畢業(yè)論文(設(shè)計(jì))
題目名稱:SCARA 機(jī)器人擰螺絲工作站設(shè)計(jì)
所在學(xué)院:
專業(yè)(班級(jí)):
學(xué)生姓名:
指導(dǎo)教師:
評(píng) 閱 人 :
院 長(zhǎng) :
SCARA 機(jī)器人擰螺絲工作站設(shè)計(jì)
總計(jì):表格:
插圖:
摘要
隨著社會(huì)的工業(yè)化水平和工業(yè)生產(chǎn)的自動(dòng)化程度不斷提高,工業(yè)機(jī)器人對(duì)工業(yè)生產(chǎn)的作用也越來(lái)越重要,因而,SCARA 裝配機(jī)器人的需求也越來(lái)越大。
在此背景下,本文通過(guò)閱讀文獻(xiàn),了解了國(guó)內(nèi)外工業(yè)機(jī)器人技術(shù)的發(fā)展歷程,在此基礎(chǔ)上,設(shè)計(jì)了一種方便實(shí)用的 SCARA 平面關(guān)節(jié)型裝配機(jī)器人,能夠在平面內(nèi)實(shí)現(xiàn)螺絲釘?shù)难b配作業(yè)。
本文主要的研究工作包括如下:選擇和確定 SCARA 機(jī)器人的傳動(dòng)方案,第一、二、四關(guān)節(jié)均以步進(jìn)電機(jī)驅(qū)動(dòng),第三關(guān)節(jié)以連接諧波減速器的步進(jìn)電機(jī)來(lái)帶動(dòng)絲杠螺母運(yùn)動(dòng)來(lái)實(shí)現(xiàn) Z 軸方向上的豎直運(yùn)動(dòng)。完成 SCARA 機(jī)器人設(shè)計(jì),大臂小臂的連接方式相似,都是以步進(jìn)電機(jī)帶動(dòng)連接軸旋轉(zhuǎn),連接軸與大臂小臂的相連實(shí)現(xiàn)其自由度的旋轉(zhuǎn),絲杠通過(guò)支架固定在小臂上,實(shí)現(xiàn)豎直運(yùn)動(dòng),絲杠螺母與滑塊相連,末端執(zhí)行器的步進(jìn)電機(jī)則通過(guò)連接件與滑塊相連,實(shí)現(xiàn)其自由度的旋轉(zhuǎn)運(yùn)動(dòng)。通過(guò)對(duì) SCARA 機(jī)器人工作任務(wù)、工作要求、工作環(huán)境的分析和性價(jià)比以及安裝調(diào)試等因素的考慮, 對(duì)步進(jìn)電機(jī)、諧波減速器、末端執(zhí)行器、大小臂等結(jié)構(gòu)或零件進(jìn)行了參數(shù)計(jì)算、型號(hào)選擇和通過(guò) SolidWorks 進(jìn)行三維建模,對(duì) SCARA 機(jī)器人進(jìn)行運(yùn)動(dòng)學(xué)分析,并以三次多項(xiàng)式為例對(duì)其進(jìn)行了軌跡規(guī)劃的生成。選擇對(duì)基于 IPC+運(yùn)動(dòng)控制卡的開(kāi)放式控制系統(tǒng)的硬件構(gòu)成進(jìn)行簡(jiǎn)單分析,并簡(jiǎn)單分析了 PTP、CP 和力(力矩)控制方式。
關(guān)鍵詞:SCARA 機(jī)器人;軌跡規(guī)劃;結(jié)構(gòu)設(shè)計(jì)。
I
ABSTRACT
With the increasing level of industrialization and the degree of automation of industrial production, the role of industrial robots in industrial production is becoming more and more important. Therefore, the demand of SCARA assembly robots is also increasing.
In this context, this article by reading the literature, to understand the development of domestic and foreign industrial robot history, development status and trends, on this basis, designed a convenient and practical SCARA plane joint assembly robot, can be implemented in the plane screw Of the assembly operations.
The main research work of this paper includes the following: select and determine the SCARA robot transmission program, the first, two, four joint rotation are driven by stepper motor, the third joint to connect Harmonic reducer stepper motor to drive the screw nut movement to achieve vertical movement in the Z-axis direction. Complete the SCARA robot design, arm arm connected in a similar way, are driven by the stepper motor shaft rotation, connecting the shaft and the arm connected to achieve its degree of freedom of rotation, screw through the bracket fixed on the arm , To achieve vertical movement, the screw nut is connected with the slider, the end of the stepper motor through the connector connected with the slider to achieve its freedom of rotation of the movement. Through the SCARA robot work tasks, work requirements, working environment analysis and cost-effective and installation and commissioning considerations and other factors, the stepper motor, harmonic reducer, the end of the actuator, the size of the arm or other components of the parameters of the calculation, And the kinematics analysis of SCARA robot is carried out by three-dimensional modeling through SolidWorks, and the trajectory planning is generated by cubic polynomial as an example. The hardware configuration of the open control system based on IPC + motion control card is selected and the analysis of PTP, CP and force (torque) is analyzed.
Key Words:SCARA Robot; Trajectory Planning; Structural Design
II
目 錄
摘要 I
ABSTRACT II
