-121.
[5]徐青龍,禚寶國(guó),林歡,王偉. 基于MATLAB的汽車電動(dòng)助力轉(zhuǎn)向系統(tǒng)轉(zhuǎn)向特性分析[J]. 科技信息,2014,04:54-55.
[6]莫易敏,田蜜. 微型汽車傳動(dòng)系統(tǒng)功率損失建模計(jì)算[J]. 機(jī)械傳動(dòng),2013,02:47-49.
[7]殷文芬. 競(jìng)技車傳動(dòng)系統(tǒng)參數(shù)的優(yōu)化選擇[J]. 時(shí)代農(nóng)機(jī),2016,02:32-34.
[8]于勝武. 競(jìng)技車傳動(dòng)系統(tǒng)構(gòu)造與工作原理分析[J]. 產(chǎn)業(yè)與科技論壇,2012,23:51-52.
[9]王曉林,于士軍. 輕型載貨汽車離合器的設(shè)計(jì)[J]. 工程塑料應(yīng)用,2016,03:53-55.
[10]薛殿倫,李笛,鐘鑫,劉愷. 不同車輛載荷的AMT車輛起步過(guò)程離合器控制[J]. 機(jī)械傳動(dòng),2013,10:126-128+144.
[11]Investigation of Energy Efficient Power Coupling Steering System for Dual Motors Drive High Speed Tracked Vehicle. December 2016,Volume 104,Issue 3,pp372–377.
[12]Rabiatuladawiyah Abu Hanifah,Siti Fauziah Toha.Power reduction optimization with swarm based technique in electric power assist steering system.May 2016,Volume 102,Issue 4,pp 444–452.
[13]Vivan Govender,Steffen Müller.Modelling and Position Control of an Electric Power Steering System.june 2016,Volume 49, Issue 11, pp312–318.
[14]R. Uma Maheswari,R. Umamaheswari.Trends in non-stationary signal processing techniques applied to vibration analysis of wind turbine drive train.15 February 2017,Volume 85,Issue 6,pp296–311.
[15]Mohsen Rahimi.Drive train dynamics assessment and speed controller design in variable speed wind turbines.April 2016,Volume 89, Issue 5,pp16–29.
- 30 -
附錄1:外文翻譯
使用可變阻力的轉(zhuǎn)向扭矩控制轉(zhuǎn)向系統(tǒng)的模型
D.陳鑒林議員及K. NAM
摘要 本文提出了一種新型無(wú)傳感器轉(zhuǎn)向轉(zhuǎn)矩控制方法,適用于線控轉(zhuǎn)向系統(tǒng)。 線控轉(zhuǎn)向系統(tǒng)沒(méi)有任何機(jī)械連接來(lái)連接方向盤和齒條和小齒輪模塊。代替機(jī)械裝置,每側(cè)使用兩個(gè)電動(dòng)馬達(dá)。一個(gè)電動(dòng)機(jī)連接到方向盤,另一個(gè)安裝在齒條和小齒輪上。方向盤上的電機(jī)作為轉(zhuǎn)向轉(zhuǎn)矩和來(lái)自道路的負(fù)載扭矩之間的輸送機(jī)起作用。