【溫馨提示】====【1】設計包含CAD圖紙 和 DOC文檔,均可以在線預覽,所見即所得,,dwg后綴的文件為CAD圖,超高清,可編輯,無任何水印,,充值下載得到【資源目錄】里展示的所有文件======【2】若題目上備注三維,則表示文件里包含三維源文件,由于三維組成零件數(shù)量較多,為保證預覽的簡潔性,店家將三維文件夾進行了打包。三維預覽圖,均為店主電腦打開軟件進行截圖的,保證能夠打開,下載后解壓即可。======【3】特價促銷,,拼團購買,,均有不同程度的打折優(yōu)惠,,詳情可咨詢QQ:1304139763 或者 414951605======【4】 題目最后的備注【JS系列】為店主整理分類的代號,與課題內容無關,請忽視
設計任務
關節(jié)型機器人腕部結構設計
一、設計內容
題目來源于生產(chǎn)實際。設計一個用于焊接的關節(jié)型機器人,進行機器人的總體
方案設計、腕部及執(zhí)行器結構設計及其零件設計。
二、設計依據(jù)
焊接關節(jié)型機器人具有六個自由度,腰關節(jié)回轉,臂關節(jié)俯仰,肘關節(jié)俯仰,
腕關節(jié)仰腕、擺腕和旋腕,腕部最大負荷4kg,最大速度2m/s,最大工作空間半徑
1500mm。
三、技術要求
1、機器人應能滿足工作要求,保證焊接精度;
2、工作可靠,結構簡單;
3、裝卸方便,便于維修、調整;
4、盡量使用通用件,以便降低制造成本。
四. 主要參考文獻:
1、殷際英.何廣平.關節(jié)型機器人:北京:化學工業(yè)出版社,2003.
2、馬香峰.工業(yè)機器人的操作機設計.北京:冶金工業(yè)出版社,1996.
3、費仁元.張慧慧.機器人機械設計和分析.北京:北京工業(yè)大學出版社,1998.
4、周伯英.工業(yè)機器人設計.北京:機械工業(yè)出版社,1995.
5、蔡自興.機器人學.北京:清華大學出版社,2000.
6、宗光華,劉海波譯.機器人技術手冊. 北京:科學出版社,1996.
7、徐衛(wèi)良,錢瑞明譯.機器人操作的數(shù)學導論. 北京:機械工業(yè)出版社,1998.
8、孫迪生,王炎.機器人控制技術.北京:機械工業(yè)出版社,1998.
9、徐灝.機械設計手冊.第二版.北京:機械工業(yè)出版社,2000.
10、成大先.機械設計手冊.第4版. 北京:化學工業(yè)出版社,2002.
2
開題論證報告
關節(jié)型機器人腕部結構設計
一、 題目來源、題目研究的主要內容及國內外現(xiàn)狀綜述
題目來源:工業(yè)機器人是一種機械技術和電子技術相結合的產(chǎn)品。采用工業(yè)機器人是提高產(chǎn)品質量與勞動生產(chǎn)率、實現(xiàn)生產(chǎn)過程自動化、改善勞動條件的一種有效手段。目前手工電弧焊接效率低,操作環(huán)境差,而且對操作員技術熟練程度要求較高,因此采用機器人技術,實現(xiàn)焊接生產(chǎn)操作的柔性自動化,以提高生產(chǎn)效率。
題目研究的主要內容:機器人的機械設計技術是機器人技術的一個重要內容,機器人的結構、關節(jié)驅動和傳動等的設計和伺服控制密切相關。本課題主要是對焊接用機器人進行機械設計,我主要著重手腕(手腕,夾持器)部分,該部分由三個回轉關節(jié)(臂轉、手轉、腕擺)組合而成。并保證與基座和手臂部分尺寸和功能的協(xié)調。
國內外現(xiàn)狀綜述:從機器人誕生到本世紀80年代初,機器人技術經(jīng)歷了一個長期緩慢的發(fā)展過程。到90年代,隨著計算機技術、微電子技術、網(wǎng)絡技術等的快速發(fā)展,機器人技術也得到了飛速發(fā)展。除了工業(yè)機器人水平不斷提高之外,各種用于非制造業(yè)的先進機器人系統(tǒng)也有了長足的進展。目前國際機器人界都在加大科研力度,進行機器人共性技術的研究,并朝著智能化和多樣化方向發(fā)展。目前的研究內容主要集中在:工業(yè)機器人操作機結構的優(yōu)化設計技術、機器人控制技術、多傳感技術、機器人遙控及監(jiān)控技術,機器人半自主和自主技術、虛擬機器人技術、多智能體調控制技術、軟機器人技術、仿人和仿生技術、微型和微小機器人技術。其中微型和微小機器人技術是機器人研究的一個新的領域和重點發(fā)展方向。過去的研究在該領域幾乎是空白,因此該領域研究的進展將會引起機器人技術的一場革命, 并且對社會進步和人類活動的各個方面產(chǎn)生不可估量的影響,微小型機器人技術的研究主要集中在系統(tǒng)結構、運動方式、控制方法、傳感技術、通信技術以及行走技術等方面。在我國對此進行了深入的研究,如徐衛(wèi)平和張玉茹發(fā)表的《六自由度微動機構的運動分析》對六自由度微動機構進行了位移分析并為其結構設計提供了計算依據(jù)。還有劉辛軍、高峰和汪勁松發(fā)表的《并聯(lián)六自由度微動機器人機構的設計方法》研究了微動機器人機構的設計方法,建立了并聯(lián)六自由度微動機器人的空間模型,并分析了該微動機器人的空間模型,并分析了該微動機器人的機構尺寸與各向同性、剛度等性能指標的關系得到了一系列性能圖譜,從各圖譜中可以看出各項性能指標在空間模型設計參數(shù)空間中的分布規(guī)律,這有助于設計者根據(jù)性能指標來設計該微動機器人的機構尺寸,是探討微動機器人機構設計的有效分析工具。