1 緒論 1
1.1 引言 1
1.2 國(guó)內(nèi)外研究的概況和發(fā)展趨勢(shì) 1
2 SCARA 裝配機(jī)器人總體設(shè)計(jì) 4
2.1 傳動(dòng)方案的選擇 4
2.2 機(jī)器人的基本技術(shù)參數(shù) 5
3 SCARA 的運(yùn)動(dòng)學(xué)研究 6
3.1 位姿描述 6
3.2 正運(yùn)動(dòng)學(xué)分析 6
3.3 逆運(yùn)動(dòng)學(xué)分析 8
3.4 軌跡規(guī)劃的生成 9
4 關(guān)鍵零部件設(shè)計(jì)計(jì)算 12
4.1 步進(jìn)電機(jī)的計(jì)算和選擇 12
4.2 滾珠絲杠的選型設(shè)計(jì)及計(jì)算 14
5 SCARA 裝配機(jī)器人機(jī)械結(jié)構(gòu)設(shè)計(jì) 16
5.1 大臂機(jī)械結(jié)構(gòu)設(shè)計(jì) 16
5.2 小臂機(jī)械結(jié)構(gòu)設(shè)計(jì) 16
5.3 腕關(guān)節(jié)機(jī)械結(jié)構(gòu)設(shè)計(jì) 17
5.4 機(jī)器人的總體結(jié)構(gòu)設(shè)計(jì) 18
6 控制系統(tǒng)設(shè)計(jì) 19
6.1 控制系統(tǒng)的硬件構(gòu)成 19
6.2 SCARA 機(jī)器人的控制方式 19
6.3 SCARA 機(jī)器人的控制流程 20
7 結(jié) 論 22
參 考 文 獻(xiàn) 23
附錄 1:外文翻譯 24
附錄 2:外文原文 30
I
SCARA 機(jī)器人擰螺絲工作站設(shè)計(jì)
1 緒論
1.1 引言
工業(yè)產(chǎn)品的裝配,廣泛使用螺紋連接來(lái)緊固。大量的螺紋裝配需要人工完成,機(jī)械裝配操作仍然是高度勞動(dòng)密集型的。全球工業(yè)裝配中,近 70%由螺紋連接構(gòu)成,螺紋連接占據(jù)全部裝配工作量的三分之一。以家電、家具裝配環(huán)節(jié)為例,螺紋連接所消耗的人力和工時(shí)可以達(dá)到整個(gè)生產(chǎn)線消耗總量的 1/4 到一半以上[1]。
工業(yè)機(jī)器人根據(jù)機(jī)械結(jié)構(gòu)和坐標(biāo)系特點(diǎn)可分為直角坐標(biāo)型(3P)、圓柱坐標(biāo)型(R2P)、球坐標(biāo)型(2R)和關(guān)節(jié)坐標(biāo)型(3R)的機(jī)器人,關(guān)節(jié)坐標(biāo)型機(jī)器人的結(jié)構(gòu)類似于人手臂, 其位置和姿態(tài)完全由旋轉(zhuǎn)運(yùn)動(dòng)實(shí)現(xiàn),而平面關(guān)節(jié)型機(jī)器人,即 SCARA 機(jī)器人可看作 關(guān)節(jié)坐標(biāo)型機(jī)器人的特例。SCARA 機(jī)器人結(jié)構(gòu)簡(jiǎn)單、體積小、重量輕、安裝方便、具有很好的通用性,而且動(dòng)作迅速、定位精度高,此外,SCARA 機(jī)器人一般采用步進(jìn)電機(jī)驅(qū)動(dòng),控制簡(jiǎn)單,編程方便。SCARA 機(jī)器人擰螺絲工作站可代替人工特定的螺絲緊固作業(yè),實(shí)現(xiàn)自動(dòng)化裝配;操作簡(jiǎn)單便利、高速精確;通用性強(qiáng)。體積小,可 配合產(chǎn)線作業(yè),更換產(chǎn)品方便,具有極高的應(yīng)用價(jià)值。
1.2 國(guó)內(nèi)外研究的概況和發(fā)展趨勢(shì)
1948 年諾伯特2維納在其著作《控制論》里首次提出自動(dòng)化工廠的概念,闡述了機(jī)器人和控制體系互相結(jié)合的發(fā)展規(guī)律,為機(jī)器人的控制理論奠定了基礎(chǔ)。
20 世紀(jì) 50 年代初期,位于美國(guó)伊利諾州的阿貢實(shí)驗(yàn)室研發(fā)了第一代遙控式機(jī)械手來(lái)操作放射性材料,避免了科學(xué)家受到輻射的侵害。同時(shí)代的喬治2德沃設(shè)計(jì)研發(fā)了一臺(tái)可以通過(guò)程序控制的工業(yè)機(jī)器人樣機(jī),并提出技術(shù)方案,隨后申請(qǐng)了專利。兩年之后隨著串聯(lián)機(jī)構(gòu)在工業(yè)領(lǐng)域的廣泛使用,其系統(tǒng)誤差的長(zhǎng)期累積和空間定位精度低等因素促使人們第一次提出了示教再現(xiàn)的編程模式,并運(yùn)用數(shù)控技術(shù)和機(jī)械臂的結(jié)合制造出了第一臺(tái)工業(yè)機(jī)器人,它的出現(xiàn)和新的編程理念使得重復(fù)定位精度遠(yuǎn)超絕對(duì)定位精度,其意義影響深遠(yuǎn)。1962 年,美國(guó)萬(wàn)能自動(dòng)化公司研制了一臺(tái)名為 Unimate 的機(jī)器人,它采用極坐標(biāo)式結(jié)構(gòu),動(dòng)作靈活、伸縮自如。而早在 4 年前,恩格爾伯格和喬治2德沃爾創(chuàng)立了第 1 家機(jī)器人公司 Unimation,恩格爾伯格因而被稱為機(jī)器人之父。
1968 年,日本川崎公司開(kāi)始學(xué)習(xí)美國(guó)公司先進(jìn)的機(jī)器人制造技術(shù),結(jié)合本國(guó)機(jī)器人產(chǎn)業(yè)發(fā)展的前景開(kāi)發(fā)出了一系列成本低廉,實(shí)用性較好的機(jī)器人,為日本的工業(yè)和制造業(yè)領(lǐng)域發(fā)展提供了極大的動(dòng)力和推動(dòng)作用,促使日本的工業(yè)制成品以物美價(jià)廉而暢銷(xiāo)全球市場(chǎng)。從 1970 年開(kāi)始,機(jī)器人應(yīng)用開(kāi)始在各國(guó)工業(yè)領(lǐng)域掀起一波又一波
- 25 -
浪潮。1973 年,ASEA 公司(現(xiàn)在的ABB)推出了世界上第一個(gè)微型計(jì)算機(jī)控制、全部電氣化的工業(yè)機(jī)器人 IRB 一 6,為了滿足弧焊的要求,它可以進(jìn)行連續(xù)的路徑移動(dòng)。1978 年,日本教授牧野洋設(shè)計(jì)出了具有 4 個(gè)自由度的可選擇柔順裝配機(jī)械手(SCARA)。
1979 年 Unimafion 公司推出了一系列帶有觸覺(jué)、力覺(jué)和視覺(jué)的 PUMA 工業(yè)機(jī)器人, 它的出現(xiàn)把機(jī)器人技術(shù)帶入了智能化的時(shí)代,使得機(jī)器人技術(shù)的發(fā)展和時(shí)代要求緊密的結(jié)合在一起[2]。
20 世紀(jì) 80 年代,隨著汽車(chē)制造業(yè)的崛起,工業(yè)機(jī)器人開(kāi)始以 20%~40%的速率高速發(fā)展,機(jī)器人技術(shù)開(kāi)始在汽車(chē)工業(yè)生產(chǎn)中推廣普及,這使得整個(gè)機(jī)器人技術(shù)在現(xiàn)代工業(yè)生產(chǎn)領(lǐng)域變得越來(lái)越重要。1984 年機(jī)器人在全球各國(guó)的數(shù)量從最開(kāi)始的不足10 萬(wàn)臺(tái),穩(wěn)步上升到 1990 年接近 30 萬(wàn)臺(tái),其中帶有嗅覺(jué)、視覺(jué)、觸覺(jué)的高性能機(jī)器人成為了新研發(fā)機(jī)器人中的主要對(duì)象,并且促進(jìn)了機(jī)器視覺(jué)技術(shù)和傳感器檢測(cè)技術(shù)的穩(wěn)步成長(zhǎng)。1985 年美國(guó)的兩家公司率先開(kāi)始在工業(yè)機(jī)器人領(lǐng)域使用交流伺服技術(shù), 使得自動(dòng)化控制裝備性能進(jìn)一步提升。隨著裝配機(jī)器人在機(jī)器人領(lǐng)域所占比重越來(lái)越大,提高機(jī)器人的質(zhì)量和效率問(wèn)題成為了各國(guó)機(jī)器人研究領(lǐng)域關(guān)注的重點(diǎn)。20 世紀(jì)末,柔性裝配線研發(fā)成功,以日本為代表的各國(guó)開(kāi)始廣泛發(fā)展機(jī)器人產(chǎn)業(yè),就此裝配機(jī)器人開(kāi)始進(jìn)入蓬勃發(fā)展的階段。
