2019年高考數(shù)學(xué) 考點(diǎn)分析與突破性講練 專(zhuān)題22 簡(jiǎn)單線性規(guī)劃 理.doc
《2019年高考數(shù)學(xué) 考點(diǎn)分析與突破性講練 專(zhuān)題22 簡(jiǎn)單線性規(guī)劃 理.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019年高考數(shù)學(xué) 考點(diǎn)分析與突破性講練 專(zhuān)題22 簡(jiǎn)單線性規(guī)劃 理.doc(16頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
專(zhuān)題22 簡(jiǎn)單線性規(guī)劃 一、 考綱要求: 1.會(huì)從實(shí)際情境中抽象出二元一次不等式組. 2.了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組. 3.會(huì)從實(shí)際情境中抽象出一些簡(jiǎn)單的二元線性規(guī)劃問(wèn)題,并能加以解決. 二、概念掌握及解題上的注意點(diǎn): 1. 確定二元一次不等式(組)表示的平面區(qū)域的方法 (1)“直線定界,特殊點(diǎn)定域”,即先作直線,再取特殊點(diǎn)并代入不等式.若滿足不等式,則不等式表示的平面區(qū)域?yàn)橹本€與特殊點(diǎn)同側(cè)的那一側(cè)區(qū)域;否則就對(duì)應(yīng)與特殊點(diǎn)異側(cè)的平面區(qū)域.不等式組表示的平面區(qū)域即為各不等式所表示的平面區(qū)域的公共部分. (2)當(dāng)不等式中不等號(hào)為≥或≤時(shí),邊界為實(shí)線,不等號(hào)為>或<時(shí),邊界應(yīng)畫(huà)為虛線,若直線不過(guò)原點(diǎn),特殊點(diǎn)常取原點(diǎn). 2.求目標(biāo)函數(shù)最值的解題步驟 (1)作圖——畫(huà)出約束條件所確定的平面區(qū)域和目標(biāo)函數(shù)所表示的平行直線系中過(guò)原點(diǎn)的那一條直線; (2)平移——將直線平行移動(dòng),以確定最優(yōu)解的對(duì)應(yīng)點(diǎn)的位置;最優(yōu)解一般在封閉圖形的邊界或頂點(diǎn)處取得. (3)求值——解方程組求出對(duì)應(yīng)點(diǎn)坐標(biāo)(即最優(yōu)解),代入目標(biāo)函數(shù),即可求出最值. 3.常見(jiàn)的三類(lèi)目標(biāo)函數(shù) (1)截距型:形如z=ax+by. 求這類(lèi)目標(biāo)函數(shù)的最值常將函數(shù)z=ax+by轉(zhuǎn)化為直線的斜截式:y=-x+,通過(guò)求直線的截距的最值間接求出z的最值. (2)距離型:形如z=(x-a)2+(y-b)2. (3)斜率型:形如z=. 三、高考考題題例分析: 例1.(2018課標(biāo)卷I) 若x,y滿足約束條件,則z=3x+2y的最大值為 ?。? 【答案】6 例2.(2018課標(biāo)卷II)若x,y滿足約束條件,則z=x+y的最大值為 ?。? 【答案】9 【解析】:由x,y滿足約束條件作出可行域如圖, 化目標(biāo)函數(shù)z=x+y為y=﹣x+z, 由圖可知,當(dāng)直線y=﹣x+z過(guò)A時(shí),z取得最大值, 由,解得A(5,4), 目標(biāo)函數(shù)有最大值,為z=9. 故答案為:9. 例3.(2018北京卷)若x,y滿足x+1≤y≤2x,則2y﹣x的最小值是 ?。? 【答案】3 例4.(2018天津卷)設(shè)變量x,y滿足約束條件,則目標(biāo)函數(shù)z=3x+5y的最大值為( ) A.6 B.19 C.21 D.45 【答案】C 例5.(2018浙江卷)若x,y滿足約束條件,則z=x+3y的最小值是 ,最大值是 . 【答案】最小值-2,最大值8 例6.【2017課標(biāo)II,理5】設(shè),滿足約束條件,則的最小值是( ) A. B. C. D. 