二、本題擬解決的問題
1. 手腕處于手臂末端,須減輕手臂的載荷,力求手腕部件的結構緊湊,減
少其重量和體積;
2. 提高手腕動作的精確性;
3. 三個自由度(臂轉、手轉、腕擺)的實現(xiàn)。
三、解決方案及預期效果
(一)解決方案:
1. 腕部機構的驅動裝置采用分離傳動,將3個驅動器安置在小臂的后端。
2. 提高傳動的剛度,盡量減少機械傳動系統(tǒng)中由于間隙產(chǎn)生的反轉回差,
對分離傳動多采用傳動軸。
3. 驅動電機1經(jīng)傳動軸和一對圓柱齒輪和一對圓錐齒輪帶動手腕在殼體上
作偏擺運動。電機2經(jīng)傳動軸驅動圓柱齒輪傳動和圓錐齒輪傳動,從而
使軸回轉,實現(xiàn)手腕的上下擺動。電機3經(jīng)傳動軸和兩對圓錐齒輪傳動
帶動軸回轉,實現(xiàn)手腕機械接口法蘭盤的回轉運動
(二)預期效果:
1. 工作可靠,結構簡單;
2. 能實現(xiàn)準確動作;
3. 裝卸方便,便于維修、調整;
4. 盡量使用通用件,以便降低制造成本。
作業(yè)范圍大,動作靈活并能廣泛應用于噴涂、焊接等作業(yè)中。
2
關節(jié)型機器人腕部結構設計
摘要:為了提高生產(chǎn)效率和焊接質量,滿足特定的工作要求,本題設計用于焊接的關節(jié)型機器人的手腕和末端執(zhí)行器。根據(jù)機器人的工作要求進行了機器人的總體設計。確定機器人的外形時,擬定了手腕的傳動路徑,選用直流電動機,合理布置了電機、軸和齒輪,設計了齒輪和軸的結構,并進行了強度校核計算。傳動中采用了軟軸、波紋管聯(lián)軸器和行星齒輪機構,實現(xiàn)了擺腕、轉腕和提腕的三個自由度的要求。設計中大多采用了標準件和常用件,降低了設計和制造成本。關鍵詞:自由度;焊接;手腕
目 錄
1 前言………………………………………………………………………………1
1.1機器人的含義………………………………………………………………………1
1.2題目來源……………………………………………………………………………2
1.3技術要求…………………………………………………………………………2
1.4 本題要解決的主要問題和設計思路……………………………………………2
2國內外發(fā)展狀況及現(xiàn)狀的介紹……………………………………………………2
2.1 研究現(xiàn)狀…………………………………………………………………………2
2.2 發(fā)展趨勢…………………………………………………………………………4
3總體方案論證…………………………………………………………………………5
3.1 機械結構類型的確定……………………………………………………………5
3.2 工作空間的確定……………………………………………………………………6
3.3 手腕結構的確定……………………………………………………………………7
3.4 基本參數(shù)的確定……………………………………………………………………8
4 手腕詳細設計說明………………………………………………………………8
4.1 機器人驅動方案的分析和選擇……………………………………………………8
4.2手腕電機的選擇………………………………………………………………9
4.3傳動比的確定………………………………………………………………9
4.4 傳動比的分配………………………………………………………………10
4.5 齒輪的設計…………………………………………………………………10
4.6 軸的設計和校核……………………………………………………………18
4.7 夾持器的設計……………………………………………………………………23
4.8 殼體的設計……………………………………………………………………23
5結論………………………………………………………………………………24
參考文獻…………………………………………………………………………25
附錄………………………………………………………………………………26
1前言
1.1機器人的概念
機器人是一個在三維空間中具有較多自由度,并能實現(xiàn)較多擬人動作和功能的機器,而工業(yè)機器人則是在工業(yè)生產(chǎn)上應用的機器人。美國機器人工業(yè)協(xié)會提出的工業(yè)機器人定義為:“機器人是一種可重復編程和多功能的,用來搬運材料、零件、工具的操作機”。英國和日本機器人協(xié)會也采用了類似的定義。我國的國家標準GB/T12643-90將工業(yè)機器人定義為:“機器人是一種能自動定位控制、可重復編程的、多功能的、多自由度的操作機。能搬運材料、零件或操持工具,用以完成各種作業(yè)”。而將操作機定義為:“具有和人手臂相似的動作功能,可在空間抓放物體或進行其它操作的機械裝置”。
機器人系統(tǒng)一般由操作機、驅動單元、控制裝置和為使機器人進行作業(yè)而要求的外部設備組成。
1.1.1操作機
