【溫馨提示】====【1】設(shè)計包含CAD圖紙 和 DOC文檔,均可以在線預(yù)覽,所見即所得,,dwg后綴的文件為CAD圖,超高清,可編輯,無任何水印,,充值下載得到【資源目錄】里展示的所有文件======【2】若題目上備注三維,則表示文件里包含三維源文件,由于三維組成零件數(shù)量較多,為保證預(yù)覽的簡潔性,店家將三維文件夾進行了打包。三維預(yù)覽圖,均為店主電腦打開軟件進行截圖的,保證能夠打開,下載后解壓即可。======【3】特價促銷,,拼團購買,,均有不同程度的打折優(yōu)惠,,詳情可咨詢QQ:1304139763 或者 414951605======【4】 題目最后的備注【YC系列】為店主整理分類的代號,與課題內(nèi)容無關(guān),請忽視
畢業(yè)設(shè)計(論文)
題 目
專 業(yè)
學(xué) 號
學(xué) 生
指 導(dǎo) 教 師
答 辯 日 期
哈爾濱工業(yè)大學(xué)畢業(yè)設(shè)計(論文)評語
姓名: 學(xué)號: 專業(yè):
畢業(yè)設(shè)計(論文)題目:
工作起止日期:______ 年____ 月____ 日起 ______ 年____ 月____ 日止
指導(dǎo)教師對畢業(yè)設(shè)計(論文)進行情況,完成質(zhì)量及評分意見:
_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ _
指導(dǎo)教師簽字: 指導(dǎo)教師職稱:
評閱人評閱意見:
________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
______________________________________________________________________
評閱教師簽字: 評閱教師職稱:
答辯委員會評語:
____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ __________
根據(jù)畢業(yè)設(shè)計(論文)的材料和學(xué)生的答辯情況,答辯委員會作出如下評定:
學(xué)生 畢業(yè)設(shè)計(論文)答辯成績評定為:
對畢業(yè)設(shè)計(論文)的特殊評語:
____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ ________
答辯委員會主任(簽字): 職稱:______ __________
答辯委員會副主任(簽字):
答辯委員會委員(簽字):___________ ___________ ___________ __________ __________ ___________ ___________ ___________ __________ __________ ___________ ___________ ___________ __________ __________
年 月 日
哈爾濱工業(yè)大學(xué)畢業(yè)設(shè)計(論文)任務(wù)書
姓 名: 院 (系):機械工程系
專 業(yè):機械設(shè)計制造及其自動化 班 號:
任務(wù)起至日期:2014 年 1月 3日至 2014 年 6 月 20日
畢業(yè)設(shè)計(論文)題目:
一種蠕動式管道機器人的機構(gòu)設(shè)計
立題的目的和意義:
通過本次畢業(yè)設(shè)計,達(dá)到培養(yǎng)學(xué)生綜合應(yīng)用所學(xué)知識,分析和解決工程實際問題,鍛煉創(chuàng)造能力的目的,使學(xué)生在系統(tǒng)設(shè)計、動態(tài)仿真、實驗研究等方面得到進一步提高。
技術(shù)要求與主要內(nèi)容:
技術(shù)要求:
可以實現(xiàn)管道內(nèi)的蠕動行進,均為伺服電機驅(qū)動。要求結(jié)構(gòu)緊湊,動作運行平穩(wěn),能夠適應(yīng)管道截面的幾何變形。完成總體結(jié)構(gòu)的詳細(xì)設(shè)計,對關(guān)鍵零部件進行必要的選型方案設(shè)計及有關(guān)的強度與剛度計算,并分析運動學(xué)與動力學(xué)性能。建立完整的三維實體結(jié)構(gòu)模型,設(shè)計相關(guān)控制系統(tǒng)方案原理圖。
主要內(nèi)容:
1、完成機器人機構(gòu)蠕動方案、伺服電機、減速器等選型
2、完成機器人機構(gòu)總裝圖的詳細(xì)設(shè)計
