【溫馨提示】壓縮包內(nèi)含CAD圖有下方大圖片預覽,下拉即可直觀呈現(xiàn)眼前查看、盡收眼底縱觀。打包內(nèi)容里dwg后綴的文件為CAD圖,可編輯,無水印,高清圖,壓縮包內(nèi)文檔可直接點開預覽,需要原稿請自助充值下載,所見才能所得,請見壓縮包內(nèi)的文件及下方預覽,請細心查看有疑問可以咨詢QQ:11970985或197216396
畢業(yè)設(shè)計附本
紅薯收獲機的設(shè)計與仿真
DESIGN AND SIMULATION OF SWEET POTATO HARVESTER
學生姓名
班 級
學 號
學院名稱
專業(yè)名稱
指導教師
年
5月
30日
目 錄
畢業(yè)設(shè)計(論文)課題申報表 1
畢 業(yè) 設(shè) 計(論 文) 任 務 書 2
畢業(yè)設(shè)計(論文)開題報告 5
畢業(yè)設(shè)計(論文)指導手冊 10
學生畢業(yè)設(shè)計(論文)中期匯報表 15
學生畢業(yè)設(shè)計(論文)中期情況檢查表 16
畢業(yè)設(shè)計(論文)指導教師評閱表 17
畢業(yè)設(shè)計(論文)評閱教師評閱表 18
畢業(yè)設(shè)計(論文)答辯及綜合成績評定表 19
外文翻譯 20
畢業(yè)設(shè)計(論文)課題申報表
指導教師
職稱
講師
教研室
機械基礎(chǔ)教研室
申報課題名稱
紅薯收獲機的設(shè)計與仿真
課題類型
工程設(shè)計類
課題來源
B.社會生產(chǎn)實踐
課
題
簡
介
傳統(tǒng)的紅薯、土豆等根莖類農(nóng)作物收獲一直是靠人工刨土收獲,這是農(nóng)業(yè)生產(chǎn)領(lǐng)域中一項重體力勞動,人工收獲勞動強度大,生產(chǎn)效率低。雖然市面上也有一些機械化收獲設(shè)備,但由于價格、性能,尤其是收凈率等各方面原因,始終未能大范圍應用。
課題要求
(包括所具備的條件)
要求完成紅薯收獲的小型機械化設(shè)備一臺,包括動力源、傳動系統(tǒng)、挖土機構(gòu)、振動篩、薯塊收集等結(jié)構(gòu),并且要適應山區(qū)、丘陵等小地塊作業(yè)要求,并且保證收凈率在95%以上。
課題工作量要求
1、裝配圖1張;自選零件圖若干,要求圖紙總量不少于2張0號圖;
2、采用proe完成三維建模,并進行動畫仿真;
3、翻譯英文資料5000字;
4、不少于15000字的設(shè)計說明書一份。
教研室
審定意見
同意
教研室主任簽字:
學 院
審定意見
同意
教學院長簽字:
畢 業(yè) 設(shè) 計(論 文) 任 務 書
學院(系):
機電工程學院
專??? ??業(yè):
機械設(shè)計制造及其自動化
學生姓名:
學 ? 號:
設(shè)計(論文)
題目:
紅薯收獲機的設(shè)計與仿真
紅薯收獲機的設(shè)計與仿真
起 迄 日 期:
2018年2 月26 日~ 2018年5 月 26日
指 導 教 師:
教研室主任:
發(fā)任務書日期: 年 3 月 4 日
畢 業(yè) 設(shè) 計(論 文)任 務 書
1.畢業(yè)設(shè)計的背景:
傳統(tǒng)的紅薯、土豆等根莖類農(nóng)作物收獲一直是靠人工刨土收獲,這是農(nóng)業(yè)生產(chǎn)領(lǐng)域中一項重體力勞動,人工收獲勞動強度大,生產(chǎn)效率低。雖然市面上也有一些機械化收獲設(shè)備,但由于價格、性能,尤其是收凈率等各方面原因,始終未能大范圍應用。
2.畢業(yè)設(shè)計(論文)的內(nèi)容和要求:
要求完成紅薯收獲的小型機械化設(shè)備一臺,包括動力源、傳動系統(tǒng)、挖土機構(gòu)、振動篩、薯塊收集等結(jié)構(gòu),并且要適應山區(qū)、丘陵等小地塊作業(yè)要求,并且保證收凈率在95%以上。
1、裝配圖1張;自選零件圖若干,要求圖紙總量不少于2張0號圖;
2、采用proe完成三維建模,并進行動畫仿真;
3、翻譯英文資料5000字;
4、不少于15000字的設(shè)計說明書一份。
3.主要參考文獻:
[1]李建東,楊薇,杜永琪,賈晶霞,李洋.4UL-1型多功能根莖類作物挖掘機的設(shè)計.農(nóng)業(yè)工程.2015.05
[2]甘方地.紅薯種植與機械化作業(yè).湖南農(nóng)機.2014.01
[3]宋龍鎮(zhèn).HX-85A多功能收獲機.農(nóng)村新技術(shù).2015.10
[4]雙驅(qū)動薯類收獲機的研發(fā)應用.馬世文,黃桂紅.農(nóng)機質(zhì)量與監(jiān)督.2017.10
[5]夏陽.紅薯機械化收獲機具的試驗研究.河南農(nóng)業(yè)大學碩士論文.2009年
4.畢業(yè)設(shè)計(論文)進度計劃(以周為單位):
1周:布置畢業(yè)設(shè)計題目,進行畢業(yè)設(shè)計實習。
2周:收集相關(guān)資料。完成并提交開題報告。
3周:翻譯英文資料。
4-5周:初步構(gòu)設(shè)并確定設(shè)計方案。完成裝配圖草圖的繪制。
6周:計算確定各零件基本尺寸。
7-8周:繪制總裝配圖。
9周:編寫設(shè)計說明書。
10周:繪制零件圖。
11周:修訂初稿。
12周:完成答辯。
教研室審查意見:
教研室主任簽名: 年 月 日
學院審查意見:
教學院長簽名: 年 月 日
畢業(yè)設(shè)計(論文)開題報告
課題名稱:
紅薯收獲機的設(shè)計與仿真
學生姓名:
學號:
指導教師:
職稱:
講師
所在學院:
機電工程學院
專業(yè)名稱:
機械設(shè)計制造及其自動化
日期:2018 年 3 月 16 日
說 明
1.根據(jù)《畢業(yè)設(shè)計(論文)管理規(guī)定》,學生必須撰寫《畢業(yè)設(shè)計(論文)開題報告》,由指導教師簽署意見、教研室審查,學院教學院長批準后實施。
2.開題報告是畢業(yè)設(shè)計(論文)答辯委員會對學生答辯資格審查的依據(jù)材料之一。學生應當在畢業(yè)設(shè)計(論文)工作前期內(nèi)完成,開題報告不合格者不得參加答辯。
3.畢業(yè)設(shè)計開題報告各項內(nèi)容要實事求是,逐條認真填寫。其中的文字表達要明確、嚴謹,語言通順,外來語要同時用原文和中文表達。第一次出現(xiàn)縮寫詞,須注出全稱。
4.本報告中,由學生本人撰寫的對課題和研究工作的分析及描述,沒有經(jīng)過整理歸納,缺乏個人見解僅僅從網(wǎng)上下載材料拼湊而成的開題報告按不合格論。
5.課題類型填:工程設(shè)計類;理論研究類;應用(實驗)研究類;軟件設(shè)計類;其它。
6.課題來源填:教師科研;社會生產(chǎn)實踐;教學;其它
畢業(yè)設(shè)計(論文)開題報告
課題名稱
紅薯收獲機的設(shè)計與仿真
課題來源
B.社會生產(chǎn)實踐
課題類型
工程設(shè)計類
1.選題的背景及意義:
傳統(tǒng)的紅薯、土豆等根莖類農(nóng)作物收獲一直是靠人工刨土收獲,這是農(nóng)業(yè)生產(chǎn)領(lǐng)域中一項重體力勞動,人工收獲勞動強度大,生產(chǎn)效率低。雖然市面上也有一些機械化收獲設(shè)備,但由于價格、性能,尤其是收凈率等各方面原因,始終未能大范圍應用。紅薯收獲機從目前國際經(jīng)濟全球化發(fā)展來看我國農(nóng)業(yè)機械方面面臨著嚴峻考驗和新的機遇。因此為了了解國內(nèi)紅薯生產(chǎn)機械化和發(fā)展動態(tài)對于大力發(fā)展,以促進我國紅薯收獲機對農(nóng)民財富收入問題展開了針對性調(diào)查,盡快普及紅薯收獲機的機械化創(chuàng)造更多的財富。 開發(fā)一種能適應我國農(nóng)業(yè)生產(chǎn)體制的紅薯收獲機及時在必行這樣有效的降低勞動強度,解放了勞動生產(chǎn)力使農(nóng)民在有限的時間內(nèi)創(chuàng)造更多的財富收入,因此開發(fā)技術(shù)對于提高紅薯種植效益,降低生產(chǎn)成本增加農(nóng)民財富收入具有重大的意義。
2.研究內(nèi)容擬解決的主要問題:
研究的內(nèi)容:
l.紅薯收獲機的總體方案設(shè)計。
2.挖掘機構(gòu)的設(shè)計與分析計算。
3.薯士及薯秧分離機構(gòu)的設(shè)計與分析計算。
解決的主要問題,對挖掘鏟的要求:
l.挖出所有薯塊,盡可能不漏薯(即明薯率高);
2.盡可能使進入機器的土壤少;
3.能將掘起的紅薯輸送到分離裝置,并且盡可能細化土壤,減少負荷; 挖掘鏟的任務是在克服各種阻力時消耗的能量最少的情況下將紅薯挖出。
3.研究方法技術(shù)路線:
畢業(yè)設(shè)計分為紅薯收獲機的設(shè)計與仿真的傳動系統(tǒng)、挖土機構(gòu)、振動篩、薯塊收集等結(jié)構(gòu)設(shè)計,裝配圖和主要零件圖及論文。研究并完成基本傳動計算、帶傳動、機架部分的設(shè)計,減速器的選擇,聯(lián)軸器的選擇挖掘鏟的設(shè)計,鏈輪設(shè)計以及地輪設(shè)計。
4.研究的總體安排和進度計劃:
1周:布置畢業(yè)設(shè)計題目,進行畢業(yè)設(shè)計實習。
2周:收集相關(guān)資料。完成并提交開題報告。
3周:翻譯英文資料。
4-5周:初步構(gòu)設(shè)并確定設(shè)計方案。完成裝配圖草圖的繪制。
6周:計算確定各零件基本尺寸。
7-8周:繪制總裝配圖。
9周:編寫設(shè)計說明書。
10周:繪制零件圖。
11周:修訂初稿。
12周:完成答辯。
5.主要參考文獻:
[1]李建東,楊薇,杜永琪,賈晶霞,李洋.4UL-1型多功能根莖類作物挖掘機的設(shè)計.農(nóng)業(yè)工程.2015.05
[2]甘方地.紅薯種植與機械化作業(yè).湖南農(nóng)機.2014.01
[3]宋龍鎮(zhèn).HX-85A多功能收獲機.農(nóng)村新技術(shù).2015.10
[4]雙驅(qū)動薯類收獲機的研發(fā)應用.馬世文,黃桂紅.農(nóng)機質(zhì)量與監(jiān)督.2017.10
[5]夏陽.紅薯機械化收獲機具的試驗研究.河南農(nóng)業(yè)大學碩士論文.2009
[6]呂金慶.《紅薯收獲機的設(shè)計》[M].農(nóng)業(yè)機械出版社:1576
[7]上海市大專院校機械制造工藝學協(xié)作組.《機械制造工藝學》:97~125
[8]農(nóng)業(yè)部農(nóng)機化技術(shù)開發(fā)推廣總站編.《農(nóng)機化適用新技術(shù)讀本》[M]。兵器工業(yè)出版社,2000:45~103?