操作機是機器人完成作業(yè)的實體,它具有和人手臂相似的動作功能。通常由下列部分組成:
a.末端執(zhí)行器 又稱手部,是機器人直接執(zhí)行工作的裝置,并可設置夾持器、工具、傳感器等,是工業(yè)機器人直接與工作對象接觸以完成作業(yè)的機構。
b. 手腕 是支承和調整末端執(zhí)行器姿態(tài)的部件,主要用來確定和改變末端執(zhí)行器的方位和擴大手臂的動作范圍,一般有2~3個回轉自由度以調整末端執(zhí)行器的姿態(tài)。有些專用機器人可以沒有手腕而直接將末端執(zhí)行器安裝在手臂的端部。
c. 手臂 它由機器人的動力關節(jié)和連接桿件等構成,是用于支承和調整手腕和末端執(zhí)行器位置的部件。手臂有時包括肘關節(jié)和肩關節(jié),即手臂與手臂間。手臂與機座間用關節(jié)連接,因而擴大了末端執(zhí)行器姿態(tài)的變化范圍和運動范圍。
d. 機座 有時稱為立柱,是工業(yè)機器人機構中相對固定并承受相應的力的基礎部件??煞止潭ㄊ胶鸵苿邮絻深?。
1.1.2驅動單元
它是由驅動器、檢測單元等組成的部件,是用來為操作機各部件提供動力和運動的裝置。
1.1.3控制裝置
它是由人對機器人的啟動、停機及示教進行操作的一種裝置,它指揮機器人按規(guī)定的要求動作。
1.1.4人工智能系統(tǒng)
它由兩部分組成,一部分是感覺系統(tǒng),另一部分為決策-規(guī)劃智能系統(tǒng)。
1.2題目來源
本題設計的是關節(jié)型機器人腕部結構,主要是整體方案設計和手腕的結構設計及其零件設計。此課題來源于生產(chǎn)實際。對于目前手工電弧焊接效率低,操作環(huán)境差,而且對操作員技術熟練程度要求高,因此采用機器人技術,實現(xiàn)焊接生產(chǎn)操作的柔性自動化,提高產(chǎn)品質量與勞動生產(chǎn)率、實現(xiàn)生產(chǎn)過程自動化、改善勞動條件。
1.3技術要求
根據(jù)設計要達到以下要求
a. 工作可靠,結構簡單;
b. 裝卸方便,便于維修、調整;
c. 盡量使用通用件,以便降低制造成本。
1.4本題要解決的主要問題及設計總體思路
本題要解決的問題有以下三個:
a. 手腕處于手臂末端,需減輕手臂的載荷,力求手腕部件的結構緊湊,減少重量和體積;
b. 提高手腕動作的精確性;
c. 三個自由度的實現(xiàn)。
針對上述問題有了以下設計思路:
a. 腕部機構的驅動裝置采用分離傳動,將3個驅動器安置在小臂的后端。
b. 提高傳動的剛度,盡量減少機械傳動系統(tǒng)中由于間隙產(chǎn)生的反轉誤差,對于分離傳動采用傳動軸。
c. 驅動電機1經(jīng)傳動軸驅動一對圓柱齒輪和一對圓錐齒輪帶動手腕在小臂殼體上作偏擺運動。電機2經(jīng)傳動軸驅動一對圓柱齒輪和一對圓錐齒輪傳動,實現(xiàn)手腕的上下擺動。電機3經(jīng)傳動軸和兩對圓錐齒輪帶動軸回轉,實現(xiàn)手腕上機械接口的回轉運動。
2國內外研究現(xiàn)狀及發(fā)展狀況
2.1研究現(xiàn)狀
從機器人誕生到本世紀80年代初,機器人技術經(jīng)歷了一個長期緩慢的發(fā)展過程。到90年代,隨著計算機技術、微電子技術、網(wǎng)絡技術等的快速發(fā)展,機器人技術也得到了飛速發(fā)展。除了工業(yè)機器人水平不斷提高之外,各種用于非制造業(yè)的先進機器人系統(tǒng)也有了長足的進展。下面將按工業(yè)機器人和先進機器人兩條技術發(fā)展路線分述機器人的最新進展情況。
2.1.1工業(yè)機器人
工業(yè)機器人技術是以機械、電機、電子計算機和自動控制等學科領域的技術為基礎融合而成的一種系統(tǒng)技術。
a. 機器人操作機:通過有限元分析、模態(tài)分析及仿真設計等現(xiàn)代設計方法的運用,機器人操作機已實現(xiàn)了優(yōu)化設計。以德國KUKA公司為代表的機器人公司,已將機器人并聯(lián)平行四邊形結構改為開鏈結構,拓展了機器人的工作范圍,加之輕質鋁合金材料的應用,大大提高了機器人的性能。此外采用先進的RV減速器及交流伺服電機,使機器人操作機幾乎成為免維護系統(tǒng)。
b. 并聯(lián)機器人:采用并聯(lián)機構,利用機器人技術,實現(xiàn)高精度測量及加工,這是機器人技術向數(shù)控技術的拓展,為將來實現(xiàn)機器人和數(shù)控技術一體化奠定了基礎。意大利COMAU公司,日本FANUC等公司已開發(fā)出了此類產(chǎn)品。
c. 控制系統(tǒng):控制系統(tǒng)的性能進一步提高,已由過去控制標準的6軸機器人發(fā)展到現(xiàn)在能夠控制21軸甚至27軸,并且實現(xiàn)了軟件伺服和全數(shù)字控制。人機界面更加友好,基于圖形操作的界面也已問世。編程方式仍以示教編程為主,但在某些領域的離線編程已實現(xiàn)實用化。
d. 傳感系統(tǒng):激光傳感器、視覺傳感器和力傳感器在機器人系統(tǒng)中已得到成功應用,并實現(xiàn)了焊縫自動跟蹤和自動化生產(chǎn)線上物體的自動定位以及精密裝配作業(yè)等,大大提高了機器人的作業(yè)性能和對環(huán)境的適應性。日本KAWASAKI、YASKAWA、FANUC和瑞典ABB、德國KUKA、REIS等公司皆推出了此類產(chǎn)品。