3、分析有關(guān)的運動學(xué)與動力學(xué)特性
4、設(shè)計運動控制原理方案
5、完成三維實體建模設(shè)計
6、外文翻譯3000字以上
進度安排:
第1~3周:搜集資料,熟悉題目,撰寫開題報告,準(zhǔn)備開題
第4周:進行機器人機構(gòu)方案選型與必要的理論分析計算
第5~9周:機器人機構(gòu)裝配圖的總體詳細(xì)設(shè)計及完成有關(guān)的理論分析計算
第10周:運動學(xué)特性分析計算
第11周:動力學(xué)特性分析計算,完善總體設(shè)計
第12周:運動控制方案原理設(shè)計
第13周:三維實體建模設(shè)計
第14周:撰寫論文
第15周:準(zhǔn)備答辯,答辯
同組設(shè)計者及分工:
指導(dǎo)教師簽字___________________
年 月 日
教研室主任意見:
教研室主任簽字___________________
年 月 日
一種蠕動式管道機器人的機構(gòu)設(shè)計
摘 要
在現(xiàn)代,無論是工業(yè)、農(nóng)業(yè)還是國防領(lǐng)域中都有縱橫交錯的管道。如何保障這些管道系統(tǒng)的安全性和有效性,對于我困經(jīng)濟發(fā)展至關(guān)重要。管道機器人是工作在輸送管道內(nèi),用于完成管道缺陷檢測、修復(fù)等的智能裝置,是保障管道安全的重要工具。由于管道內(nèi)環(huán)境復(fù)雜,對管道機器人的設(shè)計要求驅(qū)動單元結(jié)構(gòu)簡單、驅(qū)動效率高,同時對復(fù)雜的管內(nèi)環(huán)境具有自適應(yīng)能力。因此研制具有結(jié)構(gòu)簡單、驅(qū)動效率高、具有管內(nèi)環(huán)境自適應(yīng)能力的管道機器人具有重要意義。
該蠕動式管道機器人由三部分組成,包括一個伸縮模塊和兩個支撐夾緊模塊。伸縮模塊主要由主執(zhí)行器和四組齒輪齒條構(gòu)成,利用齒輪齒條的往復(fù)移動來實現(xiàn)機器人的行走;兩個支撐夾緊模塊結(jié)構(gòu)上完全一樣,通過曲柄滑塊機構(gòu)使機器人的腳與管壁壓緊,從而產(chǎn)生機器人行走所需的靜摩擦力。伸縮模塊和支撐模塊按一定的順序循環(huán)工作,從而實現(xiàn)機器人在管道內(nèi)的行走。
本文首先通過分析國內(nèi)外研究現(xiàn)況和現(xiàn)有管道機器的結(jié)構(gòu)特點及原理提出自己的設(shè)計方案,接著從動作原理和運動特性、動力特性等角度分析了該機器人的結(jié)構(gòu)及性能特點,讓后對機器人各模塊進行了詳細(xì)設(shè)計與校核,最后采用Pro/E對該機器人進行了三維設(shè)計以及采用AutoCAD繪圖軟件繪制了該機器人的裝配圖和主要零件圖。
關(guān)鍵字:蠕動,管道,機器人,設(shè)計
Abstract
In modern times, whether industrial, agricultural or defense in both pipelines criss-cross. How to protect the safety and effectiveness of these piping systems, economic development is essential for me sleepy. Pipeline robot is working in the pipeline for the completion of the pipeline defect inspection, repair, and other smart devices, is an important tool to protect the safety of pipelines. Due to the complexity of the environment in the pipeline, the pipeline robot design requirements driving a simple cell structure, high drive efficiency, while the inner tube environments with complex adaptive capacity. Therefore, the development of a simple structure, high drive efficiency, environmental adaptive ability of the tube pipe robot is important.