21 世紀(jì)以來(lái),機(jī)器人在各國(guó)開(kāi)始大范圍的投入使用,各國(guó)政府都加大了對(duì)機(jī)器
人產(chǎn)業(yè)的投資力度。美國(guó)政府從 2011 年開(kāi)始先后投入 7000 萬(wàn)美元發(fā)展本國(guó)的機(jī)器人技術(shù)和先進(jìn)制造技術(shù),并制定了“先進(jìn)制造業(yè)國(guó)家戰(zhàn)略計(jì)劃”,力圖使美國(guó)的制造業(yè)重新占領(lǐng)市場(chǎng)高點(diǎn)。韓國(guó)在 2014 年提出到 2018 年完成機(jī)器人產(chǎn)業(yè)的投資翻兩倍,機(jī)
器人公司的數(shù)量增加一倍的目標(biāo)。歐盟則聯(lián)合其下屬的 180 個(gè)公司和科研機(jī)構(gòu)一起推出家用機(jī)器人研究計(jì)劃“SPARC”。同年,英國(guó)政府也提出機(jī)器人戰(zhàn)略 RAS2020, 目標(biāo)是在 2025 年使整個(gè)英國(guó)機(jī)器人產(chǎn)值在 1200 億美元左右。我國(guó)的工業(yè)機(jī)器人研究
始于 1960 年,先后發(fā)展了 50 多年,經(jīng)歷了從模仿到自主創(chuàng)新的各個(gè)階段。1972 年,
我國(guó)立足于開(kāi)發(fā)自己的第一代工業(yè)機(jī)器人,進(jìn)入 80 年代后,機(jī)器人研究與開(kāi)發(fā)和國(guó)家政策有機(jī)結(jié)合。86 年國(guó)家高新技術(shù)研究發(fā)展計(jì)劃正式提出,我國(guó)在機(jī)器人領(lǐng)域取得一系列重大科研成果,并結(jié)合國(guó)內(nèi)產(chǎn)業(yè)鏈的實(shí)際情況陸續(xù)研制出一批工業(yè)機(jī)器人; 如今以新松為代表的一批國(guó)內(nèi)企業(yè)開(kāi)始推出自己品牌的機(jī)器人并逐步在市場(chǎng)推廣。時(shí)至今日,我國(guó)在機(jī)器人技術(shù)某些領(lǐng)域已接近國(guó)際前沿水平,但是在很多方面也面臨著不少問(wèn)題。國(guó)產(chǎn)機(jī)器人產(chǎn)品較為低端、主要以三軸和四軸機(jī)器人為主,主要用于搬運(yùn)和碼垛作業(yè)等。而高端制造業(yè)的機(jī)器人則長(zhǎng)期受到國(guó)外的品牌的占據(jù)。由于機(jī)器人的關(guān)鍵制造技術(shù)和控制技術(shù)等核心問(wèn)題沒(méi)有解決使得我國(guó)的機(jī)器人發(fā)展受到制約,加之國(guó)內(nèi)的生產(chǎn)機(jī)器人規(guī)模較小,使得國(guó)產(chǎn)機(jī)器人的生存空間受到了擠壓。2015 年 3 月
國(guó)務(wù)院正式印發(fā)《中國(guó)制造 2025》推動(dòng)中國(guó)制造業(yè)特別是高端制造業(yè)的發(fā)展,其中智能裝備和機(jī)器人技術(shù)作為今后重點(diǎn)支持的方向,這為提升國(guó)產(chǎn)機(jī)器人的質(zhì)量和服務(wù)做好了鋪墊。
工業(yè)機(jī)器人的出現(xiàn),使自動(dòng)擰螺絲向工業(yè)機(jī)械機(jī)械手方向發(fā)展,螺絲機(jī)具有操縱方便、控制精度高、穩(wěn)定性好、維護(hù)方便、人機(jī)界面人性化等特點(diǎn)。主要是采用單軸與多軸機(jī)器人自動(dòng)運(yùn)行及單獨(dú)動(dòng)作的運(yùn)行方式,實(shí)現(xiàn)了控制響應(yīng)的快速性,并對(duì)擰緊扭矩及角度進(jìn)行測(cè)控,保證了系統(tǒng)的精度和準(zhǔn)確性。螺絲機(jī)的結(jié)構(gòu)組成:工業(yè)機(jī)械手、電動(dòng)螺絲刀、螺絲自動(dòng)上料系統(tǒng)和精裝夾具等附件。
在國(guó)外鎖螺絲設(shè)備早已應(yīng)用于汽車(chē),電腦,液晶面板,空調(diào),線路板等行業(yè)中。1958 年美國(guó)聯(lián)合控制公司研制開(kāi)發(fā)出第一臺(tái)機(jī)械手,1978 年美國(guó) Unimate 公司、斯坦福大學(xué)和麻省理工學(xué)院聯(lián)合研制一種 Unimate-Vicarm 型工業(yè)機(jī)械手,用小型電子計(jì)算機(jī)控制,進(jìn)行裝配作業(yè),定位誤差在±1mm 內(nèi)。如美國(guó)試制一臺(tái)有觸覺(jué)和視覺(jué)的雙臂機(jī)械手,由于機(jī)械手有觸覺(jué),所以不要求工件排列的位置很精確。若機(jī)械手在擰螺釘遇到阻力時(shí),能將螺釘返回再擰。
當(dāng)前,在國(guó)內(nèi)工廠使用的鎖螺絲裝置為深圳、東莞一些廠家生產(chǎn)的手持式鎖螺絲機(jī)和半自動(dòng)鎖螺絲機(jī)。雖然手持式鎖螺絲機(jī)使螺絲輸送和鎖付一氣呵成,提高了生產(chǎn)效率,節(jié)省了人力,但是手持式鎖螺絲機(jī)需要人員重復(fù)單調(diào)乏味的工作,容易劃傷產(chǎn)品外觀,造成成本增加。半自動(dòng)鎖螺絲機(jī)主要是振盤(pán)式的,采用振動(dòng)盤(pán)氣動(dòng)元件作為驅(qū)動(dòng)部件,采用PLC 或MCU、傳感器和接近開(kāi)關(guān)聯(lián)合控制。其工作流程是螺絲由驅(qū)動(dòng)部件振動(dòng)排列,再由壓縮空氣高速吹到螺絲刀頭處,最后進(jìn)行鎖緊作業(yè)。
隨著自動(dòng)化工業(yè)的發(fā)展和生產(chǎn)效率、質(zhì)量要求的不斷提高,在國(guó)際上自動(dòng)化裝配技術(shù)由人工裝配朝著半自動(dòng)化、全自動(dòng)化裝配的趨勢(shì)發(fā)展,SCARA 機(jī)器人擰螺絲工作站也在朝著半自動(dòng)化和全自動(dòng)化,便捷化,通用化的方向發(fā)展。
2 SCARA 裝配機(jī)器人總體設(shè)計(jì)
SCARA 包括有三個(gè)旋轉(zhuǎn)自由度,分別為大臂、小臂和末端執(zhí)行器,除此之外, 還有一個(gè)直線自由度,實(shí)現(xiàn)末端執(zhí)行器在豎直方向上的移動(dòng)。其結(jié)構(gòu)簡(jiǎn)圖如圖 2.1 所示。
2.1 傳動(dòng)方案的選擇
圖 2.1 SCARA 機(jī)器人的結(jié)構(gòu)簡(jiǎn)圖
查詢相關(guān)文獻(xiàn)可知,現(xiàn)有如下兩種方案進(jìn)行篩選: 方案一
三個(gè)旋轉(zhuǎn)自由度均采用步進(jìn)電機(jī)傳動(dòng),實(shí)現(xiàn)大、小臂、末端執(zhí)行器的旋轉(zhuǎn)運(yùn)動(dòng), 不光可以保障良好的傳動(dòng)精度和效率,并且振動(dòng)和噪音都比較低,對(duì)機(jī)器人本身影響較小。此外,其過(guò)載性好,控制要求也相對(duì)簡(jiǎn)單。
第三關(guān)節(jié)自由度的傳動(dòng)選擇絲杠螺母,實(shí)現(xiàn)機(jī)器人豎直運(yùn)動(dòng),雖然其傳動(dòng)精度不高,但是其結(jié)構(gòu)易于安裝,并且能夠?qū)崿F(xiàn)第四自由度與其的連接。