在本文中,我們關(guān)注基于阻抗控制的與轉(zhuǎn)向感相關(guān)的運(yùn)動(dòng)控制。因此,本工作中不考慮齒條齒輪的型號(hào)。 在大多數(shù)動(dòng)力轉(zhuǎn)向系統(tǒng)中,使用扭矩傳感器來(lái)設(shè)置對(duì)駕駛員轉(zhuǎn)向感覺(jué)的阻抗影響。在本文中,我們提出了一種不使用任何扭矩傳感器的新型轉(zhuǎn)向控制方法。提出的方法的有效性由實(shí)驗(yàn)結(jié)果證實(shí)。
關(guān)鍵詞:無(wú)傳感器力控制;擾動(dòng)觀測(cè)器;線控轉(zhuǎn)向;阻抗控制
1.介紹
自從汽車成為流行的交通工具,開發(fā)了車輛系統(tǒng)的技術(shù)改進(jìn)。車輛系統(tǒng)有很多部分組成的機(jī)械連接。因?yàn)檐囕v系統(tǒng)近年來(lái)變得更加復(fù)雜,增加了部分占用的空間。增加空間,前面的車輛上的重量和體積也增加。它會(huì)影響車輛的加速度和加速度克服這種負(fù)面影響,發(fā)動(dòng)機(jī)也大。一種新技術(shù)叫做X-by-wire被廣泛研究克服這種惡性循環(huán)。X-by-wire系統(tǒng)應(yīng)用于剎車和引導(dǎo)車。
轉(zhuǎn)向系統(tǒng)是與司機(jī)和車輛的一部分,已經(jīng)漸漸影響司機(jī)的安全了。轉(zhuǎn)向系統(tǒng)的開發(fā)是根據(jù)操作方法分類。第一類是傳統(tǒng)的機(jī)械轉(zhuǎn)向系統(tǒng)。這種類型的優(yōu)勢(shì),司機(jī)的轉(zhuǎn)向感覺(jué)很好,但它需要一個(gè)大操舵力。第二種類型是液壓動(dòng)力轉(zhuǎn)向系統(tǒng)(黃,2001)。它使用更少的轉(zhuǎn)向力比較傳統(tǒng)機(jī)械轉(zhuǎn)向系統(tǒng)。然而,它有一個(gè)可憐的燃油效率因?yàn)橛捅靡簤合到y(tǒng)需求。第三個(gè)方法是電動(dòng)助力轉(zhuǎn)向系統(tǒng)(楊,2015;張成澤et al .,2016)。使用電力的系統(tǒng)可以做到比液壓系統(tǒng)更加靈活的控制。燃油效率也會(huì)增加。第四個(gè)是一個(gè)steer-by-wire系統(tǒng)(吳et al .,2016)。近年來(lái)它已經(jīng)被研究。
steer-by-wire系統(tǒng)由兩個(gè)電機(jī)代替?zhèn)鹘y(tǒng)的轉(zhuǎn)向柱設(shè)備連接齒條和小齒輪的方向盤。這部小說(shuō)系統(tǒng)有幾個(gè)優(yōu)點(diǎn)。首先是節(jié)省空間和成本。由于零件的重量減少,影響燃油效率和生產(chǎn)成本。第二個(gè)是安全,轉(zhuǎn)向柱伸出它可以保護(hù)司機(jī)的安全,當(dāng)?shù)能囕v發(fā)生事故時(shí)。
轉(zhuǎn)向柱不可用,是不容易的模擬轉(zhuǎn)向感覺(jué)的,傳統(tǒng)的系統(tǒng)。根據(jù)先前的研究,主要功能steer-by-wire系統(tǒng)被定義為一些點(diǎn)(Parmar和約翰,2004年,上海一中院2006;Yih格迪斯;2004;Amberkar et al .,2004)。第一個(gè)是方向控制。它是汽車的一個(gè)基本要求條件穩(wěn)定沒(méi)有抵消和之間的時(shí)間延遲電機(jī)與方向盤上部和底部電機(jī)在齒條和小齒輪。第二個(gè)是恢復(fù)能力。方向盤和車輛應(yīng)該回到原來(lái)的位置沒(méi)有人類的力量。由于系統(tǒng)沒(méi)有物理連接的轉(zhuǎn)向柱,它需要實(shí)現(xiàn)恢復(fù)力。