e. 網(wǎng)絡通信功能:日本YASKAWA和德國KUKA公司的最新機器人控制器已實現(xiàn)了與Canbus、Profibus總線及一些網(wǎng)絡的聯(lián)接,使機器人由過去的獨立應用向網(wǎng)絡化應用邁進了一大步,也使機器人由過去的專用設備向標準化設備發(fā)展。
f. 可靠性:由于微電子技術的快速發(fā)展和大規(guī)模集成電路的應用,使機器人系統(tǒng)的可靠性有了很大提高。過去機器人系統(tǒng)的可靠性MTBF一般為幾千小時,而現(xiàn)在已達到5萬小時,幾乎可以滿足任何場合的需求。
2.2.2先進機器人
近年來,人類的活動領域不斷擴大,機器人應用也從制造領域向非制造領域發(fā)展。像海洋開發(fā)、宇宙探測、采掘、建筑、醫(yī)療、農林業(yè)、服務、娛樂等行業(yè)都提出了自動化和機器人化的要求。這些行業(yè)與制造業(yè)相比,其主要特點是工作環(huán)境的非結構化和不確定性,因而對機器人的要求更高,需要機器人具有行走功能,對外 感知能力以及局部的自主規(guī)劃能力等,是機器人技術的一個重要發(fā)展方向。
a. 水下機器人:美國的AUSS、俄羅斯的MT-88、法國的EPAVLARD等水下機器人已用于海洋石油開采,海底勘查、救撈作業(yè)、管道敷設和檢查、電纜敷設和維護、以及大壩檢查等方面,形成了有纜水下機器人(remote operated vehicle)和無纜水下機器人(autonomous under water vehicle)兩大類。
b. 空間機器人:空間機器人一直是先進機器人的重要研究領域。目前美、俄、加拿大等國已研制出各種空間機器人。如美國NASA的空間機器人 Sojanor等。Sljanor是一輛自主移動車,重量為11.5kg,尺寸630~48mm,有6個車輪,它在火星上的成功應用,引起了全球的廣泛關 注。
c. 核工業(yè)用機器人:國外的研究主要集中在機構靈巧,動作準確可靠、反應快、重量輕、剛度好、便于裝卸與維修的高性能伺服手,以及半自主和自主移動機器人。已完成的典型系統(tǒng),如美國ORML基于機器人的放射性儲罐清理系統(tǒng)、反應堆用雙臂操作器,加拿來大研制成功的輻射監(jiān)測與故障診斷系統(tǒng),德國的C7 靈巧手等
d. 地下機器人:地下機器人主要包括采掘機器人和地下管道檢修機器人兩大類。主要研究內容為:機械結構、行走系統(tǒng)、傳感器及定位系統(tǒng)、控制系統(tǒng)、通信及遙控技術。目前日、美、德等發(fā)達國家已研制出了地下管道和石油、天然氣等大型管道檢修用的機器人,各種采機器人及自動化系統(tǒng)正在研制中。
e. 醫(yī)用機器人: 醫(yī)用機器人的主要研究內容包括:醫(yī)療外科手術的規(guī)劃與仿真、機器人輔助外科手術、最小損傷外科、臨場感外科手術等。美國已開展臨場感外科(telepresence surgery)的研究,用于戰(zhàn)場模擬、手術培訓、解剖教學等。法、英、意、德等國家聯(lián)合開展了圖像引導型矯形外科(telematics)計劃、袖珍機器人(biomed)計劃以及用于外科手術的機電手術工具等項目的研究,并已取得一些卓有成效的結果。
f. 建筑機器人:日本已研制出20多種建筑機器人。如高層建筑抹灰機器人、預制件安裝機器人、室內裝修機器人、地面拋光機器人、擦玻璃機器人等,并已實際應用。美國卡內基梅隆重大學、麻省理工學院等都在進行管道挖掘和埋設機器人、內墻安裝機器人等型號的研制、并開展了傳感器、移動技術和系統(tǒng)自動化施工方法等基礎研究。英、德、法等國也在開展這方面的研究。
g. 軍用機器人:近年來,美、英、法、德等國已研制出第二代軍用智能機器人。其特點是采用自主控制方式,能完成偵察、作戰(zhàn)和后勤支援等任務,在戰(zhàn)場上具有看、嗅和觸摸能力,能夠自動跟蹤地形和選擇道路,并且具有自動搜索、識別和消滅敵方目標的功能。如美國的Navplab自主導航車、SSV半自主地面戰(zhàn)車,法國的自主式快速運動 偵察車(DARDS),德國MV4爆炸物處理機器人等。目前美國ORNL正在研制和開發(fā)Abrams坦克、愛國者導彈裝電池用機器人等各種用途的軍用機器人。
可以預見,在21世紀各種先進的機器人系統(tǒng)將會進入人類生活的各個領域,成為人類良好的助手和親密的伙伴。
2.2發(fā)展趨勢
目前國際機器人界都在加大科研力度,進行機器人共性技術的研究,并朝著智能化和多樣化方向發(fā)展。主要研究內容集中在以下10個方面:
a. 工業(yè)機器人操作機結構的優(yōu)化設計技術:探索新的高強度輕質材料,進一步提高負載.自重比,同時機構向著模塊化、可重構方向發(fā)展。
b. 機器人控制技術:重點研究開放式,模塊化控制系統(tǒng),人機界面更加友好,語言、圖形編程界面正在研制之中。機器人控制器的標準化和網(wǎng)絡化,以及基于 PC機網(wǎng)絡式控制器已成為研究熱點。編程技術除進一步提高在線編程的可操作性之外,離線編程的實用化將成為研究重點。