方案二
第一、二關(guān)節(jié)自由度均采用同步齒形帶傳動(dòng),第三、四關(guān)節(jié)自由度的傳動(dòng)方案不變。
由上可知,兩種方案都能滿足設(shè)計(jì)要求,但方案一的傳動(dòng)精度和傳動(dòng)效率更高, 且結(jié)構(gòu)更簡(jiǎn)單,控制起來(lái)更容易;相比較而言,方案二傳動(dòng)精度和傳動(dòng)效率略低,且零件大多更復(fù)雜,增加了設(shè)計(jì)的難度。因此,考慮加工、安裝和調(diào)試因素,傳動(dòng)方案確定為方案一。
所以,機(jī)器人的傳動(dòng)方案如下所示:
第一關(guān)節(jié)旋轉(zhuǎn)運(yùn)動(dòng)(關(guān)節(jié)一):步進(jìn)電機(jī) 1→大臂
第二關(guān)節(jié)旋轉(zhuǎn)運(yùn)動(dòng)(關(guān)節(jié)二):步進(jìn)電機(jī) 2→小臂
第三關(guān)節(jié)的垂直直線運(yùn)動(dòng)(關(guān)節(jié)三):步進(jìn)電機(jī) 3→諧波減速器→絲杠螺母第四關(guān)節(jié)旋轉(zhuǎn)運(yùn)動(dòng)(關(guān)節(jié)四):步進(jìn)電機(jī) 4→主軸(Z 軸)
2.2 機(jī)器人的基本技術(shù)參數(shù)
在確定機(jī)器人的傳動(dòng)方案之后,應(yīng)當(dāng)對(duì)其基本技術(shù)參數(shù)進(jìn)行限定,如表 2.1 所示, 才能更好的對(duì)機(jī)器人進(jìn)行設(shè)計(jì)。
表 2.1 機(jī)器人的基本技術(shù)參數(shù)
項(xiàng)目
技術(shù)參數(shù)
自由度
大臂
小臂
末端升降
末端旋轉(zhuǎn)
運(yùn)動(dòng)范圍
±120°
±150°
120mm
±180°
最大速度
180°/s
180°/s
100mm/s
270°/s
幾何尺寸
250mm
300mm
定位精度
±1mm
根據(jù)如上技術(shù)參數(shù),可得機(jī)器人的運(yùn)動(dòng)范圍如圖 2.2 所示:
圖 2.2 機(jī)器人的運(yùn)動(dòng)范圍
3 SCARA 的運(yùn)動(dòng)學(xué)研究
SCARA 機(jī)器人設(shè)計(jì)的目的是為了完成給定的裝配任務(wù),整個(gè)裝配過(guò)程是運(yùn)動(dòng)的過(guò)程,所以必須對(duì)其的運(yùn)動(dòng)學(xué)進(jìn)行研究。機(jī)器人運(yùn)動(dòng)控制的對(duì)象包括連桿,關(guān)節(jié),工作工具,對(duì)象,工作臺(tái)和參考基準(zhǔn)等[3]。為了提高裝配精度和裝配效率,還應(yīng)當(dāng)對(duì)其進(jìn)行軌跡規(guī)劃。
3.1 位姿描述
為了描述機(jī)器人本身的運(yùn)動(dòng),通常將其當(dāng)作剛體來(lái)研究彼此之間的運(yùn)動(dòng)關(guān)系。對(duì)其運(yùn)動(dòng)關(guān)系的研究包括其位置和姿態(tài),簡(jiǎn)稱為位姿[4]。
3.2 正運(yùn)動(dòng)學(xué)分析
SCARA 平面關(guān)節(jié)型機(jī)器人有四個(gè)自由度,建立如圖3 一1 所示的D 一H 坐標(biāo)系, 通過(guò)如下坐標(biāo)系來(lái)進(jìn)行正運(yùn)動(dòng)學(xué)分析[6]。
圖 3.1 SCARA 關(guān)節(jié)坐標(biāo)系
各關(guān)節(jié)的連桿參數(shù)的如表 3.1 所示:
表 3.1 SCARA 機(jī)器人的D 一 H 參數(shù)表
ai-1
ai-1
qi
di
關(guān)節(jié)變量
第一關(guān)節(jié)
0
l1
q1
d1
q1
第二關(guān)節(jié)
0
l2
q2
0
q2
第三關(guān)節(jié)
180°
0
0
d3
d3
第四關(guān)節(jié)
0
0
q4
0
q4
其齊次通式為:
écqi
êsq ca
- sqi
cq ca
0
- sa
ai-1 ù
- d sa ú
A = ê i
i-1
i i-1
i-1
i i-1 ú
(3.1)
i êsq sa
cq sa ca
d ca ú
0
ê i i-1 i
? 0
i-1
0
i-1 i
1
i-1 ú
?
代入各關(guān)節(jié)連桿參數(shù),得:
écosq1 - sin q1 0 l1 cosq1 ù
écosq2 sin q2
0 l2 cosq2 ù
êsinq
cosq
0 l sin q ú
êsin q
- cosq 0
l sin q ú
A = ê 1 1 1
1 ê0 0 1 0
1 ú A = ê 2
ú
2
ê0 0
2 2 2 ú
-1 0 ú
0
?
ê 0 0 1
ú ê ú
0
?ú ? 0 0 1 ú?
é1 0 0 0 ù
écosq4 - sin q4 0 0 ù
ú
ê0
A = ê
1 0 0 ú
êsin q
ê
A =?4
cosq4
ú
0 0 ú
(3.2)
3 ê0
ê
0 1 d3 ú
ú
4 ê0 0
ê
1 0 ú
ú
ê?0
0 0 1 ?
?0 0
0 1 ú?
i
通過(guò)各變換矩陣i-1T (i = 1,2,..., n) 相乘,可得到其正運(yùn)動(dòng)學(xué)方程:
0T =0T 1T 2T 3T = A A A A
4 1 2 3 4 1 2 3 4
écos(q1 + q2 -q4 ) sin(q1 + q2 -q4 ) 0 l1 cosq1 + l2 cos(q1 + q2 ) ù
êsin(q + q -q ) - cos(q + q -q ) 0
1 2 4
l sinq + l sin(q
+ q ) ú
= ê 1 2 4
1 1 1
1 2 ú
ê0 0
-1 d1 + d3 ú
0
ê
?
énx
ox ax
0 0 1 ú
?
ú
px ù
n
ê
= ê y
oy ay
py ú
(3.3)
z
z
ên o a p ú
ê z z ú
ê?0 0 0 1 ú?
3.3 逆運(yùn)動(dòng)學(xué)分析
正運(yùn)動(dòng)學(xué)分析結(jié)束后,還應(yīng)當(dāng)進(jìn)行逆運(yùn)動(dòng)學(xué)分析[7]。
設(shè)機(jī)器人末端執(zhí)行器位姿矢量矩陣為 , 速度矢量矩陣為 ? 。
é · · · · ù
énx ox ax
px ù
ênx ox a x
px ú
ên o a p ú ·
ê · · · · ú
T = ê y y y y ú
T end = êny o y a y
p y ú
(3.4)
end
ên
ê z
ê?0
oz az
0 0
p ú
z ú
1 ú?
ê · ·
ênz oz
0
ê
? 0
· · ú
a z p z ú
?
0 1 ú
由上可得,關(guān)節(jié)變量逆解如下:
sinq2 = ±
cosq = 1 (r 2 - l 2 - l 2 )
1 2
2 2l l 1 2
q2 = arctg(sinq2 / cosq2 )
sinq = 1 [(l + l
cosq )p - l sinq p ]
1 r 2 1 2
2 y 2 2 x
cosq = 1 [(l + l
cosq )p + l sinq p ]
1 r 2 1 2
2 x 2 2 y
? sinq1 ?
q1 = arctg? cosq ÷
è 1 ?
cosq4 = ox sin(q1 +q2 )+ oy cos(q1 +q2 )
sinq4 = -[ox cos(q1 +q2 )+ oy sin(q1 +q2 )]
è
4 ?