第三是可變轉(zhuǎn)向的感覺(jué)。提供的轉(zhuǎn)向手感等駕駛條件的轉(zhuǎn)彎力和車輛速度。考慮駕駛環(huán)境,道路條件是一種估計(jì)方法研究(Bajcinca et al .,2006)。機(jī)動(dòng)車輛的運(yùn)動(dòng)控制使用自適應(yīng)估計(jì)方法(埃姆雷et al .,2010)。研究對(duì)司機(jī)的轉(zhuǎn)向感覺(jué)找到一個(gè)影響因素研究(山口和村上,2009)。
在本文中,我們專注于問(wèn)題轉(zhuǎn)向感覺(jué)沒(méi)有扭矩傳感器基于阻抗控制?;谀P托畔⒌膫鞲衅鞑环椒ū粡V泛使用,因?yàn)閭鞲衅鞯娜觞c(diǎn)的影響,傳感器的昂貴價(jià)格(村上et al .,1993;小笠原群島和船長(zhǎng),1991;日本田島Hori,1993)。讓司機(jī)的轉(zhuǎn)向扭矩實(shí)時(shí)信息,使用基于擾動(dòng)觀測(cè)器技術(shù)系統(tǒng)模型。此外,使用一個(gè)阻抗控制技術(shù)在一些機(jī)電一體化領(lǐng)域需要與人類和設(shè)備交互。特別是,它用于機(jī)器人(榮格et al .,2004;Ikeura Inooka,1995)和恢復(fù)應(yīng)用程序(楊et al .,2006)。用于通過(guò)使用阻抗控制駕駛舒適的感覺(jué)。
本文由五個(gè)部分組成。轉(zhuǎn)向動(dòng)態(tài)模型和模型識(shí)別實(shí)驗(yàn)第二部分所示。一個(gè)力矩傳感器不轉(zhuǎn)向控制方法提出了第三節(jié),其控制性能實(shí)驗(yàn)結(jié)果證實(shí)了在第四節(jié)。結(jié)論在第五節(jié)總結(jié)。
2系統(tǒng)建模
在本節(jié)中,一個(gè)方向盤steer-by-wire系統(tǒng)的動(dòng)態(tài)模型。steer-by-wire系統(tǒng)如圖1所示。與傳統(tǒng)的轉(zhuǎn)向系統(tǒng)具有轉(zhuǎn)向列,steer-by-wire系統(tǒng)有兩個(gè)馬達(dá)連接和控制每一個(gè)部分由方向盤和齒條和小齒輪。一般轉(zhuǎn)向系統(tǒng),如電動(dòng)助力轉(zhuǎn)向控制器收集一些信息,包括車輛速度,轉(zhuǎn)向扭矩、和轉(zhuǎn)向角傳感器。系統(tǒng)是根據(jù)輸入的命令生成的控制器。底部電機(jī)相連齒條和小齒輪需要交付負(fù)載擾動(dòng)的司機(jī)。同時(shí),電機(jī)底部是必要的控制車輛的運(yùn)動(dòng),我們想要的。上面的汽車方向盤之間充當(dāng)一個(gè)耦合器負(fù)載感覺(jué)和司機(jī)。此外,它的功能作為輔助力量馬達(dá)。本文側(cè)重于從轉(zhuǎn)向系統(tǒng)輪上汽車。
2.1動(dòng)態(tài)模型
一個(gè)交互式steer-by-wire系統(tǒng)的模塊在圖2中描述。它可以建模為一個(gè)two-inertia系統(tǒng)之間的方向盤,方向盤電動(dòng)機(jī)通過(guò)轉(zhuǎn)向軸連接。建模的兩個(gè)-慣性系統(tǒng)已經(jīng)在一些紙(Zhang和學(xué)習(xí)Furusho,2000;Yun et al .,2013)。根據(jù)論文,方向盤的動(dòng)態(tài)方程表示為。
如果一個(gè)司機(jī)的轉(zhuǎn)向力矩應(yīng)用于指導(dǎo)輪,方向盤一個(gè)慣性矩摩擦系數(shù)在一定的轉(zhuǎn)向角。轉(zhuǎn)矩和轉(zhuǎn)向軸產(chǎn)生反應(yīng)。反應(yīng)力矩作用在轉(zhuǎn)向軸表示為。
