《2017-2018學(xué)年高中數(shù)學(xué) 第四講 數(shù)學(xué)歸納法證明不等式 一 數(shù)學(xué)歸納法優(yōu)化練習(xí) 新人教A版選修4-5.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2017-2018學(xué)年高中數(shù)學(xué) 第四講 數(shù)學(xué)歸納法證明不等式 一 數(shù)學(xué)歸納法優(yōu)化練習(xí) 新人教A版選修4-5.doc(5頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
一 數(shù)學(xué)歸納法
[課時(shí)作業(yè)]
[A組 基礎(chǔ)鞏固]
1.用數(shù)學(xué)歸納法證明當(dāng)n∈N+時(shí),1+2+22+…+25n-1是31的倍數(shù)時(shí),
當(dāng)n=1時(shí)原式為( )
A.1 B.1+2
C.1+2+3+4 D.1+2+22+23+24
解析:左邊=1+2+22+…+25n-1,所以n=1時(shí),應(yīng)為1+2+…+251-1=
1+2+22+23+24.
答案:D
2.記凸k邊形的內(nèi)角和為f(k),則凸k+1邊形的內(nèi)角和f(k+1)=f(k)+( )
A. B.π
C.2π D.π
答案:B
3.已知f(n)=(2n+7)3n+9,存在自然數(shù)m,使得對(duì)任意n∈N+,都能使m整除f(n),則最大的m的值為( )
A.30 B.26
C.36 D.6
解析:f(1)=36,f(2)=108=336,f(3)=360=1036,易知f(n)能被36整除,且36為m的最大值.
答案:C
4.某同學(xué)回答“用數(shù)學(xué)歸納法證明
1)時(shí),第一步應(yīng)驗(yàn)證n=________時(shí),命題成立,當(dāng)n=k+1時(shí)左邊的式子為________.
解析:由于n>1,
∴第一步應(yīng)驗(yàn)證n=2時(shí),命題成立,
當(dāng)n=k+1時(shí),左邊的式子應(yīng)為22+32+…+k2+(k+1)2.
答案:2 22+32+…+k2+(k+1)2
7.用數(shù)學(xué)歸納法證明“5n-2n能被3整除”的第二步中,當(dāng)n=k+1時(shí),為了使用歸納假設(shè)應(yīng)將5k+1-2k+1變形為________.
解析:假設(shè)當(dāng)n=k時(shí),5k-2k能被3整除,
則n=k+1時(shí),5k+1-2k+1=5(5k-2k)+32k
由假設(shè)知5k-2k能被3整除,32k能被3整除.
故5(5k-2k)+32k能被3整除.
答案:5(5k-2k)+32k
8.設(shè)平面內(nèi)有n條直線(n≥2),其中有且僅有兩條直線互相平行,任意三條直線不過同一點(diǎn).若用f(n)表示這n條直線交點(diǎn)的個(gè)數(shù),則f(4)=________;當(dāng)n>4時(shí),f(n)=________(用n表示).
解析:f(2)=0,f(3)=2,f(4)=5,f(5)=9,每增加一條直線,交點(diǎn)增加的個(gè)數(shù)等于原來直線的條數(shù).
所以f(3)-f(2)=2,f(4)-f(3)=3,f(5)-f(4)=4,…,
f(n)-f(n-1)=n-1.累加,得f(n)-f(2)=2+3+4+…+(n-1)=
(n-2).
所以f(n)=(n+1)(n-2).
答案:5 (n+1)(n-2)
9.用數(shù)學(xué)歸納法證明:1+4+7+…+(3n-2)
=n(3n-1)(n∈N+).
證明:(1)當(dāng)n=1時(shí),左邊=1,右邊=1,
∴當(dāng)n=1時(shí)命題成立.
(2)假設(shè)當(dāng)n=k(k∈N+,k≥1)時(shí)命題成立,
即1+4+7+…+(3k-2)=k(3k-1).
當(dāng)n=k+1時(shí),1+4+7+…+(3k-2)+[3(k+1)-2]
=k(3k-1)+(3k+1)
=(3k2+5k+2)=(k+1)(3k+2)
=(k+1)[3(k+1)-1]
即當(dāng)n=k+1時(shí)命題成立.
綜上(1)(2)知,對(duì)于任意n∈N+原命題成立.
10.證明對(duì)任意正整數(shù)n,34n+2+52n+1能被14整除.
證明:(1)當(dāng)n=1時(shí),34n+2+52n+1=36+53=854=1461能被14整除,命題成立.
(2)假設(shè)當(dāng)n=k時(shí)命題成立,即34k+2+52k+1能被14整除,
那么當(dāng)n=k+1時(shí),
34(k+1)+2+52(k+1)+1=34k+234+52k+152
=34k+234+52k+134-52k+134+52k+152
=34(34k+2+52k+1)-52k+1(34-52)
=34(34k+2+52k+1)-5652k+1,
因34k+2+52k+1能被14整除,56也能被14整除,所以34(k+1)+2+52(k+1)+1能被14整除,故命題成立.
由(1)(2)知,命題對(duì)任意正整數(shù)n都成立.