【答案】A 【解析】:繪制不等式組表示的可行域, 目標(biāo)函數(shù)即:,其中表示斜率為的直線系與可行域有交點(diǎn)時(shí)直線的截距值, 數(shù)形結(jié)合可得目標(biāo)函數(shù)在點(diǎn) 處取得最小值 ,故選A。 例7.(2017北京卷)若x,y滿足 則x + 2y的最大值為 (A)1 (B)3 (C)5 (D)9 【答案】D 【解析】:如圖,畫(huà)出可行域, 表示斜率為的一組平行線,當(dāng)過(guò)點(diǎn)時(shí),目標(biāo)函數(shù)取得最大值,故選D. 例8.(2017課標(biāo)I)設(shè)x,y滿足約束條件,則的最小值為 . 【答案】 【解析】:不等式組表示的可行域如圖所示, 簡(jiǎn)單線性規(guī)劃練習(xí) 一、選擇題 1.不等式(x-2y+1)(x+y-3)≤0在坐標(biāo)平面內(nèi)表示的區(qū)域(用陰影部分表示)應(yīng)是( ) 【答案】C 【解析】: (x-2y+1)(x+y-3)≤0?或 畫(huà)圖可知選C. 2.在平面直角坐標(biāo)系中,不等式組所表示的平面區(qū)域的面積為 ( ) A.1 B.2 C.4 D.8 【答案】A 3.在平面直角坐標(biāo)系中,不等式組表示的平面區(qū)域的面積是 ( ) A. B. C.2 D.2 【答案】B 【解析】:作出不等式組表示的平面區(qū)域是以點(diǎn)O(0,0),B(-2,0)和A(1,)為頂點(diǎn)的三角形區(qū)域,如圖所示的陰影部分(含邊界),由圖知該平面區(qū)域的面積為2=,故選B. 4.若滿足條件的整點(diǎn)(x,y)恰有9個(gè),其中整點(diǎn)是指橫、縱坐標(biāo)都是整數(shù)的點(diǎn),則整數(shù)a的值為( ) A.-3 B.-2 C.-1 D.0 【答案】 C 【解析】: 不等式組所表示的平面區(qū)域如圖中陰影部分所示,當(dāng)a=0時(shí),平面區(qū)域內(nèi)只有4個(gè)整點(diǎn)(1,1),(0,0),(1,0),(2,0);當(dāng)a=-1時(shí),正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)共5個(gè)整點(diǎn),故選C. 5.已知x,y滿足約束條件若z=ax+y的最大值為4,則a= ( ) A.3 B.2 C.-2 D.-3 6.若平面區(qū)域夾在兩條斜率為1的平行直線之間,則這兩條平行直線間的距離的最小值是 ( ) A. B. C. D. 【答案】B 【解析】: 根據(jù)約束條件作出可行域如圖中陰影部分,當(dāng)斜率為1的直線分別過(guò)A點(diǎn)和B點(diǎn)時(shí)滿足條件,聯(lián)立方程組 求得A(1,2),聯(lián)立方程組求得B(2,1),可求得分別過(guò)A,B點(diǎn)且斜率為1的兩條直線方程為x-y+1=0和x-y-1=0,由兩平行線間的距離公式得距離為=,故選B. 7.若變量x,y滿足約束條件則的最大值為 ( ) A.1 B.3 C. D.5 【答案】C 8.已知z=2x+y,其中實(shí)數(shù)x,y滿足且z的最大值是最小值的4倍,則a的值是 ( ) A. B. C.4 D. 【答案】B 【解析】: 作出不等式組對(duì)應(yīng)的平面區(qū)域如圖: 由z=2x+y得y=-2x+z, 平移直線y=-2x, 由圖可知當(dāng)直線y=-2x+z經(jīng)過(guò)點(diǎn)A時(shí),直線的縱截距最大, 此時(shí)z最大, 9.若變量x,y滿足則x2+y2的最大值是 ( ) A.4 B.9 C.10 D.12 【答案】C 【解析】:作出不等式組表示的平面區(qū)域,如圖中陰影部分所示.x2+y2表示平面區(qū)域內(nèi)的點(diǎn)到原點(diǎn)距離的平方,由得A(3,-1),由圖易得(x2+y2)max=|OA|2=32+(-1)2=10.故選C. 10.