[9]沈再春.《農(nóng)產(chǎn)品機械與設(shè)備》[M].農(nóng)業(yè)出版社,1993:12~66
[10]李自華.《農(nóng)業(yè)機械學》[M].農(nóng)業(yè)出版社:1~22
[11]張耀宸主編.《機械加工工藝設(shè)計手冊》[M].航空業(yè)出版社,1987;102~180
[12]戴曙.《金屬切削機床》[M].北京:機械工業(yè)出版社,2001:65~84
[13]濮良貴,紀名剛.《機械設(shè)計》(第七版)[M].高等教育出版社77~99
[14]劉鴻文.《材料力學》[M].北京:高等教育出版社,66~88
[15]中國機械工程學會.《中國機械設(shè)計大典》[M].南昌:江西科學技術(shù)出版社,2002:903~912
[16]崔洪斌,方憶湘,張嘉任等.《計算機輔助設(shè)計基礎(chǔ)及應用》[M].北京:清華大學出版社,2002:71~88
指導教師意見:
對“文獻綜述”的評語:文獻查閱完整,兼顧中文與外文文獻,能夠滿足設(shè)計基本需求。
對總體安排和進度計劃的評語:研究的總體安排和進度計劃合理,同意開題。
指導教師簽名: 年 月 日
教研室意見:
通過,同意開題
教研室主任簽名: 年 月 日
學院意見:
教學院長簽名: 年 月 日
畢業(yè)設(shè)計(論文)指導手冊
設(shè)計(論文)題目: 紅薯收獲機的設(shè)計與仿真
學生姓名 學號
年 級 專業(yè)(全稱)機械設(shè)計制造及其自動化
指導教師 所在學院 機電工程學院
畢業(yè)設(shè)計(論文)指導記錄
第一次指導記錄:
指導地點 年 月 日
第二次指導記錄:
指導地點 年 月 日
第三次指導記錄:
指導地點 年 月 日
第四次指導記錄:
指導地點 年 月 日
第五次指導記錄:
指導地點 年 月 日
第六次指導記錄:
指導地點 年 月 日
第七次指導記錄:
指導地點 年 月 日
第八次指導記錄:
指導地點 年 月 日
第九次指導記錄:
指導地點 年 月 日
第十次指導記錄:
指導地點 年 月 日
第十一次指導記錄:
指導地點 年 月 日
第十二次指導記錄:
指導地點 年 月 日
第十三次指導記錄:
指導地點 年 月 日
第十四次指導記錄:
指導地點 年 月 日
第十五次指導記錄:
指導地點 年 月 日
學生畢業(yè)設(shè)計(論文)中期匯報表
學生姓名
專 業(yè)
機械設(shè)計制造及其自動化
學 號
設(shè)計(論文)題目
紅薯收獲機的設(shè)計與仿真
畢業(yè)設(shè)計(論文)前期工作小結(jié)
現(xiàn)已完成的:1.根據(jù)課題收集并查閱了相關(guān)資料,對所需知識進行了復習。
2.完成了開題報告。
3.查找了相關(guān)的外文文獻并進行了翻譯。
4.在劉老師的指導下完成了對紅薯收獲機的設(shè)計計算。
主要的問題:1.論文的大綱有些不完善并沒有針對性。
2.對圖紙的繪制思路不夠明晰,還需繼續(xù)細化。
3. 對于三維軟件的使用也不是很得心應手。在繪制二維圖時,對一些制圖標準也很模糊。
4.對一些知識掌握程度不足,不能較靈活的運用以掌握的知識,需多向老師請教。
下階段工作:根據(jù)目前檢查的結(jié)果,我將在后期對論文的每個章節(jié)進行細化,對內(nèi)容做進一步的修改,對專題研究部分進行深入的研究。配合論文對圖紙進行繪制,修改圖紙格式,同時找老師幫忙檢查論文與圖紙上的不足并修改,保證論文與圖紙質(zhì)量的條件下完成畢設(shè)終稿,制作畢設(shè)論文副本與答辯PPT,準備參加畢業(yè)答辯。
指導教師意見
同學的設(shè)計按照設(shè)計進度以及設(shè)計工作量的要求完成了預定的設(shè)計任務,情況屬實!
簽名:
年 月 日
學生畢業(yè)設(shè)計(論文)中期情況檢查表
學院名稱:機電工程學院 檢查日期:2018年 4 月 24 日
學生姓名
專 業(yè)
機械設(shè)計制造及其自動化
指導教師
設(shè)計(論文)題目
紅薯收獲機的設(shè)計與仿真
工作進度情況
基本按照設(shè)計進度要求完成了預定的設(shè)計任務。
是否符合任務書要求進度
是
能否按期完成任務
能
工作態(tài)度情況
(態(tài)度、紀律、出勤、主動接受指導等)
工作態(tài)度較端正,出勤情況稍差,與指導老師的溝通偏少!主動性稍差!