The peristaltic pipe robot consists of three parts, including a telescoping clamp module and two support modules. Telescopic module is composed primarily of four main actuator and gear rack, the gear rack to achieve the reciprocating movement of the walking robot; two supporting structures are completely the same as the clamping block, slider-crank mechanism of the robot through the feet and the tube pressing the walls to produce the required static friction walking robot. Telescoping module and support module cycle work according to a certain order to achieve the robot to walk in the pipeline.
Firstly, make their own designs by analyzing the structural characteristics and the principle of status quo and existing domestic pipeline machines, then from the action principle and motion characteristics, dynamic characteristics, such as paper analyzes the structure and performance characteristics of the robot, so that after Each module is a detailed robot design and verification, finally using Pro/E the robot uses a three-dimensional design and drawing software AutoCAD drawing the assembly drawing of the robot and the main parts diagram.
Keywords: Motility, Pipes, Robotics, Design
目 錄
摘 要 I
Abstract II
第一章 緒論 1
1.1 研究背景及意義 1
1.2 國內(nèi)外研究概況 1
1.3 蠕動式管道機器人概述 4
第二章 總體設(shè)計與特性分析 6
2.1 驅(qū)動方式的選擇 6
2.2 結(jié)構(gòu)方案設(shè)計 6
2.2.1 蠕動方式選定 6
2.2.2 支撐夾緊機構(gòu)設(shè)計 8
2.3 總體方案確定 8
2.4 運動及動力學(xué)特性分析 9
2.4.1直線運動 9
2.4.2轉(zhuǎn)彎運動 11
第三章 各組成部分的設(shè)計 14
3.1 性能參數(shù)的選定 14
3.2 蠕動行走機構(gòu)的設(shè)計 14
3.2.2 伺服電機的選定 14
3.2.1 運動及動力參數(shù)計算 15
3.2.3 減速器的選定 15
3.2.3 圓錐齒輪傳動的設(shè)計 16
3.2.4 齒輪齒條傳動的設(shè)計 19
3.2.5 傳動軸的設(shè)計及軸上零件的選定 22
3.2.6 機架的設(shè)計 25
3.3 支撐夾緊機構(gòu)設(shè)計 26
3.3.1 伺服電機的選定 26
3.3.2 運動及動力參數(shù)選定 26
3.3.3減速器的選定 26
3.3.4 曲柄滑塊機構(gòu)設(shè)計 27
3.3.5 機架的設(shè)計 30
3.4 機器人各模塊基于Pro/E的三維設(shè)計 30
3.4.1 蠕動行走模塊 30
3.4.2 上部支撐夾緊模塊 31
3.4.3 下部支撐夾緊模塊 31
3.4.3 機器人整體設(shè)計 32
第四章 控制系統(tǒng)的設(shè)計 33
4.1 控制系統(tǒng)組成 33
4.1.1 蠕動式機器人控制系統(tǒng) 33
4.1.2核心器件的選擇 33
4.2蠕動式機器人的具體控制方法 35
結(jié) 論 36
參考文獻 37
致 謝 38
0
第一章 緒論
1.1 研究背景及意義
隨著社會的發(fā)展和人民生活水平的提高,空調(diào)和天然氣管道以及各種輸送管道的應(yīng)用越來越多。在我國及世界各個國家內(nèi),由于地形的限制和土地資源的有限,在地下都埋設(shè)了很多的輸送管道,例如天然氣管道、石油管道等,在埋有管道的地面上面都已經(jīng)建成了很多的建筑物、公路等,給管道的維修和維護造成了很大的困難。當(dāng)這些管道由于某些原因造成了泄露、堵塞等問題時,人們普通的做法是挖開道路進行維修,有些時候如果不能準(zhǔn)確判斷泄露和堵塞的具體位置時,會浪費很多的時間和精力,同時降低了工作效率。