c. 多傳感系統(tǒng):為進一步提高機器人的智能和適應性,多種傳感器的使用是其問題解決的關鍵。其研究熱點在于有效可行的多傳感器融合算法,特別是在非線性及非平穩(wěn)、非正態(tài)分布的情形下的多傳感器融合算法。另一問題就是傳感系統(tǒng)的實用化。
d. 機器人的結構靈巧,控制系統(tǒng)愈來愈小,二者正朝著一體化方向發(fā)展。
e. 機器人遙控及監(jiān)控技術,機器人半自主和自主技術,多機器人和操作者之間的協(xié)調控制,通過網(wǎng)絡建立大范圍內的機器人遙控系統(tǒng),在有時延的情況下,建立預先顯示進行遙控等。
f. 虛擬機器人技術:基于多傳感器、多媒體和虛擬現(xiàn)實以及臨場感技術,實現(xiàn)機器人的虛擬遙操作和人機交互。
g. 多智能體(multi-agent)調控制技術:這是目前機器人研究的一個嶄新領域。主要對多智能體的群體體系結構、相互間的通信與磋商機理,感知與學習方法,建模和規(guī)劃、群體行為控制等方面進行研究。
h. 微型和微小機器人技術(micro/miniature robotics):這是機器人研究的一個新的領域和重點發(fā)展方向。過去的研究在該領域幾乎是空白,因此該領域研究的進展將會引起機器人技術的一場革命, 并且對社會進步和人類活動的各個方面產(chǎn)生不可估量的影響,微小型機器人技術的研究主要集中在系統(tǒng)結構、運動方式、控制方法、傳感技術、通信技術以及行走技術等方面。
我國對此進行了深入的研究。徐衛(wèi)平和張玉茹發(fā)表的《六自由度微動機構的運動分析》對六自由度微動機構進行了位移分析并為其結構設計提供了計算依據(jù)。還有劉辛軍、高峰和汪勁松發(fā)表的《并聯(lián)六自由度微動機器人機構的設計方法》研究了微動機器人機構的設計方法,建立了并聯(lián)六自由度微動機器人的空間模型,并分析了該微動機器人的空間模型,并分析了該微動機器人的機構尺寸與各向同性、剛度等性能指標的關系得到了一系列性能圖譜,從各圖譜中可以看出各項性能指標在空間模型設計參數(shù)空間中的分布規(guī)律,這有助于設計者根據(jù)性能指標來設計該微動機器人的機構尺寸,是探討微動機器人機構設計的有效分析工具。
3總體方案設計
3.1機械結構類型的確定
為實現(xiàn)總體機構在空間的位置提供的6個自由度,可以有不同的運動組合,根據(jù)本課題可以將其設計成以下五種方案:
3.1.1圓柱坐標型
這種運動形式是通過一個轉動,兩個移動,共三個自由度組成的運動系統(tǒng),工作空間圖形為圓柱型。它與直角坐標型比較,在相同的工作空間條件下,機體所占體積小,而運動范圍大。
3.1.2直角坐標型
直角坐標型工業(yè)機器人,其運動部分由三個相互垂直的直線移動組成,其工作空間圖形為長方體。它在各個軸向的移動距離,可在各坐標軸上直接讀出,直觀性強,易于位置和姿態(tài)的編程計算,定位精度高、結構簡單,但機體所占空間體積大、靈活性較差。
3.1.3球坐標型
又稱極坐標型,它由兩個轉動和一個直線移動所組成,即一個回轉,一個俯仰和一個伸縮運動組成,其工作空間圖形為一個球形,它可以作上下俯仰運動并能夠抓取地面上或較低位置的工件,具有結構緊湊、工作空間范圍大的特點,但結構復雜。
3.1.4關節(jié)型
關節(jié)型又稱回轉坐標型,這種機器人的手臂與人體上肢類似,其前三個關節(jié)都是回轉關節(jié),這種機器人一般由立柱和大小臂組成,立柱與大臂間形成肩關節(jié),大臂和小臂間形成肘關節(jié),可使大臂作回轉運動和使大臂作俯仰擺動,小臂作俯仰擺動。其特點使工作空間范圍大,動作靈活,通用性強、能抓取靠進機座的物體。
3.1.5平面關節(jié)型
采用兩個回轉關節(jié)和一個移動關節(jié);兩個回轉關節(jié)控制前后、左右運動,而移動關節(jié)則實現(xiàn)上下運動,其工作空間的軌跡圖形,它的縱截面為矩形的同轉體,縱截面高為移動關節(jié)的行程長,兩回轉關節(jié)轉角的大小決定回轉體橫截面的大小、形狀。在水平方向有柔順性,在垂直方向有較大的剛性。它結構簡單,動作靈活,多用于裝配作業(yè)中,特別適合小規(guī)格零件的插接裝配。
對以上五種方案進行比較:方案一不能夠完全實現(xiàn)本課題所要求的動作;方案二體積大,靈活性差;方案三結構復雜;方案五無法實現(xiàn)本課題的動作。結合本課題綜合考慮決定采用方案四:關節(jié)型機器人。此方案所占空間少,工作空間范圍大,動作靈活,工藝操作精度高。
3.2工作空間的確定
根據(jù)關節(jié)型機器人的結構確定工作空間。工作空間是指機器人正常工作運行時,手腕參考點能在空間活動的最大范圍,是機器人的主要技術參數(shù)。此機器人的工作空間為1500mm。
圖3-1 機器人的機座坐標系
3.3手腕結構的確定