質(zhì)量
評價
(針對已完成的部分)
對紅薯收獲的背景及現(xiàn)狀有了基礎(chǔ)性的認識,具體技術(shù)細節(jié)還有待進一步完善。
存在問題和解決辦法
設(shè)計計算過程要詳盡,制圖還需進一步規(guī)范
檢查人簽名
教學院長簽名
畢業(yè)設(shè)計(論文)指導教師評閱表
學院:機電工程學院 專業(yè):機械設(shè)計制造及其自動化 學生: 學號:
題目: ?紅薯收獲機的設(shè)計與仿真??
評價
項目
評價要素
成績評定
優(yōu)
良
中
及格
不及格
工作
態(tài)度
工作態(tài)度認真,按時出勤
能按規(guī)定進度完成設(shè)計任務
選題
質(zhì)量
選題方向和范圍
選題難易度
選題理論意義和實際應用價值
能力
水平
查閱和應用文獻資料能力
綜合運用知識能力
研究方法與手段
實驗技能和實踐能力
創(chuàng)新意識
設(shè)計
論文
質(zhì)量
內(nèi)容與寫作
結(jié)構(gòu)與水平
規(guī)范化程度
成果與成效
指導
教師
意見
建議成績
是否同意參加答辯
評語:
? ?
? ?
? ?
指導教師簽名:
年 月 日
畢業(yè)設(shè)計(論文)評閱教師評閱表
學院:機電工程學院 專業(yè):機械設(shè)計制造及其自動化 學生: 學號:
題目: ? 紅薯收獲機的設(shè)計與仿真??
評價
項目
評價要素
成績評定
優(yōu)
良
中
及格
不及格
選題
質(zhì)量
選題方向和范圍
選題難易度
選題理論意義和實際應用價值
能力
水平
查閱和應用文獻資料能力
綜合運用知識能力
研究方法與手段
實驗技能和實踐能力
創(chuàng)新意識
設(shè)計
論文
質(zhì)量
內(nèi)容與寫作
結(jié)構(gòu)與水平
規(guī)范化程度
成果與成效
評閱
教師
意見
建議成績
是否同意參加答辯
評語:
? ?
? ?
? ?
評閱教師簽名:
年 月 日
畢業(yè)設(shè)計(論文)答辯及綜合成績評定表
學 院
機電工程學院
專 業(yè)
機械設(shè)計制造及其自動化
學生姓名
學 號
指導教師
設(shè)計論文題 目
紅薯收獲機的設(shè)計與仿真
答辯時間
年 月 日 時 分至 時 分
答辯地點
敬本樓C502
答辯小組成 員
姓名
陸興華
秦錄芳
楊麗娟
馬西良
黃傳輝
職稱
副教授
副教授
副教授
副教授
教授
答辯
記錄
提問人
提問主要內(nèi)容
學生回答摘要
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
答辯記錄人簽名:
答辯
小組
意見
答辯評語:
?
?
?
答辯成績:
答辯小組組長簽名:
綜合
成績
評定
指導教師評定成績
評閱教師評定成績
答辯成績
綜合評定成績
答辯委員會主任簽名:
?
年 月 日
?
畢業(yè)設(shè)計(論文)
外文翻譯
學生姓名
班 級
14機械單
學 號
學院名稱
機電工程學院
專業(yè)名稱
機械設(shè)計制造及其自動化
指導教師
年
5月
26日
Characterization of the genetic diversity of Uganda’s sweet potato (Ipomoea batatas) germplasm using microsatellites markers
Barbara M. Zawedde ? Marc Ghislain ? Eric Magembe ? Geovani B. Amaro ? Rebecca Grumet ? Jim Hancock
Received: 7 April 2014/Accepted: 1 September 2014/Published online: 17September 2014 Springer Science+Business Media Dordrecht 2014
Abstract Knowledge about the genetic diversity and structure of crop cultivars can help make better conservation decisions, and guide crop improvement efforts. Diversity analysis using microsatellite markers was performed to assess the level of genetic diversity in sweet potato in Uganda, and evaluate the genetic relationship between the Uganda’s germplasm and some genotypes obtained from Kenya, Tanzania, Ghana, Brazil and Peru. A total of 260 sweet potato cultivarswerecharacterizedusing93microsatelliteloci. The Ugandan collection showed a large number of
Distinct genetic diversitybetweengenotypesobtainedfromthedifferent agro-ecological zones. There was low (6 %) levels of genetic diversity observed between the East African genotypes; however unique alleles were present in collections from the various sources. Pairwise comparisons germplasmwassigni?cantlydifferent(P\0.001)from cultivars from Tanzania, Ghana, Brazil and Peru. The presence of unique alleles in populations from various Uganda’s agro-ecological zones and suggestthateffortsshouldbemadetofurthercollectand characterize the germplasm in more depth.