? sinq4 ?
q4 = arctg? cosq ÷
d3 = d1 - pz
其中r 2 = p2 + p2 ,式中sinq = ±
中正負(fù)號(hào)對(duì)應(yīng)兩組可能解。速度
x y
· (q +q )+ · (q +q )
q1 =
px sin 1
(
2 py cos 1 2
) )
px sin q1 +q2
- py cos(q1 +q2
· ·
·
q 2 =
px px - py py
l1l2 sinq2
· ·
d = - pz
(o A + o B)? · + ·
? + · - ·
· x y
?q 1
q 2 ÷
Box
Aoy
q 4 = ?è ?
sinq4 + cosq4
式中: A = cos(q1 +q2 )-sin(q1 +q2 ), B = cos(q1 +q2 )+sin(q1 +q2 )
3.4 軌跡規(guī)劃的生成
(3.5)
軌跡規(guī)劃,就是根據(jù)已知量,求出并生成運(yùn)動(dòng)軌跡的過(guò)程?,F(xiàn)采用關(guān)節(jié)空間規(guī)劃方法中的三次多項(xiàng)式規(guī)劃法,結(jié)合設(shè)計(jì)要求,進(jìn)行軌跡規(guī)劃。
首先假定機(jī)器人某關(guān)節(jié)的關(guān)節(jié)值的各參數(shù)如表 3.2 所示。
表 3.2 某關(guān)節(jié)軸的關(guān)節(jié)值的參數(shù)
時(shí)刻
關(guān)節(jié)值
初始值
t0
q0
目標(biāo)值
tf
q f
當(dāng)采用三次多項(xiàng)式函數(shù)插值時(shí),每一段軌跡都是同樣的形式,所以,在插值過(guò)程中,三次多項(xiàng)式如式(3.6)示:
q (t) = a + a t + a t 2 + a t3
(3.6)
0 1 2 3
通過(guò)對(duì)上式求導(dǎo),可得相應(yīng)的速度和加速度為:
ì · (t ) = a
+ 2a t + 3a t 2
?q
í··
1 2 3
(3.7)
??q (t ) = 2a2 +6a3t
通過(guò)上式,很容易地計(jì)算出不同時(shí)刻的θ, ?和 ?,值得注意的是,上式中 t 是各段分別計(jì)算的。因此,對(duì)于每一段計(jì)算都是從t =0 開(kāi)始[8]。當(dāng)插值的過(guò)程采用了拋物線的方式時(shí),則其軌跡的運(yùn)動(dòng)方程如下所示:
ìq (t ) = q
+ 1 ··
t 2 ;
? 1 2 q 1
? · ··
í
?q (t ) = q 1 t,
0 £ t £ t1
(3.8)
?q
?··(t )
??
··
= q 1 .
ìq (t ) = q + ·
?t + t1 ?
? 1
?
? · (t ) = ·
q 12?
è
,
÷;
2
?
0 £ t £ t
(3.9)
íq q 12 12
?q
?··(t ) = 0.
?
?
ìq (t ) = q + ·
?t + t1 + t
? + 1 ··
t 2 ;
è
? 1 q 12?
?
12 ÷
2 ?
q 12
2
? · (t ) = · + ·· t,
0 £ t £ t
(3.10)
íq
?q
?··(t )
?
?
q 12 q 2 12
··
= q 2 .
ìq (t ) = q + ·
?t + t2 ?
? 2
?
? · (t ) = ·
q 23?
è
,
÷;
2
?
0 £ t £ t
(3.11)
íq q 23 23
?q
?··(t ) = 0.
?
?
ìq (t ) = q + ·
?t + tn-1 ?
?
?
? · (t ) = ·
n-1
q (n-1)n ?
2
è
,
÷;
?
0 £ t £ t
(3.12)
íq q (n-1)n
(n-1)n
?q
?··(t ) = 0.
?
?
ìq (t ) = q + ·
?t + tn-1 + t
? + 1 ··
t 2 ;
? n-1
?
q (n-1)n ?
è
(n-1)n ÷ q n
2 ? 2
? · (t ) = ·
··
+ t,
0 £ t £ t
(3.13)
íq
?q
?··(t )
?
?
寫(xiě)成一般形式如下:
q (n-1)n q n n
··
= q n .
?
ì q (t ) = q1
··
+ 1
q 1 t 2
2
? · ·
í q (t ) = q 1 t
0 £ t £ t1 ; (3.14)
? ·· ··
? q (t ) = q 1 .
??
ì q (t ) = q + ·
?t + ti ?
??i
? · (t ) = ·
q (i+1)i ?
2
è
÷
?
0 £ t £ t ; (3.15)
í q
? ··
q (i+1)i i
? q (t ) = 0.
??
ì q (t ) = q + ·
?t + ti-1 + t
? + 1 ·· t 2
? i-1
q (i-1)i ?
è
(i-1)i ÷
2 ?
2 qi
? · (t ) = · + · t
0 £ t £ t ; (3.16)
í q
? ··
q (i-1)i q i i
·
? q (t ) = q i .
??
i=2,3,??,n。
在利用式 3.14、式 3.15 及式 3.16 生成軌跡時(shí),應(yīng)注意每一段都是從 t = 0 開(kāi)始, 但是段與段同樣是相互關(guān)聯(lián)的連接關(guān)系。此外,雖然上面的軌跡生成公式只是某一個(gè)關(guān)節(jié)變量的計(jì)算過(guò)程,但是此公式對(duì)于其他的關(guān)節(jié)變量的軌跡計(jì)算也是同樣適用的。
4 關(guān)鍵零部件設(shè)計(jì)計(jì)算
4.1 步進(jìn)電機(jī)的計(jì)算和選擇
根據(jù)設(shè)計(jì)要求可假定各主要部件的質(zhì)量:底座≤15kg,大臂≤10kg,小臂≤5kg, 末端執(zhí)行部分≤2.5kg。
1 1
2 2
3 3
G2
G3
大、小臂及末端執(zhí)行器的各自繞各自重心的轉(zhuǎn)動(dòng)慣量分別為 , , , 由平行軸定理可知,繞第一關(guān)節(jié)自由度的轉(zhuǎn)動(dòng)慣量為:
J1 = JG1
+ m l 2 + J
+ m l 2 + J
+ m l 2
(4.1)
1 1
2 2
3 3
G2
G3
其中質(zhì)量 , , 分別為大、小臂及末端執(zhí)行器的質(zhì)量,各關(guān)節(jié)自由度中心到第一關(guān)節(jié)自由度中心的水平距離分別為 , , ,假定各長(zhǎng)度為 250mm、350mm、
500mm,而 JG1
<< m l 2、J
<< m l 2、J
<< m l 2 故 , , 均可省略不計(jì),所以機(jī)
器人第一關(guān)節(jié)自由度的等效轉(zhuǎn)動(dòng)慣量為:
J = m l 2 + m l 2 + m l 2
1 1 1 2 2 3 3
= 10 kg * ( ) ( ) ( )
=1.25kg2 (4.2)
因?yàn)闄C(jī)器人大臂 = 0 到 =30°/s 所需時(shí)間為t = 1s,所以啟動(dòng)轉(zhuǎn)矩
1
T1 =
J ′ w1
- w0
t
= 1.25 * ? = 0.65N2m (4.3)
由上可知,步進(jìn)電機(jī)的轉(zhuǎn)速為1250r/min 時(shí),步進(jìn)電機(jī)的轉(zhuǎn)矩必須不低于0. 65N2m,根據(jù)以上參數(shù)要求,選用由雷塞公司生產(chǎn)的 86HS47 型兩項(xiàng)混合式步進(jìn)電機(jī),其轉(zhuǎn)速為 1250r/min 時(shí),保持轉(zhuǎn)矩為 3. 5N2m,符合設(shè)計(jì)要求。