手腕是聯(lián)接手臂和末端執(zhí)行器的部件,處于機器人操作機的最末端,其功能是在手臂和腰部實現(xiàn)了末端執(zhí)行器在作業(yè)空間的三個坐標位置的基礎上,再由手腕來實現(xiàn)末端執(zhí)行器在作業(yè)空間的三個姿態(tài)坐標,即實現(xiàn)三個自由度。
圖3-2 傳動原理圖
考慮到結構,電機將成三角形布置,具體結構見圖。
3.4基本參數(shù)的確定
空間結構和手腕結構的確定,那么手腕回轉、手腕擺動、和手腕旋轉三個姿態(tài)的自由度也得到了實現(xiàn)。
表3-1 機器人的主要規(guī)格參數(shù)
動作范圍
手腕回轉
手腕擺動
手腕旋轉
額定載荷
最大速度
4手腕詳細設計說明
4.1機器人驅動方案的分析和選擇
通常的機器人驅動方式有以下四種:
a. 步進電機:可直接實現(xiàn)數(shù)字控制,控制結構簡單,控制性能好,而且成本低廉;通常不需要反饋就能對位置和速度進行控制。但是由于采用開環(huán)控制,沒有誤差校正能力,運動精度較差,負載和沖擊震動過大時會造成“失步”現(xiàn)象。
b. 直流伺服電機:直流伺服電機具有良好的調速特性,較大的啟動力矩,相對功率大及快速響應等特點,并且控制技術成熟。其安裝維修方便,成本低。
c. 交流伺服電機:交流伺服電機結構簡單,運行可靠,使用維修方便,與步進電機相比價格要貴一些。隨著可關斷晶閘管GTO,大功率晶閘管GTR和場效應管MOSFET等電力電子器件、脈沖調寬技術(PWM)和計算機控制技術的發(fā)展,使交流伺服電機在調速性能方面可以與直流電機媲美。采用16位CPU+32位DSP三環(huán)(位置、速度、電流)全數(shù)字控制,增量式碼盤的反饋可達到很高的精度。三倍過載輸出扭矩可以實現(xiàn)很大的啟動功率,提供很高的響應速度。
d. 液壓伺服馬達:液壓伺服馬達具有較大的功率/體積比,運動比較平穩(wěn),定位精度較高,負載能力也比較大,能夠抓住重負載而不產(chǎn)生滑動,從體積、重量及要求的驅動功率這幾項關鍵技術考慮,不失為一個合適的選擇方案。但是,其費用較高,其液壓系統(tǒng)經(jīng)常出現(xiàn)漏油現(xiàn)象。為避免本系統(tǒng)也出現(xiàn)同類問題,在可能的前提下,本系統(tǒng)將盡量避免使用該種驅動方式。
本課題的機器人將采用直流伺服電動機。因為它具有體積小、轉矩大、輸出力矩和電流成比例、伺服性能好、反應快速、功率重量比大,穩(wěn)定性好等優(yōu)點。
4.2手腕電機的選擇
4.2.1提腕電機的選擇
手腕的最大負荷重量,初估腕部的重量,最大運動速度V=2m/s
功率
取安全系數(shù)為1.2,
考慮到傳動損失和摩擦,最終的電機功率。選擇Z型并勵直流電動機,技術參數(shù)如下
表4-1 Z型并勵直流電動機技術參數(shù)
型 號
額定電壓 (V)
額定轉矩(N/m)
額定轉速 (r/m)
參考功率 (W)
重量 (kg)
Z200/20-400
200
1
2000
400
5.5
4.2.2擺腕和轉腕電機的選擇
根據(jù)設計要求取相同型號的電機,選擇Z型并勵直流電動機,型號為200/20-400。
4.3傳動比的確定
4.3.1提腕總傳動比的確定
先根據(jù)下式求角速度 = ==20 r/s
為角速度(r/s),V為運動速度(m/s), R為機械接口到轉動軸的距離(m)。
再求實際轉速 n’=
為轉速(r/min)。
最后求得總傳動比
i總==10.4 取整i總1=10
4.3.2轉腕和擺腕傳動比的確定
用同樣的方法,可求得
轉腕總傳動比i總2=20
擺腕總傳動比i總3=10
4.4傳動比的分配
傳動比分配時要充分考慮到各級傳動的合理性,以及齒輪的結構尺寸,要做到結構合理。
a. 提腕傳動比分配 提腕總的傳動比i總1=10,該傳動為兩級傳動,第一極傳動為圓柱齒輪傳動,傳動比i11=2,第二極傳動為圓錐齒輪傳動,傳動比i12=5。
b. 轉腕傳動比分配 轉腕總的傳動比i總2=20,該傳動為兩級傳動,第一極傳動為圓錐齒輪傳動,傳動比i21=5,第二極傳動為圓錐齒輪傳動,傳動比i21=4。
c. 擺腕傳動比分配 擺腕總的傳動比i總3=10,該傳動為兩級傳動,第一極傳動為圓柱齒輪傳動,傳動比i31=2,第二極傳動為圓錐齒輪傳動,傳動比i32=5。
4.5齒輪的設計
按照上述傳動比配對各齒輪進行設計。
4.5.1提腕部分齒輪設計
A. 第一極圓柱齒輪傳動
齒輪采用45號鋼,鍛造毛坯,正火處理后齒面硬度170~190HBS,齒輪精度等級為7極。取。
a. 設計準則
按齒面接觸疲勞強度設計,再按齒根彎曲疲勞強度校核。
b.按齒面接觸疲勞強度設計
齒面接觸疲勞強度條件的設計表達式
(4-1)
其中, ,,
,,,
選擇材料的接觸疲勞極根應力為:
選擇材料的接觸疲勞極根應力為:
應力循環(huán)次數(shù)N由下列公式計算可得
(4-2)
則
接觸疲勞壽命系數(shù),
彎曲疲勞壽命系數(shù)
接觸疲勞安全系數(shù),彎曲疲勞安全系數(shù),又,試選。
求許用接觸應力和許用彎曲應力:
將有關值代入(4-1)得:
則
動載荷系數(shù);使用系數(shù);動載荷分布不均勻系數(shù);齒間載荷分配系數(shù),則
修正