Keywords Characterization Crop breeding Ipomoea batatas Molecular markers SSR
A germplasm collection of crop cultivars with varying environmental adaptive capacity can be both a source of genes for future crop improvement, as well as a critical resource for farmers. The highest levels of genetic diversity for the majority of the important global food crops is in the South, where crop centers of origins are commonly found, and centers of diversity emerged due to prolonged periods of farmer selection (FAO 2008).
B. M. Zawedde R. Grumet J. Hancock (&) Graduate Program in Plant Breeding, Genetics and Biotechnology, Michigan State University, Plant and Soil Science Building, 1066 Bogue Street, East Lansing, MI 48824, USA e-mail: hancock@msu.edu
B. M. Zawedde e-mail: zawedde@msu.edu
Present Address: B. M. Zawedde Uganda Biosciences Information Center (UBIC), National Crop Resources Research Institute, 27 km Kampala Zirobwe Road, Namulonge, Kampala, Uganda
M. Ghislain E. Magembe CIP Sub-Saharan Africa, International Potato Center, P.O. Box 25171, Nairobi, Kenya
G. B. Amaro Embrapa Vegetable Crops, P.O. Box 218, Bras? ′lia, DF CEP 70359-970, Brazil Sweet potato, Ipomoea batatas (L.) Lam., is the ?fth most important food crop in terms of weight harvested in Eastern Africa (FAO 2012). Sweet potato was introduced to the East African borders from South America by Portuguese explorers during the 16th century (Zhang et al. 2004). The oldest remains of sweet potato have been found in the caves of the Chilca Canyon in Peru and dated as 8,000 years old (Lebot 2010). However, based on morphological relationships among related species, the center of origin appears to be between the Yucatan Peninsula in Mexico and the Orinoco River in Venezuela (Austin 1977). It is also in that region that the wild species of the section Batatas, considered as putative ancestors and wild relatives of the cultivated sweet potato, are found (Andersson and de Vicente 2010). Evaluations of genetic diversity patterns among germplasm from different parts of the world have resulted in the suggestion that China, Southeast Asia, New Guinea and East Africa are secondary centers of diversity (Yen 1982; Austin 1983). Uganda has the highest production per capita in Sub-Saharan Africa and numerous, diverse sweet potato landraces are grown. In 2005, the national sweet potato program collected over 1,300 landraces, which were characterized using morphological methodologies to determine the level of genetic diversity and 946 of these were found to be morphologically distinct genotypes (Yada et al. 2010a). This high level of diversity can be attributed primarily to the allogamous and hexaploidy nature of sweet potato (Lebot 2010), as well as variations in farmers’ preferences (Veasey et al. 2008). The method of propagation by vine cuttings contributes also indirectly by maintaining cultivar diversity. Knowledge about the genetic diversity and structure of existing crop cultivars can aid in making better conservation decisions, and help direct breeding programs. Characterization of crop diversity can be achieved through morphological and molecular tools. Morphological characterization is an important ?rst step in assessment of diversity; however there are major limitations in relying only on morphological characterization including low levels of polymorphism, low repeatability, late expression for certain traits; phenotypic plasticity and parallel evolution (Karuri et al. 2010; Yada et al. 2010b). A number of molecular markers including random ampli?ed polymorphic DNAs (RAPDs), restriction fragment length
genetic diversity for each population included number of polymorphic loci (P), percentage of polymorphic loci (%P) and Nei’s (1973) gene diversity (D), estimated from binary data using GenAlex 6.4 (Peakall and Smouse 2006). Analysisofmolecularvariance(AMOVA)was also performed using GenAlEx version 6.4 to estimate the total variance and distribution of diversity within and between populations. Wright’s F-Statistic (FST, ?xation index) was also computed, using GenAlEx software, to estimate the amount of genetic variance that can be explained by population structure (Holsinger and Bruce 2009). Fixation index; FST ? HT HI HT