小臂步進(jìn)電機(jī)的計(jì)算同大臂步進(jìn)電機(jī)的計(jì)算類似,同理,繞第二關(guān)節(jié)自由度的等
效轉(zhuǎn)動(dòng)慣量為:
J = m l 2 + m l 2
2 2 2 3 3
= 5kg * ( ) + 2.5kg * ( )
= 0.85 kg2 (4.4)
因?yàn)闄C(jī)器人小臂 = 0 到 =30°/s 所需時(shí)間為 t = 1s,所以啟動(dòng)轉(zhuǎn)矩
T = J ′ w1 - w0 = 0.85 * ? = 0.46N2m〈 0.65 N2m,
1 1 t
此外,第三關(guān)節(jié)自由度的運(yùn)動(dòng)形式是電機(jī)驅(qū)動(dòng)諧波減速器,然后帶動(dòng)絲杠的旋轉(zhuǎn),,因而必須將絲杠的驅(qū)動(dòng)轉(zhuǎn)矩的因素考慮在內(nèi),其技術(shù)參數(shù)如表 4.1 示。
表 4.1 絲杠軸的技術(shù)參數(shù)
名稱
公稱直徑dm
螺距 p
接觸角β
摩擦系數(shù)
螺紋類型
單位
(mm)
(mm)
(°)
數(shù)值
20
2
45
0.1
梯形螺紋
由表可得:螺旋升角:
l = arctan 2 /10p =3.64° (4.5)
當(dāng)量摩擦角
螺紋阻力矩
rv = arctan
f
cos(b / 2
) =6.17° (4.6)
T1 = dm / 2Q tan(l + rv )=0.052N (4.7)
螺紋摩擦力矩
T2 = fc
× Q × Dm =0.06N (4.8)
2
式(4.8)中, = 0.1 表示摩擦系數(shù),Q 表示絲杠軸承載面的平均直徑,取螺母內(nèi)外徑的平均值,即 ( 20 + 40)/2 = 30mm,所以,絲杠所轉(zhuǎn)動(dòng)力矩
T = 0.112N2m
安全系數(shù)取 2,則絲杠所需最小轉(zhuǎn)矩 T = 2T =0.224 N2m,
考慮摩擦力矩和繞各自重心的轉(zhuǎn)動(dòng)慣量等因素,則可假定為 T=1N2m,取安全系數(shù)為 2,則諧波減速器所需輸出最小轉(zhuǎn)矩 = 2T =2N2m,據(jù)此選擇中技克美公司生產(chǎn)的扁平型諧波減速器,XB3 一 32 型號(hào)的技術(shù)參數(shù)見(jiàn)下表。
表 4.2 XB3 一 32 一 50 的技術(shù)參數(shù)
機(jī)型
速比
最高輸入轉(zhuǎn)速 rpm
輸入轉(zhuǎn)速 3000rpm
半流體潤(rùn)滑
油潤(rùn)滑
輸出扭矩
輸入功率
32
50
3500
6000
2
0.021
設(shè)諧波減速器的傳動(dòng)效率η= 90 ,則步進(jìn)電機(jī)需輸出力矩
= =
= 0.04 N2m〈0.65 N2m,
η
由上可知,本設(shè)計(jì)中的步進(jìn)電機(jī)均選擇 86HS35 型兩相混合式步進(jìn)電機(jī)。
4.2 滾珠絲杠的選型設(shè)計(jì)及計(jì)算
(1) 最大工作載荷計(jì)算
工作最大負(fù)載 = 24.5N,方向?yàn)榻z杠軸向。因此,滾珠絲杠的進(jìn)給抗力,即最大工作載荷 Fm=Fz+ f,橫向工作載荷 =0.5Fz = 12.25N;f 為摩擦系數(shù),f=0.15。因此,絲杠最大工作載荷為
Fm=24.5+12.25 * 0.15=26.34N
(2) 最大動(dòng)負(fù)載校核
滾珠絲杠最大動(dòng)負(fù)載 C = √ ,L 為工作壽命,L=60nT/ ;n 為絲杠轉(zhuǎn)速,
n=v/ = =25r/s=1500rpm,T 為額定使用壽命(h),取 T=15000,則 L=60 * l500 *
15000/ =1350。因此 C = √ * l.2 * 26.34=349.33N,查表知額定動(dòng)負(fù)載 Ca=4kN, 安全裕度為 4000/349.33 = 11.45[9]。
(3) 絲杠穩(wěn)定性驗(yàn)算
FK =
2
f p 2 EI
絲杠臨界壓縮載荷 (mL)2
,且絲杠通過(guò)軸承在兩端固定的支承方式,查表
知支承方式系數(shù) =0.25[10]。材料選用 45 號(hào)鋼,彈性模量 E=20.58 N/ ,I 為
截面慣性矩,I= =490.9 ,其中 為絲杠底徑,絲杠底徑近似為外徑和滾珠直
徑之差,即 ,絲杠外徑 d= (0.2~0.25) ,絲杠名義直徑已知 =l0mm, 查表知滾珠直徑 =2.38lmm,故得 =9mm;μ為長(zhǎng)度系數(shù),此處取 2; 且 L=120mm,
( )2
f p 2 EI FK = 2 =
mL
= 4323.3N,絲杠穩(wěn)定安全系數(shù)
( )
n = Fk
= >>[
] = 2.5~4,故絲杠穩(wěn)定[11]。
F
w
m
(4) 絲杠剛度驗(yàn)算
d s
絲杠的拉壓變形量為
= Fm L
EA
式中:L 為滾珠絲杠在兩軸承支撐點(diǎn)間的受力
pd 2
長(zhǎng)度,取 L=120mm;E = 20.6 * MPa;截面積 A = 1 =63.58 , 則
4
d = Fm L =
= 23.41 * mm,
s EA
絲杠變形很小,可忽略不計(jì),故剛度足夠。
(5) 傳動(dòng)效率計(jì)算
h = tgl
tg (l + f )
根據(jù)初選滾珠絲杠型號(hào)查表得螺旋升角為 4°33',一般摩擦角φ= 10',則
= 0.96,傳動(dòng)效率比較高[12]。
5 SCARA 裝配機(jī)器人機(jī)械結(jié)構(gòu)設(shè)計(jì)
5.1 大臂機(jī)械結(jié)構(gòu)設(shè)計(jì)
大臂的結(jié)構(gòu)設(shè)計(jì)遵循由下及上的設(shè)計(jì)原則,底座用來(lái)固定機(jī)器人,電機(jī)安裝于底座內(nèi)部,減少了轉(zhuǎn)動(dòng)慣量,大臂結(jié)構(gòu)裝配圖如圖 5.1 所示[13]。大臂的驅(qū)動(dòng)電機(jī)電機(jī)軸插入到連接軸底部,通過(guò)銷(xiāo)軸固定,深溝球軸承安裝于套筒內(nèi),上面的軸承上端有透蓋固定,下端有軸肩,下面的軸承上端有軸肩,下端通過(guò)連接體頂住軸承外圈;另外套筒通過(guò)螺栓與底座頂端相連,從而實(shí)現(xiàn)了大臂的旋轉(zhuǎn)運(yùn)動(dòng)。
圖 5.1 大臂裝配體
5.2 小臂機(jī)械結(jié)構(gòu)設(shè)計(jì)
小臂的機(jī)械結(jié)構(gòu)如圖 5.2 所示,根據(jù)模塊化的設(shè)計(jì)原則,故小臂的安裝方式與大臂相似,不同的是小臂驅(qū)動(dòng)電機(jī)通過(guò)套筒固定在大臂上而不是固定在底座上。本結(jié)構(gòu)在裝配上也較簡(jiǎn)易,電機(jī)、連接軸可在外部進(jìn)行安裝裝配,這樣降低了機(jī)器人的安裝成本,大臂小臂采用了同樣的傳動(dòng)原理及結(jié)構(gòu)設(shè)計(jì),這樣能夠簡(jiǎn)化機(jī)器人的本體結(jié)構(gòu)和零部件制造成本。
(a) 大臂裝配體 (b)大臂工程圖圖 5.2 小臂裝配體
5.3 腕關(guān)節(jié)機(jī)械結(jié)構(gòu)設(shè)計(jì)