取標準模數(shù)。
c.計算基本尺寸
取
d. 校核齒根彎曲疲勞強度
復合齒形系數(shù),
取
校核兩齒輪的彎曲強度
(4-3)
所以齒輪完全達到要求。
表4-2 齒輪的幾何尺寸
名稱
符號
公式
分度圓直徑
齒頂高
齒根高
齒全高
齒頂圓直徑
齒根圓直徑
基圓直徑
齒距
齒厚
齒槽寬
中心距
頂隙
由于小齒輪分度圓直徑較小,考慮到結構,小齒輪將做成齒輪軸。
B. 第二極圓錐齒輪傳動
齒輪采用45號鋼,調質處理后齒面硬度180~190HBS,齒輪精度等級為7極。取
a. 設計準則
按齒面接觸疲勞強度設計,再按齒根彎曲疲勞強度校核。
b. 按齒面接觸疲勞強度設計
齒面接觸疲勞強度的設計表達式
(4-4)
其中, ,,
,,
選擇材料的接觸疲勞極根應力為:
選擇材料的接觸疲勞極根應力為:
應力循環(huán)次數(shù)N由下式計算可得
(4-5)
則
接觸疲勞壽命系數(shù),
彎曲疲勞壽命系數(shù)
接觸疲勞安全系數(shù),彎曲疲勞安全系數(shù),又,試選。
求許用接觸應力和許用彎曲應力:
將有關值代入(4-4)得:
則
動載荷系數(shù);使用系數(shù);齒向載荷分布不均勻系數(shù);齒間載荷分配系數(shù)取,則
修正
取標準模數(shù)。
c.計算基本尺寸
d. 校核齒根彎曲疲勞強度
復合齒形系數(shù),
取
校核兩齒輪的彎曲強度
(4-6)
所以齒輪完全達到要求。
表4-3齒輪的幾何尺寸
·
符號
公式
分度圓直徑
齒頂高
齒根高
齒頂圓直徑
齒根圓直徑
齒頂角
齒根角
分度圓錐角
頂錐角
根錐角
錐距
齒寬
由于小齒輪的分度圓直徑較小,所以作成齒輪軸。
4.5.2轉腕部分齒輪設計
第一極圓錐齒輪傳動:齒輪采用45號鋼,調質處理后齒面硬度180~190HBS,齒輪精度等級為7極。取。經(jīng)計算齒輪滿足要求
表4-4齒輪的幾何尺寸
名稱
符號
公式
分度圓直徑
齒頂高
齒根高
齒頂圓直徑
齒根圓直徑
齒頂角
齒根角
分度圓錐角
頂錐角
根錐角
錐距
齒寬
第二極圓錐齒輪傳動:齒輪采用45號鋼,調質處理后齒面硬度180~190HBS,齒輪精度等級為7極。取。經(jīng)計算齒輪滿足要求。
表4-5齒輪的幾何尺寸
名稱
符號
公式
分度圓直徑
齒頂高
齒根高
齒頂圓直徑
齒根圓直徑
齒頂角
齒根角
分度圓錐角
頂錐角
根錐角
錐距
齒寬
4.5.3擺腕部分齒輪設計
第一極圓柱齒輪傳動:齒輪采用45號鋼,調質處理后齒面硬度180~190HBS,齒輪精度等級為7極。取。經(jīng)計算齒輪滿足要求。小齒輪作成齒輪軸。
表4-6齒輪的幾何尺寸
名稱
符號
公式
分度圓直徑
齒頂高
齒根高
齒全高
齒頂圓直徑
齒根圓直徑
基圓直徑
齒距
齒厚
齒槽寬
中心距
頂隙
第二極圓錐齒輪傳動:齒輪采用45號鋼,調質處理后齒面硬度180~190HBS,齒輪精度等級為7極。取。經(jīng)計算齒輪滿足要求。小齒輪作成齒輪軸。
表4-6齒輪的幾何尺寸
名稱
符號
公式
分度圓直徑
齒頂高
齒根高
齒頂圓直徑
齒根圓直徑
齒頂角
齒根角
分度圓錐角
頂錐角
根錐角
錐距
齒寬
4.6軸的設計和校核
軸的結構決定于受力情況、軸上零件的布置和固定方式、軸承的類型和尺寸、軸的毛坯,制造和裝配工藝、以及運輸、安裝等條件。軸的結構,應使軸受力合理,避免或減輕應力集中,有良好的工藝性,并使軸上零件定位可靠、裝配方便。對于要求剛度大的軸,還應該從結構上考慮減少軸的變形。
4.5.1輸出軸的設計
擺腕的傳動軸根據(jù)連軸器選:軸徑d=18mm ,根據(jù)結構取軸長l=135mm。
由于要實現(xiàn)擺腕,工作時要求彼此有相對運動的空間傳動所以提腕和轉腕的傳動軸采用軟軸。軟軸通常由鋼絲軟軸、軟管、軟軸接頭和軟管接頭等幾部分組成。
a. 鋼絲軟軸由幾層彈簧鋼絲緊繞在一起構成的。每層又由若干根鋼絲組成。相鄰鋼絲層的纏繞方向相反。
b. 軟管用來保護鋼絲軟軸,以免與外界的機件接觸,并保存潤滑劑和防止塵垢侵入;工作時軟管還起支撐作用。
c. 軟軸接頭用以連接動力輸出軸及工作部件
d. 軟管接口用以連接傳動裝置及工作部件的機體,有時也是軟軸接頭的軸承座。
在使用軟軸的時候要注意鋼絲軟軸必須定時涂潤滑脂,不得使軟軸的彎曲半徑小于允許最小半徑。
4.5.2傳動軸的設計
軸的材料為45號鋼,調制處理
a. 初估軸徑, c=106~117,取c=106則
(4-7)
b. 各段軸徑的確定
初估軸徑后,就可按照軸上零件的安裝順序從處開始逐段確定軸徑,上面計算的是軸段1的直徑,由于軸段1上安裝連軸器,因此軸段1直徑的確定和連軸器型號同時進行。這次選用的是波紋管連軸器。故軸段1直徑=20mm。
右端用軸肩固定,考慮到在軸段2上裝套筒,故取軸徑=22mm。
在軸段3上要安裝軸承,其直徑應該便于軸承安裝,又應該符合軸承內徑系列,
即軸段3的直徑應與軸承型號的選擇同時進行?,F(xiàn)取角接觸球軸承型號為7205,其內徑=25mm。通常一根軸上的兩個軸承取相同型號,故取軸段7的直徑=25mm。
軸段4上用軸肩固定軸承,故?。?0mm。
軸段5上作成齒輪軸,尺寸與齒輪相同。
根據(jù)結構確定軸段6的直徑=30mm。
c. 各軸段長度的確定