隨著機電一體化技術(shù)的發(fā)展,以及機器人技術(shù)的發(fā)展和管道測試等技術(shù)的進一步發(fā)展,相互之間的滲透程度越來越深,人們制造出各種各樣的管道機器人來進行對各種管道的維修、維護和檢測。管道機器人可以進入人們無法進入的管道中,完成一定的規(guī)定任務(wù)如檢測管道的裂縫、清掃管道,這樣的話,人們不再為了維修、維護管道時挖開道路,或是對空調(diào)等完全拆卸開,節(jié)省了大量的人力,物力和財力。
目前的管道機器人都是以履帶、輪子等實現(xiàn)在管道中的移動,這樣有很多的缺點。例如目前的管道機器人都是為了專門的管道而設(shè)計的,通用性不好,舉個例子,當(dāng)輪式或是履帶式的管道機器人在有一定的液體的管道中運動時,會發(fā)生滑動,使機器人在管道中不能行走,不能完成指定的任務(wù)。還有就是這些機器人的設(shè)計不能實現(xiàn)在傾斜的或是垂直的管道中行走,有些即使能在垂直的管道中行走但是不能適應(yīng)有液體的管道,以上的原因大大的限制了管道機器人的工作范圍。
因此設(shè)計一種通用性更強,結(jié)構(gòu)更緊湊,動作運行平穩(wěn),能夠適應(yīng)管道截面變化的新型管道機器人非常必要。
研制該機器人的目的是為了幫助人們擺脫繁重的勞動和簡單的重復(fù)勞動,以及替
一種蠕動式管道機器人的機構(gòu)設(shè)計
摘 要
在現(xiàn)代,無論是工業(yè)、農(nóng)業(yè)還是國防領(lǐng)域中都有縱橫交錯的管道。如何保障這些管道系統(tǒng)的安全性和有效性,對于我困經(jīng)濟發(fā)展至關(guān)重要。管道機器人是工作在輸送管道內(nèi),用于完成管道缺陷檢測、修復(fù)等的智能裝置,是保障管道安全的重要工具。由于管道內(nèi)環(huán)境復(fù)雜,對管道機器人的設(shè)計要求驅(qū)動單元結(jié)構(gòu)簡單、驅(qū)動效率高,同時對復(fù)雜的管內(nèi)環(huán)境具有自適應(yīng)能力。因此研制具有結(jié)構(gòu)簡單、驅(qū)動效率高、具有管內(nèi)環(huán)境自適應(yīng)能力的管道機器人具有重要意義。
該蠕動式管道機器人由三部分組成,包括一個伸縮模塊和兩個支撐夾緊模塊。伸縮模塊主要由主執(zhí)行器和四組齒輪齒條構(gòu)成,利用齒輪齒條的往復(fù)移動來實現(xiàn)機器人的行走;兩個支撐夾緊模塊結(jié)構(gòu)上完全一樣,通過曲柄滑塊機構(gòu)使機器人的腳與管壁壓緊,從而產(chǎn)生機器人行走所需的靜摩擦力。伸縮模塊和支撐模塊按一定的順序循環(huán)工作,從而實現(xiàn)機器人在管道內(nèi)的行走。
本文首先通過分析國內(nèi)外研究現(xiàn)況和現(xiàn)有管道機器的結(jié)構(gòu)特點及原理提出自己的設(shè)計方案,接著從動作原理和運動特性、動力特性等角度分析了該機器人的結(jié)構(gòu)及性能特點,讓后對機器人各模塊進行了詳細(xì)設(shè)計與校核,最后采用Pro/E對該機器人進行了三維設(shè)計以及采用AutoCAD繪圖軟件繪制了該機器人的裝配圖和主要零件圖。
關(guān)鍵字:蠕動,管道,機器人,設(shè)計
Abstract
In modern times, whether industrial, agricultural or defense in both pipelines criss-cross. How to protect the safety and effectiveness of these piping systems, economic development is essential for me sleepy. Pipeline robot is working in the pipeline for the completion of the pipeline defect inspection, repair, and other smart devices, is an important tool to protect the safety of pipelines. Due to the complexity of the environment in the pipeline, the pipeline robot design requirements driving a simple cell structure, high drive efficiency, while the inner tube environments with complex adaptive capacity. Therefore, the development of a simple structure, high drive efficiency, environmental adaptive ability of the tube pipe robot is important.