如圖 5.3 三四關(guān)節(jié)結(jié)構(gòu)裝配圖所示,支撐架固定在小臂上,在支撐架頂部,固定著諧波減速器,電機(jī)通過(guò)諧波減速器帶動(dòng)絲杠運(yùn)動(dòng),絲杠固定在支撐架上,通過(guò)絲杠旋轉(zhuǎn)帶動(dòng)絲杠螺母,實(shí)現(xiàn)第三自由度的豎直運(yùn)動(dòng)。絲杠螺母與滑塊相連,第四關(guān)節(jié)驅(qū)動(dòng)電機(jī)通過(guò)連接件與滑塊相連,電機(jī)通過(guò)連接軸帶動(dòng)螺絲刀旋轉(zhuǎn),實(shí)現(xiàn)第四自由度的旋轉(zhuǎn)運(yùn)動(dòng)。
圖 5.3 三四關(guān)節(jié)裝配體
5.4 機(jī)器人的總體結(jié)構(gòu)設(shè)計(jì)
在確定了機(jī)器人的傳動(dòng)方案之后,又完成了各相關(guān)零件的參數(shù)選擇或選型,以及機(jī)器人各部件的結(jié)構(gòu)設(shè)計(jì)之后,機(jī)器人的總體結(jié)構(gòu)也就確定了下來(lái),將大臂、小臂和末端執(zhí)行器裝配起來(lái)就得到了機(jī)器人的總體結(jié)構(gòu),其結(jié)構(gòu)如圖 5.4 所示,大臂、小臂、主軸旋轉(zhuǎn)都由步進(jìn)電機(jī)實(shí)現(xiàn),各動(dòng)作的實(shí)現(xiàn)都由步進(jìn)電機(jī)連接連接軸完成,主軸升降通過(guò)固定在小臂上的絲杠螺母來(lái)實(shí)現(xiàn)。其中,大臂的步進(jìn)電機(jī)通過(guò)套筒固定在底座的頂端,底座可以固定在工作臺(tái)或地面上;小臂的步進(jìn)電機(jī)通過(guò)套筒固定在大臂上,螺絲刀的步進(jìn)電機(jī)則通過(guò)套筒固定在滑塊上。
圖 5.4 SCARA 機(jī)器人裝配體
6 控制系統(tǒng)設(shè)計(jì)
6.1 控制系統(tǒng)的硬件構(gòu)成
SCARA 機(jī)器人的控制系統(tǒng)實(shí)際上是一種包括任務(wù)規(guī)劃,動(dòng)作規(guī)劃,和伺服控制等的分層控制系統(tǒng),如圖 6.1 所示。首先機(jī)器人通過(guò)人機(jī)接口獲得命令,然后機(jī)器人對(duì)輸入的命令進(jìn)行分析“理解”,其次得到相應(yīng)的任務(wù)要求即為任務(wù)規(guī)劃,動(dòng)作規(guī)劃則是機(jī)器人根據(jù)得到的任務(wù)要求進(jìn)行動(dòng)作分解;機(jī)器人對(duì)每個(gè)關(guān)節(jié)的運(yùn)動(dòng)軌跡進(jìn)行設(shè)計(jì),即為軌跡規(guī)劃;實(shí)現(xiàn)每個(gè)關(guān)節(jié)按照既定的運(yùn)動(dòng)要求進(jìn)行運(yùn)動(dòng),即是伺服控制。
圖 6.1 機(jī)器人的分層控制圖
6.2 SCARA 機(jī)器人的控制方式
6.2.1 點(diǎn)位控制方式
這種控制方式的特點(diǎn)是實(shí)現(xiàn)點(diǎn)的位置控制,控制時(shí)是實(shí)現(xiàn)由一個(gè)已知點(diǎn)到另一個(gè)已知點(diǎn)的運(yùn)動(dòng),而點(diǎn)與點(diǎn)之間的軌跡倒是沒(méi)有什么要求。
6.2.2 連續(xù)軌跡控制方式
這種控制方式的特點(diǎn)是要求其運(yùn)動(dòng)軌跡為給定的曲線,且對(duì)位姿和速度同樣有要求,以完成作業(yè)任務(wù)。
6.2.3 力(力矩)控制方式
在進(jìn)行裝配任務(wù)時(shí),除了定位精度的要求之外,還要求對(duì)末端執(zhí)行器施加在對(duì)象上的力或力矩進(jìn)行控制,這時(shí)就要利用力(力矩)的控制方式[15]。
6.3 SCARA 機(jī)器人的控制流程
根據(jù)以上控制系統(tǒng)和控制方式的選擇,為本機(jī)器人設(shè)計(jì)了如圖 6.2 的控制流程: 首先是啟動(dòng)系統(tǒng),進(jìn)行系統(tǒng)初始化,然后輸入程序,然后機(jī)器人的大臂和小臂開(kāi)始運(yùn)動(dòng),保證末端執(zhí)行器到達(dá)指定位置,然后絲杠螺母開(kāi)始運(yùn)動(dòng),保證末端執(zhí)行器在 Z 軸方向上達(dá)到指定位置,然后末端執(zhí)行器開(kāi)始旋轉(zhuǎn),旋轉(zhuǎn)結(jié)束后,絲杠螺母上升一小段位置,如果裝配任務(wù)沒(méi)有完成,則重復(fù)之前動(dòng)作直至完成任務(wù),如果任務(wù)完成,則關(guān)閉系統(tǒng)。
圖 6.2 機(jī)器人的控制流程圖
7 結(jié) 論
本文設(shè)計(jì)了一種 SCARA 平面關(guān)節(jié)式擰螺絲裝配機(jī)器人,完成了其本體的設(shè)計(jì), 了進(jìn)行運(yùn)動(dòng)學(xué)分析,并以三次多項(xiàng)式為例進(jìn)行了軌跡規(guī)劃的生成,還對(duì)其控制系統(tǒng)的設(shè)計(jì)進(jìn)行了簡(jiǎn)單的討論。
本文研究的主要內(nèi)容如下所示:
(1) 對(duì) SCARA 機(jī)器人的傳動(dòng)方案進(jìn)行了選擇和確定,大臂、小臂、末端執(zhí)行器均以步進(jìn)電機(jī)驅(qū)動(dòng),實(shí)現(xiàn)第一、二、四關(guān)節(jié)的旋轉(zhuǎn)運(yùn)動(dòng),第三關(guān)節(jié)以步進(jìn)電機(jī)帶動(dòng)絲杠螺母運(yùn)動(dòng)來(lái)實(shí)現(xiàn) Z 軸方向上的豎直運(yùn)動(dòng)。
(2) 完成了 SCARA 機(jī)器人的本體設(shè)計(jì),其大臂小臂的連接方式相似,都是以步進(jìn)電機(jī)帶動(dòng)連接軸旋轉(zhuǎn),連接軸與大臂小臂的相連實(shí)現(xiàn)其自由度的旋轉(zhuǎn),不同的是, 大臂的步進(jìn)電機(jī)固定在底座上,而小臂的步進(jìn)電機(jī)固結(jié)在大臂上。絲杠固定在小臂上, 末端執(zhí)行器的步進(jìn)電機(jī)通過(guò)連接件與滑塊相連。
(3) 對(duì) SCARA 機(jī)器人進(jìn)行了運(yùn)動(dòng)學(xué)分析,并以三次多項(xiàng)式為例對(duì)其進(jìn)行了軌跡規(guī)劃的生成。
(4) 通過(guò)對(duì) SCARA 機(jī)器人工作任務(wù)、工作要求、工作環(huán)境的分析和性價(jià)比以及安裝調(diào)試等因素的考慮,對(duì)步進(jìn)電機(jī)、諧波減速器、末端執(zhí)行器、大小臂等結(jié)構(gòu)或零件進(jìn)行了參數(shù)計(jì)算、型號(hào)選擇和通過(guò) SolidWorks 進(jìn)行三維建模。
(5) 簡(jiǎn)單分析了 PTP、CP 和力(力矩)控制方式和基于 IPC+運(yùn)動(dòng)控制卡的開(kāi)放式控制系統(tǒng)的硬件構(gòu)成。并對(duì) SCARA 裝配機(jī)器人的控制流程作了簡(jiǎn)單設(shè)計(jì)。
參 考 文 獻(xiàn)
[1] 桂仲成,吳建東.全球機(jī)器人產(chǎn)業(yè)現(xiàn)狀趨勢(shì)研究及中國(guó)機(jī)器人產(chǎn)業(yè)發(fā)展預(yù)測(cè)[J]. 東方電氣評(píng)論,2014,17(4):4-10.
