2018-2019年高中數(shù)學(xué) 第三章 統(tǒng)計案例章末整合學(xué)案 新人教A版選修2-3.doc
《2018-2019年高中數(shù)學(xué) 第三章 統(tǒng)計案例章末整合學(xué)案 新人教A版選修2-3.doc》由會員分享,可在線閱讀,更多相關(guān)《2018-2019年高中數(shù)學(xué) 第三章 統(tǒng)計案例章末整合學(xué)案 新人教A版選修2-3.doc(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第三章 統(tǒng)計案例 章末整合 考點一 回歸分析 1.變量間的相關(guān)關(guān)系是高考解答題命題的一個,主要考查變量間相關(guān)關(guān)系的判斷,求解回歸方程并進行預(yù)報估計,題型多為解答題,有時也有小題出現(xiàn). 2.掌握回歸分析的步驟的是解答此類問題的關(guān)鍵,另外要掌握將兩種非線性回歸模型轉(zhuǎn)化為線性回歸分析求解問題. 某城市2010年到2014年人口總數(shù)與年份的關(guān)系如表所示 年份201x(年) 0 1 2 3 4 人口數(shù)y(十萬) 5 7 8 11 19 (1)請畫出上表數(shù)據(jù)的散點圖. (2)請根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=x+. (3)據(jù)此估計2015年該城市人口總數(shù). [解析] (1)散點圖如圖: (2)因為==2, ==10, xiyi=05+17+28+311+419=132, x=02+12+22+32+42=30, 所以==3.2, =-=3.6; 所以線性回歸方程為=3.2x+3.6. (3)令x=5,則=16+3.6=19.6, 故估計2015年該城市人口總數(shù)為19.6(十萬). 解決回歸分析問題的一般步驟 (1)畫散點圖.根據(jù)已知數(shù)據(jù)畫出散點圖. (2)判斷變量的相關(guān)性并求回歸方程.通過觀察散點圖,直觀感知兩個變量是否具有相關(guān)關(guān)系;在此基礎(chǔ)上,利用最小二乘法求回歸系數(shù),然后寫出回歸方程. (3)回歸分析.畫殘差圖或計算R2,進行殘差分析. (4)實際應(yīng)用.依據(jù)求得的回歸方程解決問題. [跟蹤訓(xùn)練] 某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此做了4次試驗,得到數(shù)據(jù)如下: 零件的個數(shù)x(個) 2 3 4 5 加工的時間y(小時) 2.5 3 4 4.5 (1)在給定坐標(biāo)系(如圖)中畫出表中數(shù)據(jù)的散點圖; (2)求y關(guān)于x的線性回歸方程=x+; (3)試預(yù)測加工10個零件需要的時間. [解] (1)散點圖如圖所示: (2)由表中數(shù)據(jù)得=3.5,=3.5, (xi-)(yi-)=3.5,(xi-)2=5, 由公式計算得=0.7,=-=1.05,所以所求線性回歸方程為=0.7x+1.05. (3)當(dāng)x=10時,=0.710+1.05=8.05, 所以預(yù)測加工10個零件需要8.05小時. 考點二 獨立性檢驗 1.近幾年高考中對獨立性檢驗的考查頻率有所降低,題目多以解答題形式出現(xiàn),一般為容易題,多與概率、統(tǒng)計等內(nèi)容綜合命題. 2.獨立性檢驗的基本思想類似于數(shù)學(xué)中的反證法,要確認(rèn)“兩個分類變量有關(guān)系”這一結(jié)論成立的可信程度,首先假設(shè)該結(jié)論不成立,即假設(shè)結(jié)論“兩個分類變量沒有關(guān)系”成立,在該假設(shè)下構(gòu)造的隨機變量K2應(yīng)該很小,如果由觀測數(shù)據(jù)計算得到的K2的觀測值k很大,則在一定程度上說明假設(shè)不合理,根據(jù)隨機變量K2的含義,可以通過概率P(K2≥6.635)≈0.01來評價該假設(shè)不合理的程度,由實際計算出的k>6.635,說明該假設(shè)不合理的程度約為99%,即“兩個分類變量有關(guān)系”這一結(jié)論成立的可信程度約為99%. 