若x,y滿足,且z=3x-y的最大值為2,則實(shí)數(shù)m的值為 ( ) A. B. C.1 D.2 【答案】D 【解析】:若z=3x-y的最大值為2,則此時(shí)目標(biāo)函數(shù)為y=3x-2,直線y=3x-2與3x-2y+2=0和x+y=1分別交于A(2,4),B,mx-y=0經(jīng)過(guò)其中一點(diǎn),所以m=2或m=,當(dāng)m=時(shí),經(jīng)檢驗(yàn)不符合題意,故m=2,選D. 11.某旅行社租用A、B兩種型號(hào)的客車(chē)安排900名客人旅行,A、B兩種車(chē)輛的載客量分別為36人和60人,租金分別為1 600元/輛和2 400元/輛,旅行社要求租車(chē)總數(shù)不超過(guò)21輛,且B型客車(chē)不多于A型客車(chē)7輛.則租金最少為 ( ) A.31 200元 B.36 000元 C.36 800元 D.38 400元 【答案】C 【解析】: 設(shè)旅行社租用A型客車(chē)x輛,B型客車(chē)y輛,租金為z元,則約束條件為目標(biāo)函數(shù)為z=1 600x+2 400y. 12.設(shè)z=x+y,其中實(shí)數(shù)x,y滿足若z的最大值為12,則z的最小值為( ) A.-3 B.-6 C.3 D.6 【答案】B 【解析】:不等式組表示的可行域如圖中陰影部分所示: 由得A(k,k),易知目標(biāo)函數(shù)z=x+y在點(diǎn)A處取最大值,則12=k+k,故k=6,所以B(-12,6),又目標(biāo)函數(shù)z=x+y在點(diǎn)B處取最小值,∴z的最小值為-6,故選B. 二、填空題 13.若點(diǎn)(m,1)在不等式2x+3y-5>0所表示的平面區(qū)域內(nèi),則m的取值范圍是________. 【答案】(1,+∞) 【解析】:∵點(diǎn)(m,1)在不等式2x+3y-5>0所表示的平面區(qū)域內(nèi),∴2m+3-5>0,即m>1. 14.已知實(shí)數(shù)x,y滿足如果目標(biāo)函數(shù)z=x-y的最小值為-1,則實(shí)數(shù)m=________. 【答案】5 15.已知實(shí)數(shù)x,y滿足則z=的取值范圍為_(kāi)_______. 【答案】 【解析】:不等式組所表示的平面區(qū)域如圖中陰影部分所示,z=表示點(diǎn)D(2,3)與平面區(qū)域內(nèi)的點(diǎn)(x,y)之間連線的斜率.因點(diǎn)D(2,3)與B(8,1)連線的斜率為-且C的坐標(biāo)為(2,-2), 故由圖知z=的取值范圍為 ] 16.若變量x,y滿足則2x+y的取值范圍為_(kāi)_______. 【答案】[-2,2] 三、解答題 17.已知D是以點(diǎn)A(4,1),B(-1,-6),C(-3,2)為頂點(diǎn)的三角形區(qū)域(包括邊界與內(nèi)部). (1)寫(xiě)出表示區(qū)域D的不等式組; (2)設(shè)點(diǎn)B(-1,-6),C(-3,2)在直線4x-3y-a=0的異側(cè),求a的取值范圍. 【答案】(1) (2) (-18,14) 故a的取值范圍是(-18,14). 18.若x,y滿足約束條件 (1)求目標(biāo)函數(shù)z=x-y+的最值; (2)若目標(biāo)函數(shù)z=ax+2y僅在點(diǎn)(1,0)處取得最小值,求a的取值范圍. 【答案】(1) 最大值為1,最小值為-2. (2) (-4,2). 【解析】: (1)作出可行域如圖,可求得A(3,4),B(0,1),C(1,0). 平移初始直線x-y+=0, 過(guò)A(3,4)取最小值-2, 過(guò)C(1,0)取最大值1, 所以z的最大值為1, 最小值為-2. (2)直線ax+2y=z僅在點(diǎn)(1,0)處取得最小值,由圖象可知-1<-<2, 解得-4- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019年高考數(shù)學(xué) 考點(diǎn)分析與突破性講練 專(zhuān)題22 簡(jiǎn)單線性規(guī)劃 2019 年高 數(shù)學(xué) 考點(diǎn) 分析 突破性 專(zhuān)題 22 簡(jiǎn)單 線性規(guī)劃
鏈接地址:http://m.szxfmmzy.com/p-6122866.html