[2] 楊化書(shū),曲新峰,工業(yè)機(jī)器人技術(shù)應(yīng)用及發(fā)展[J].黃河水利職業(yè)技術(shù)學(xué)院學(xué)報(bào),2004, 16(7),(2004),42-43 .
[3] 楊成文.平面關(guān)節(jié)機(jī)器人研制及其軌跡規(guī)劃[D].廣州:華南理工大學(xué),2012. [4]郭洪紅.工業(yè)機(jī)器人技術(shù)[M].西安:西安電子科技大學(xué)出版社,05:75-80.
[5]程汀.SCARA 機(jī)器人的設(shè)計(jì)及運(yùn)動(dòng)、動(dòng)力學(xué)研究[D].合肥:合肥工業(yè)大學(xué),2008. [6]王健強(qiáng),程汀.SCARA 機(jī)器人結(jié)構(gòu)設(shè)計(jì)及軌跡規(guī)劃算法[J].合肥工業(yè)大學(xué)學(xué)報(bào),2008.
[7] 盧軍,鄭國(guó)穗,馬金鋒,劉杰.SCARA 機(jī)器人結(jié)構(gòu)優(yōu)化設(shè)計(jì)與運(yùn)動(dòng)分析[J].陜西科技大學(xué)學(xué)報(bào),2014.
[8] 夏添.SCARA 機(jī)器人的結(jié)構(gòu)設(shè)計(jì)與運(yùn)動(dòng)控制算法研究[D].武漢,湖北工業(yè)大學(xué),2016. [9]斯克萊特.機(jī)械設(shè)計(jì)實(shí)用機(jī)構(gòu)與裝備圖冊(cè)[M]. 北京:機(jī)械工業(yè)出版社,2015.
[10]濮良貴,紀(jì)名剛.機(jī)械設(shè)計(jì)[M]. 北京:高等教育出版社,2002. [11]聞梆椿.機(jī)械設(shè)計(jì)手冊(cè)[M]. 北京:機(jī)械工業(yè)出版社,2010.
[12]帕姆利.機(jī)械設(shè)計(jì)零件與實(shí)用裝置圖冊(cè)[M]. 北京:機(jī)械工業(yè)出版社,2013. [13]蔡自興.機(jī)器人學(xué)基礎(chǔ)[M].北京:機(jī)械工業(yè)出版社,2009.
[14] 許果,王峻峰,何嶺松.一種基于 SCARA 機(jī)器人機(jī)械結(jié)構(gòu)設(shè)計(jì)[J].機(jī)械工程師,2005, 35(4):65-67.
[15] 王健強(qiáng),程汀.SCARA 機(jī)器人結(jié)構(gòu)設(shè)計(jì)及軌跡規(guī)劃算法[J].合肥工業(yè)大學(xué)學(xué)報(bào),2008, 31(7):1027-1028.
[16] 楊可楨.機(jī)械設(shè)計(jì)基礎(chǔ)[M]. 北京:高等教育出版社,2013. [17]衛(wèi)道柱.螺絲自動(dòng)擰緊機(jī)的研制[D].合肥,合肥工業(yè)大學(xué),2004. [18]蔡軍爽.螺絲機(jī)控制系統(tǒng)研究與開(kāi)發(fā)[D].沈陽(yáng),東北大學(xué),2008.
[19] 賈廣田.全自動(dòng)鎖螺絲機(jī)控制系統(tǒng)設(shè)計(jì)與開(kāi)發(fā)[D].杭州,浙江工業(yè)大學(xué)碩士學(xué)位論文,2015.
[20] 梁波.中國(guó)機(jī)器人技術(shù)和產(chǎn)業(yè)調(diào)查[J].高科技與產(chǎn)業(yè)化,2015,03:60-65. [21]李浩.自動(dòng)鎖絲部分技術(shù)研究[D].合肥:合肥工業(yè)大學(xué),2014.
[22] 鄧勁蓮.機(jī)械產(chǎn)品三維建模圖冊(cè)[M]. 北京:機(jī)械工業(yè)出版社,2014.
[23] 孟飛武.面向制鞋涂膠的 SCARA 機(jī)器人結(jié)構(gòu)設(shè)計(jì)與研究[D].淮南,安徽理工大學(xué),2015.
附錄 1:外文翻譯
SCARA 機(jī)械手控制和建模
摘要
現(xiàn)在隨著電機(jī)驅(qū)動(dòng)器和操縱器動(dòng)力學(xué)的非線性發(fā)展,操縱器變得越來(lái)越復(fù)雜。由于這一系統(tǒng)的復(fù)雜性,建模過(guò)程尤其是通過(guò)使用數(shù)學(xué)表示或白盒方法的建模過(guò)程將變得更加復(fù)雜。因此計(jì)算機(jī)輔助設(shè)計(jì)(CAD)建模的方法應(yīng)用的更加廣泛。在本文中通過(guò)使用 SolidWorks 來(lái)呈現(xiàn)機(jī)器人手臂 CAD 模型的發(fā)展。然后通過(guò) Matlab/Simulink 環(huán)境平臺(tái)的模擬環(huán)境來(lái)設(shè)計(jì)基于比例--積分--微分關(guān)系的控制器(PID)。本文展現(xiàn)的是 MATLAB 和 SolidWorks 的組合使用的優(yōu)點(diǎn),而 SolidWorks 能夠很好的表現(xiàn)建模過(guò)程。用于 4 自由度(DOF)機(jī)械手的 PID 控制器被評(píng)定為第 2 自由度后顯示了良好的效果。
1. 簡(jiǎn)介
SCARA(選擇順應(yīng)性關(guān)節(jié)機(jī)器人手臂)機(jī)器人應(yīng)用廣泛,如取放,裝配,包裝。SCARA 機(jī)器人是一個(gè)非線性動(dòng)力學(xué)系統(tǒng),具有一定的不確定性如摩擦等。由于SCARA 機(jī)器人是高度非線性的,用傳統(tǒng)的方法難以識(shí)別 SCARA 模型的參數(shù)。尤為困難的是計(jì)算 SCARA 機(jī)器人的慣性矩,質(zhì)量,等等。
這種機(jī)器人的機(jī)械手需要遵循特定應(yīng)用程序的控制。因此,機(jī)器人的軌跡跟蹤需要一個(gè)正確的動(dòng)態(tài)模型和機(jī)器人的準(zhǔn)確位置。然而,每個(gè)動(dòng)態(tài)模型都有一定程度的錯(cuò)誤。不正確的和錯(cuò)誤的動(dòng)態(tài)模型最終會(huì)導(dǎo)致位置或軌跡跟蹤誤差?,F(xiàn)在,如何簡(jiǎn)化機(jī)械手動(dòng)力學(xué)建模的研究已經(jīng)取得了許多研究成果。但是,所有研究人員都是采用復(fù)雜的方法來(lái)克服傳統(tǒng)動(dòng)力學(xué)的建模誤差。
Mathworks 公司介紹了 SimMechanics 鏈接的三分之一仿真軟件產(chǎn)品。SimMechanics 鏈接工具從外部應(yīng)用程序,如計(jì)算機(jī)輔助設(shè)計(jì)生成物理模型的 XML 文件(CAD)平臺(tái)。這些物理模型的 XML 文件可以用仿真軟件來(lái)生成 SimMechanics 模型代表的機(jī)械系統(tǒng)。
有關(guān)于 SolidWorks 和MATLAB 相結(jié)合的好處的研究很少,例如為了避免或簡(jiǎn)化機(jī)器人手