各軸段長度主要根據(jù)軸上零件的轂長或軸長零件配合部分的長度確定。另一些軸段長度,除與軸上零件有關外,還與箱體及軸承蓋等零件有關。
根據(jù)聯(lián)軸器取 。
考慮到套筒長度取 。
根據(jù)軸承寬度取 。
根據(jù)結構 。
圖4-1軸的結構設計草圖
4.5.3軸的強度校核
軸在初步完成結構設計后,進行校核計算。計算準則是滿足軸的強度或剛度要求。進行軸的強度校核計算時,應根據(jù)軸的具體受載及應力情況,采取相應的方法,并恰當?shù)剡x取其許用應力,對于用于傳遞轉矩的軸應按扭轉強度條件計算,對于只受彎矩的軸(心軸)應按彎曲強度條件計算,兩者都具備的按疲勞強度條件進行精確校核等。
圖4-2軸的受力分析和彎扭矩圖
a. 軸上的轉矩T:
主軸上的傳遞的功率:
(4-8)
求作用在齒輪上的力:
b. 畫軸的受力簡圖 見圖4-2
c. 計算軸的支撐反力
在水平面上
在垂直面上
d. 畫彎矩圖 見圖4-2
在水平面上,剖面左側
剖面右側
在垂直面上
合成彎矩,剖面左側
剖面右側
e. 畫轉矩圖 見圖4-2
f. 判斷危險截面
截面左右的合成彎矩左側相對右側大些,扭矩為T,則判斷左側為危險截面,只要左側滿足強度校核就行了。
g..軸的彎扭合成強度校核
許用彎曲應力,,
截面左側
h. 軸的疲勞強度安全系數(shù)校核
查得抗拉強度 ,彎曲疲勞強度,剪切疲勞極限,等效系數(shù),
截面左側
查得,;查得絕對尺寸系數(shù),;軸經(jīng)磨削加工,表面質量系數(shù)。則
彎曲應力 ,
應力幅
平均應力
切應力
安全系數(shù)
查許用安全系數(shù),顯然,則剖面安全。
其它軸用相同方法計算,結果都滿足要求。
4.7夾持器的設計
根據(jù)焊槍的軸徑和機械接口的結構設計了夾持器。本次設計使用的焊槍直徑為50mm。用螺栓固定焊槍。通過螺栓與機械接口聯(lián)接。
4.8殼體的設計
機座部分采用鑄鋁材料,方形結構,臂厚8~12mm。機身部分采用鑄鋁材料,圓筒形結構,臂厚7~8。大臂外殼和大臂箱體采用鑄鋁材料,方形結構,厚度均為6~8。小臂箱體和小臂外殼采用鑄鋁材料,結構為方形,側面為鑄件其它三面為鑄鋁板材。手腕外殼和手腕箱體采用鑄鋁材料,結構為方形,兩側面、背面、底面為鑄件,端面和正面為鑄鋁板材,臂厚5~8mm。
其它部分具體尺寸由結構決定,詳見圖紙。
5結論
本次設計的焊接機器人采用了直流電機驅動,通過一系列的軸和齒輪傳動順利實現(xiàn)了三個自由度:擺腕、提腕、轉腕。應用于焊接生產(chǎn)線上將大大提高生產(chǎn)效率,和加工質量,降低工人勞動強度,能夠帶來可觀的經(jīng)濟效益。
本機器人設計結構合理,通用性強。除了應用于焊接外,還可以應用于噴漆等工作中。設備制造成本合理,拆裝方便,便于維護。
參 考 文 獻
[1] 劉辛軍,汪勁松,高峰.并聯(lián)六自由度微動機器人機構的設計方法[J].清華大學學報(自然科學版), 2001,41.(8):16-20.
[2] 徐衛(wèi)平,張玉茹,六自由度微動機構的運動分析[J].機器人ROBOT,1995,17.(5):298-302.
[3] 李明利,楊利華. 磁性輪式球罐焊接機器人機械結構設計與分析[J].機械,
2001,28:83-84.
[4] 潘沛霖,楊宏,高波,吳微光.四自由度折疊式機械手的結構設計與分析[J].哈爾濱工業(yè)大學學報,1994,26.(4):90-95.
[5] 殷際英,何廣平.關節(jié)型機器人[M].北京:化學工業(yè)出版社, 2003.
[6] 馬香峰.工業(yè)機器人的操作設計和分析[M] .北京:冶金工業(yè)出版社, 1996.
[7] 費仁元,張慧慧.機器人機械設計和分析[M] .北京:北京工業(yè)大學出版社,1998.
[8] 周伯英.工業(yè)機器人設計[M] .北京:機械工業(yè)出版社, 1995.
[9] 蔡自興.機器人學[M].北京:清華大學出版社,2000.
[10] 宗光華,劉海波譯.機器人技術手冊[M]. 北京:科學出版社, 1996.
[11] 徐衛(wèi)良,錢瑞名譯.機器人操作的數(shù)學導論[M].北京:機械工業(yè)出版社,1998.
[12] 孫迪生,王炎.機器人控制技術[M] .北京:機械工業(yè)出版社,1998.
[13] 徐錦康.機械設計[M] .第二版.北京:機械工業(yè)出版社,2001.
[14] 徐灝.機械設計手冊[M] .第二版.北京:機械工業(yè)出版社,2000.
[15] 成大先.機械設計手冊[M].第四版.北京:化學工業(yè)出版社,2002.
[16] 陳秀寧,施高義.機械設計課程設計[M].第一版.浙江:浙江大學出版社,1995 .
附 錄
1 機器人總裝圖 HJJQR00 A0
2 手腕裝配圖 HJJQR-23 A0
3 夾持器裝配圖 HJJQR01 A2
4 軸 HJJQR-23-11 A3
5 大錐齒輪 HJJQR-14 A2
6 小錐齒輪 HJJQR-23-13 A3
7 圓柱齒輪 HJJQR-10 A3
8 圓柱齒輪軸 HJJQR-12 A3
9 圓錐齒輪軸 HJJQR-13 A3
27