where HI is the mean observed heterozygosity per individual within subpopulations and HT is the expected heterozygosity in a random mating total population. FST can range from 0.0 (no differentiation) to 1.0 (complete differentiation, that is, subpopulations ?xed for different alleles). The phylogenetic relationship among populations was assessed using DARwin version 5 (Perrier and Jacquemoud-Collet 2006). Similarity matrices were constructed from the binary data with Jaccard’s coef?cients (Jaccard 1908). Jaccard’s coef?cient = Nab/(Na ? Nb), where Nab is the number of alleles shared by two individuals a and b, Na is total number of alleles in sample a, and Nb is total number of alleles in sample b. Genetic distances between populations were obtained by computing the usual Euclidian distance matrix based on haplotype frequencies. From this matrix, a dendrogram was constructed using the neighbor joining method (NJ) from Saitou and Nei (1987). The signi?cance of each node was evaluated by bootstrappingdataovera locusfor 5,000 replications of the original matrix. We examined hierarchical genetic variation between individuals using the un-weighted pair group method analysis (UPGMA), as suggested by Sneath and Sokal (1973). Clustering patterns of individuals and populations were examined using STRUCTURE version 2.3.3 (Pritchard et al. 2000), which is reported to have the capability to generate population structuring (Pritchard et al. 2009). Using the allele dosage (MAC-PR) data for each individual, individuals were assigned probabilistically to genetic clusters (K). The STRUCTURE program was run using no prior assumptions of population structure withan admixture ancestrymodel and the recommended methods for recessive alleles, and allele frequencies correlated. The analysis was used to determine whether biologically relevant clusters could be determined among the plants sampled, and establish the proportion of an individual’s genome (Q) that originated from each cluster. For all analyses, the Markov chain Monte Carlo (MCMC) parameters were set to a burn-in period of 50,000 with 50,000 iterations. The optimum K, indicating the number of true clusters in the data, was determined from 20 replicate runs for each value of K (K set to 10) using the method described by Evanno et al. (2005) and the adhocQuantityDeltaK,based ontherateofchangein the log probability of the data between successive K values. Parameters of the method of Evanno et al. (2005) were calculated using the program Structure Harvester version 0.6.92 (Earl and vonHoldt 2012). Similarity among different runs was calculated by the method of Jakobsson and Rosenberg (2007) as used in their computer program CLUMPP 1.1.2. This method calculates a similarity coef?cient h0, which allows the assessment of the similarity of individual runs of the program STRUCTURE. The optimal alignment of 20 replicates of K values was determined using the computer program CLUMPP 1.1.2 (Jakobsson and Rosenberg 2007) and clusters were visualized using the program DISTRUCT 1.1 (Rosenberg 2004).
Results
SSR markers ampli?cation
A total of 107 alleles were scored for the 19 SSR markers (Table 2). The number of alleles per locus ranged from 3 to 9. Three markers had very low PIC; IB-S07(0.22),JB1809(0.19)andIBSSR09(0.31) thus were excluded from further analyses.
Determining relatedness between cultivars in Uganda
A total of 10 newly improved cultivars released by the national program were compared with 158 Ugandan landraces. The unweighted neighbor joining (NJ) algorithm cluster analysis generated numerous clusters (Fig. 1). Improved cultivars were scattered into many of these clusters together with landraces. Noteworthy (6/10) improved cultivars were grouped together with a Kenyan cultivar Kakamega, which was purposely included in this analysis because it is a known maternal parent for many of these improved cultivars.
Genetic relationship between genotypes from Uganda’s agro-ecological zones and cultivars collected from other East African countries
AnalysisofMolecularVariance(AMOVA)indicatedthatonly6 %ofthegeneticvariationwasexplainedby differences among the sources (Table 3). Analysis of the sixteen microsatellites yielded a total of 93 presumptive loci in the 228-sweet potato genotypes from the eight prede?ned populations (Table 4). An average of 70 polymorphic loci was observed in each population. The level of genetic diversity varied
among the different populations. Most regions in Uganda had populations with few unique alleles (1–4), except the south-western region, which had none. Tanzanian cultivars also had few unique alleles (4), but had the highest level of heterozygosity (D). Overall the level of heterozygosity (D) for the collected samples was low. The signi?cant difference between the cultivars from Tanzania and the populations from Uganda and Kenya is clearly shown in the genetic distance matrix (Fig. 2).
Genetic relationship between Ugandan genotypes and cultivars collected from elsewhere
Analysis of Molecular Variance (AMOVA) indicated that only 24 % of the genetic variation was explained by differences among the countries (Table 5). Pairwise comparisons of genetic differe