某學(xué)生對其親屬30人的飲食習(xí)慣進行了一次調(diào)查,并用莖葉圖表示30人的飲食指數(shù),如圖所示.(說明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食為肉類為主.) (1)根據(jù)莖葉圖,幫助這位同學(xué)說明其親屬30人的飲食習(xí)慣. (2)根據(jù)以上數(shù)據(jù)完成如表所示的22列聯(lián)表. 主食蔬菜 主食肉類 總計 50歲以下 50歲以上 總計 (3)在犯錯誤的概率不超過0.01的前提下,是否能認(rèn)為“其親屬的飲食習(xí)慣與年齡有關(guān)”? [解] (1)30位親屬中50歲以上的人多以食蔬菜為主,50歲以下的人多以食肉類為主. (2)22列聯(lián)表如表所示: 主食蔬菜 主食肉類 總計 50歲以下 4 8 12 50歲以上 16 2 18 總計 20 10 30 (3)隨機變量K2的觀測值k== =10>6.635, 故在犯錯誤的概率不超過0.01的前提下認(rèn)為“其親屬的飲食習(xí)慣與年齡有關(guān)”. 獨立性檢驗問題的求解策略 (1)等高條形圖法:依據(jù)題目信息畫出等高條形圖,依據(jù)頻率差異來粗略地判斷兩個變量的相關(guān)性. (2)K2統(tǒng)計量法:通過公式 K2= 先計算觀測值k,再與臨界值表作比較,最后得出結(jié)論. [跟蹤訓(xùn)練] 1.2016年第三十一屆奧運會在巴西首都里約熱內(nèi)盧舉行,為調(diào)查某高校學(xué)生是否愿意提供志愿者服務(wù),用簡單隨機抽樣方法從該校調(diào)查了60人,結(jié)果如下: (1)用分層抽樣的方法在愿意提供志愿者服務(wù)的學(xué)生中抽取6人,其中男生抽取多少人? (2)在(1)中抽取的6人中任選2人,求恰有一名女生的概率. (3)你能否在犯錯誤的概率不超過0.01的前提下認(rèn)為該校高中生是否愿意提供志愿者服務(wù)與性別有關(guān)? 下面的臨界值表供參考: P(K2≥k0) 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828 獨立性檢驗統(tǒng)計量K2=,其中n=a+b+c+d. [解] (1)由題意,男生抽取6=4(人), 女生抽取6=2(人). (2)在(1)中抽取的6人中任選2人,恰有一名女生的概率P==. (3)K2=≈6.667,由于6.667> 6.635,所以能在犯錯誤的概率不超過0.01的前提下認(rèn)為該校高中生是否愿意提供志愿者服務(wù)與性別有關(guān). 2.下表是某地區(qū)的一種傳染病與飲用水的調(diào)查表: 得病 不得病 總計 干凈水 52 466 518 不干凈水 94 218 312 總計 146 684 830 (1)能否在犯錯誤概率不超過0.01的前提下認(rèn)為這種傳染病與飲用水的衛(wèi)生程度有關(guān),請說明理由. (2)若飲用干凈水得病的有5人,不得病的有50人,飲用不干凈水得病的有9人,不得病的有22人.按此樣本數(shù)據(jù)分析能否在犯錯誤概率不超過0.025的前提下認(rèn)為這種疾病與飲用水有關(guān). [解] (1)把表中的數(shù)據(jù)代入公式得 K2的觀測值k=≈54.21. ∴54.21>6.635. 所以在犯錯誤的概率不超過0.01的前提下,認(rèn)為該地區(qū)這種傳染病與飲用水不干凈有關(guān). (2)依題意得22列聯(lián)表: 得病 不得病 總計 干凈水 5 50 55 不干凈水 9 22 31 總計 14 72 86 此時,K2的觀測值k=≈5.785. 因為5.785>5.024, 所以能在犯錯誤概率不超過0.025的前提下認(rèn)為該種疾病與飲用水不干凈有關(guān).- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2018-2019年高中數(shù)學(xué) 第三章 統(tǒng)計案例章末整合學(xué)案 新人教A版選修2-3 2018 2019 年高 數(shù)學(xué) 第三 統(tǒng)計 案例 整合 新人 選修
鏈接地址:http://m.szxfmmzy.com/p-6134370.html