The peristaltic pipe robot consists of three parts, including a telescoping clamp module and two support modules. Telescopic module is composed primarily of four main actuator and gear rack, the gear rack to achieve the reciprocating movement of the walking robot; two supporting structures are completely the same as the clamping block, slider-crank mechanism of the robot through the feet and the tube pressing the walls to produce the required static friction walking robot. Telescoping module and support module cycle work according to a certain order to achieve the robot to walk in the pipeline.
Firstly, make their own designs by analyzing the structural characteristics and the principle of status quo and existing domestic pipeline machines, then from the action principle and motion characteristics, dynamic characteristics, such as paper analyzes the structure and performance characteristics of the robot, so that after Each module is a detailed robot design and verification, finally using Pro/E the robot uses a three-dimensional design and drawing software AutoCAD drawing the assembly drawing of the robot and the main parts diagram.
Keywords: Motility, Pipes, Robotics, Design
目 錄
摘 要 I
Abstract II
第一章 緒論 1
1.1 研究背景及意義 1
1.2 國內(nèi)外研究概況 1
1.3 蠕動式管道機器人概述 4
第二章 總體設(shè)計與特性分析 6
2.1 驅(qū)動方式的選擇 6
2.2 結(jié)構(gòu)方案設(shè)計 6
2.2.1 蠕動方式選定 6
2.2.2 支撐夾緊機構(gòu)設(shè)計 8
2.3 總體方案確定 8
2.4 運動及動力學(xué)特性分析 9
2.4.1直線運動 9
2.4.2轉(zhuǎn)彎運動 11
第三章 各組成部分的設(shè)計 14
3.1 性能參數(shù)的選定 14
3.2 蠕動行走機構(gòu)的設(shè)計 14
3.2.2 伺服電機的選定 14
3.2.1 運動及動力參數(shù)計算 15
3.2.3 減速器的選定 15
3.2.3 圓錐齒輪傳動的設(shè)計 16
3.2.4 齒輪齒條傳動的設(shè)計 19
3.2.5 傳動軸的設(shè)計及軸上零件的選定 22
3.2.6 機架的設(shè)計 25
3.3 支撐夾緊機構(gòu)設(shè)計 26
3.3.1 伺服電機的選定 26
3.3.2 運動及動力參數(shù)選定 26
3.3.3減速器的選定 26
3.3.4 曲柄滑塊機構(gòu)設(shè)計 27
3.3.5 機架的設(shè)計 30
3.4 機器人各模塊基于Pro/E的三維設(shè)計 30
3.4.1 蠕動行走模塊 30