[B組 能力提升]
1.用數(shù)學(xué)歸納法證明“1+2+22+…+2n-1=2n-1(n∈N*)”的過程中,第二步假設(shè)n=k時(shí)等式成立,則當(dāng)n=k+1時(shí)應(yīng)得到( )
A.1+2+22+…+2k-2+2k+1=2k+1-1
B.1+2+22+…+2k+2k+1=2k-1+2k+1
C.1+2+22+…+2k-1+2k+1=2k+1-1
D.1+2+22+…+2k-1+2k=2k+1-1
解析:由條件知,左邊是從20,21一直到2n-1都是連續(xù)的,因此當(dāng)n=k+1時(shí),左邊應(yīng)為1+2+22+…+2k-1+2k,而右邊應(yīng)為2k+1-1.
答案:D
2.k棱柱有f(k)個(gè)對(duì)角面,則k+1棱柱的對(duì)角面?zhèn)€數(shù)f(k+1)為( )
A.f(k)+k+1 B.f(k)+k
C.f(k)+k-1 D.f(k)+k-2
解析:當(dāng)k棱柱變?yōu)閗+1棱柱時(shí),新增的一條棱與和它不相鄰的k-1條棱確定k-2個(gè)對(duì)角面,而原來的一個(gè)側(cè)面變?yōu)閷?duì)角面,所以共增加k-1個(gè)對(duì)角面.
答案:C
3.用數(shù)學(xué)歸納法證明12+22+…+(n-1)2+n2+(n-1)2+…+22+12=時(shí),由n=k的假設(shè)到證明n=k+1時(shí),等式左邊應(yīng)添加的式子是________.
解析:n=k時(shí)等式為12+22+…+(k-1)2+k2+(k-1)2+…+22+12=,
n=k+1時(shí)等式為12+22+…+(k-1)2+k2+(k+1)2+k2+(k-1)2+…+22+12=.
∴n=k+1時(shí)等式左邊比n=k時(shí)等式左邊增加了k2+(k+1)2.
答案:k2+(k+1)2(或2k2+2k+1)
4.設(shè)數(shù)列{an}滿足a1=2,an+1=2an+2,用數(shù)學(xué)歸納法證明an=42n-1-2的第二步中,設(shè)n=k時(shí)結(jié)論成立,即ak=42k-1-2,那么當(dāng)n=k+1時(shí),________.
解析:當(dāng)n=k+1時(shí),把a(bǔ)k代入,要將42k-2變形為42(k+1)-1-2的形式.
即ak+1=2ak+2=2(42k-1-2)+2=42k-2=42(k+1)-1-2
答案:ak+1=42(k+1)-1-2
5.求證:凸n邊形對(duì)角線條數(shù)f(n)=(n∈N+,n≥3).
證明: (1)當(dāng)n=3時(shí),f(3)=0,三角形沒有對(duì)角線,命題成立.
(2)假設(shè)n=k(k∈N+,k≥3)時(shí)命題成立,即凸k邊形對(duì)角線條數(shù)f(k)=.
將凸k邊形A1A2…Ak在其外面增加一個(gè)新頂點(diǎn)A k+1,得到凸k+1邊形A1A2……AkAk+1,Ak+1依次與A2,A3,…Ak-1相連得到對(duì)角線k-2條,原凸k邊形的邊A1Ak變成了凸k+1邊形的一條對(duì)角線,則凸k+1邊形的對(duì)角線條數(shù)為:f(k)+k-2+1=+k-1===f(k+1).
即當(dāng)n=k+1時(shí),結(jié)論正確.
根據(jù)(1)(2)可知,命題對(duì)任何n∈N+,n≥3都成立.
6.是否存在常數(shù)a、b、c使等式12+22+32+…+n2+(n-1)2+…+22+12=
an(bn2+c)對(duì)于一切n∈N*都成立?若存在,求出a、b、c并證明;若不存在,試說明理由.
解析:假設(shè)存在a、b、c使12+22+32+…+n2+(n-1)2+…+22+12=
an(bn2+c)對(duì)于一切n∈N*都成立.
當(dāng)n=1時(shí),a(b+c)=1;
當(dāng)n=2時(shí),2a(4b+c)=6;
當(dāng)n=3時(shí),3a(9b+c)=19.
解方程組解得
證明如下:
①當(dāng)n=1時(shí),由以上知等式成立.
②假設(shè)當(dāng)n=k(k≥1,k∈N*)時(shí)等式成立,
即12+22+32+…+k2+(k-1)2+…+22+12=k(2k2+1);
當(dāng)n=k+1時(shí),
12+22+32+…+k2+(k+1)2+k2+(k-1)2+…+22+12
=k(2k2+1)+(k+1)2+k2
=k(2k2+3k+1)+(k+1)2
=k(2k+1)(k+1)+(k+1)2
=(k+1)(2k2+4k+3)
=(k+1)[2(k+1)2+1].
即當(dāng)n=k+1時(shí),等式成立.
因此存在a=,b=2,c=1使等式對(duì)一切n∈N*都成立.
鏈接地址:http://m.szxfmmzy.com/p-6112638.html