反應(yīng)轉(zhuǎn)矩是阻尼系數(shù)的轉(zhuǎn)向軸。方向盤電動(dòng)機(jī)的動(dòng)態(tài)方程表示為。
方程(3)是由轉(zhuǎn)向電機(jī)轉(zhuǎn)矩,電動(dòng)機(jī)系統(tǒng),轉(zhuǎn)向軸的反作用力和摩擦力。摩擦力是一個(gè)典型的非線性因素作用相反的方向轉(zhuǎn)向電動(dòng)機(jī)轉(zhuǎn)矩和轉(zhuǎn)向軸的反作用力。盡量減少摩擦的影響,介紹了摩擦模型和補(bǔ)償器在2.2節(jié)。通過(guò)拉普拉斯變換,方程(1)~(3)表示為。
框圖基于方程(4)~(6)呈現(xiàn)在圖3中。在此系統(tǒng)中,轉(zhuǎn)向電機(jī)扭矩和司機(jī)的轉(zhuǎn)向轉(zhuǎn)矩輸入。的角度方向盤電動(dòng)機(jī)可以直接測(cè)量。但是一個(gè)轉(zhuǎn)向角不是用這個(gè)系統(tǒng)。轉(zhuǎn)移函數(shù)從方向盤電機(jī)轉(zhuǎn)矩的電機(jī)角表示為
2.2摩擦模型
方程(3),即轉(zhuǎn)向系統(tǒng)的動(dòng)力學(xué)方程輪電機(jī),包括一個(gè)摩擦力阻礙運(yùn)動(dòng)的發(fā)動(dòng)機(jī)。摩擦力是一個(gè)典型的非線性因素。由于摩擦,一個(gè)系統(tǒng)不移動(dòng)一個(gè)小轉(zhuǎn)矩輸入。一般來(lái)說(shuō),摩擦分為三種類型:靜態(tài)的摩擦,庫(kù)侖摩擦和粘性摩擦。靜態(tài)摩擦是一個(gè)根據(jù)表面阻力的邊緣移動(dòng)。庫(kù)侖摩擦阻力阻止移動(dòng)對(duì)象。粘滯摩擦是由流體引起的。在這個(gè)系統(tǒng),我們只是考慮的影響靜態(tài)摩擦和庫(kù)侖摩擦。方程的摩擦模型表示如下,
方程(9)目前摩擦方程,系統(tǒng)開始移動(dòng),方程(10)摩擦方程而系統(tǒng)是移動(dòng)。方程由變量因素。使用速度系數(shù)的近似靜態(tài)和庫(kù)侖摩擦之間的過(guò)渡。速度閾值確定邊坡從零到靜態(tài)摩擦。過(guò)小的值速度閾值導(dǎo)致喋喋不休接近零速度。發(fā)現(xiàn)參數(shù)值方程(9)和(10),在不同的操作條件下進(jìn)行了實(shí)驗(yàn)。通過(guò)逐漸增加一個(gè)輸入的力在停止?fàn)顟B(tài),我們檢查了力瞬間移動(dòng)。當(dāng)系統(tǒng)移動(dòng),我們檢查了力量阻止即時(shí)通過(guò)減少輸入的力。通過(guò)這些實(shí)驗(yàn),我們第一個(gè)檢查力定義靜態(tài)摩擦和第二個(gè)檢查力是庫(kù)侖摩擦,分別。參數(shù)值的方程(9)和(10)f = 0.8636、Fs = 0.5397(Nm)的正方向和Fs =?0.7556,Fc =?0.4858(Nm)負(fù)方向。摩擦模型如圖4所示。使用這種摩擦模型中,摩擦補(bǔ)償器設(shè)計(jì)為方向盤電機(jī)的速度的函數(shù)。摩擦補(bǔ)償器的性能如圖5所示。虛線代表的摩擦補(bǔ)償?shù)慕Y(jié)果。它指出,速度和轉(zhuǎn)矩之間的關(guān)系變得幾乎線性的。摩擦的效果卻降低了采用摩擦補(bǔ)償器
2.3模型辨識(shí)
在本節(jié)中,提出了模式識(shí)別的實(shí)驗(yàn)結(jié)果來(lái)識(shí)別動(dòng)態(tài)模型。我們注入了線性調(diào)頻信號(hào)頻率范圍從低到高,方向盤的汽車和測(cè)量角速度的汽車在同一時(shí)間。注入的線性調(diào)頻信號(hào)的扭矩信號(hào)