3.4.2 上部支撐夾緊模塊 31
3.4.3 下部支撐夾緊模塊 31
3.4.3 機器人整體設(shè)計 32
第四章 控制系統(tǒng)的設(shè)計 33
4.1 控制系統(tǒng)組成 33
4.1.1 蠕動式機器人控制系統(tǒng) 33
4.1.2核心器件的選擇 33
4.2蠕動式機器人的具體控制方法 35
結(jié) 論 36
參考文獻 37
致 謝 38
40
第一章 緒論
1.1 研究背景及意義
隨著社會的發(fā)展和人民生活水平的提高,空調(diào)和天然氣管道以及各種輸送管道的應(yīng)用越來越多。在我國及世界各個國家內(nèi),由于地形的限制和土地資源的有限,在地下都埋設(shè)了很多的輸送管道,例如天然氣管道、石油管道等,在埋有管道的地面上面都已經(jīng)建成了很多的建筑物、公路等,給管道的維修和維護造成了很大的困難。當(dāng)這些管道由于某些原因造成了泄露、堵塞等問題時,人們普通的做法是挖開道路進行維修,有些時候如果不能準(zhǔn)確判斷泄露和堵塞的具體位置時,會浪費很多的時間和精力,同時降低了工作效率。
隨著機電一體化技術(shù)的發(fā)展,以及機器人技術(shù)的發(fā)展和管道測試等技術(shù)的進一步發(fā)展,相互之間的滲透程度越來越深,人們制造出各種各樣的管道機器人來進行對各種管道的維修、維護和檢測。管道機器人可以進入人們無法進入的管道中,完成一定的規(guī)定任務(wù)如檢測管道的裂縫、清掃管道,這樣的話,人們不再為了維修、維護管道時挖開道路,或是對空調(diào)等完全拆卸開,節(jié)省了大量的人力,物力和財力。
目前的管道機器人都是以履帶、輪子等實現(xiàn)在管道中的移動,這樣有很多的缺點。例如目前的管道機器人都是為了專門的管道而設(shè)計的,通用性不好,舉個例子,當(dāng)輪式或是履帶式的管道機器人在有一定的液體的管道中運動時,會發(fā)生滑動,使機器人在管道中不能行走,不能完成指定的任務(wù)。還有就是這些機器人的設(shè)計不能實現(xiàn)在傾斜的或是垂直的管道中行走,有些即使能在垂直的管道中行走但是不能適應(yīng)有液體的管道,以上的原因大大的限制了管道機器人的工作范圍。
因此設(shè)計一種通用性更強,結(jié)構(gòu)更緊湊,動作運行平穩(wěn),能夠適應(yīng)管道截面變化的新型管道機器人非常必要。
研制該機器人的目的是為了幫助人們擺脫繁重的勞動和簡單的重復(fù)勞動,以及替代人到危險環(huán)境中進行作業(yè),因此機器人最早在汽車制造業(yè)和核工業(yè)領(lǐng)域得以應(yīng)用。在自來水供應(yīng)、煤氣供應(yīng)、飛機、潛艇、石油天然氣、核發(fā)電站等環(huán)境中存在著大量人類無法進入的微細(xì)管道和危險區(qū)域。這些管道在經(jīng)過一段時間的腐蝕和重壓后,會出現(xiàn)裂紋、漏孔等現(xiàn)象。如果這些管道發(fā)生泄漏,將導(dǎo)致無法預(yù)計的損失和危害。為提高管道的壽命、防止泄漏等事故的發(fā)生,就必須對管道進行有效的檢測維護,管道機器人為滿足該需要而產(chǎn)生。
1.2 國內(nèi)外研究概況
管道機器人的驅(qū)動源大致有以下幾種:微型電機、壓電驅(qū)動、形狀記憶合金(SMA)、氣動驅(qū)動、磁致伸縮驅(qū)動、電磁轉(zhuǎn)換驅(qū)動等。管道機器人按照驅(qū)動方式大致可以分為以下三種,如圖1-1所示。
1)自驅(qū)動(自帶動力源);2)利用流體推力;3)通過彈性桿外加推力;
圖1-1 管道機器人的基本形式
(1)自驅(qū)動管內(nèi)機器人
自驅(qū)動管內(nèi)機器人包括圖1所示的輪式、腳式、爬行式、蠕動式,還包括履帶式等。
1)輪式
日本東芝公司于1997年研制了一臺輪式管內(nèi)移動機器人,前部帶有一部微型CCD攝像機,能分辨管內(nèi)異物并用微型機械手實現(xiàn)清理。膠管聯(lián)接可過彎管,適應(yīng)管徑:φ25mm;行走速度:0.36m/min;自重:16g。該機器人采用多輪驅(qū)動式為了增加牽引力,由于輪徑太小,越障能力有限,而且結(jié)構(gòu)復(fù)雜。
2)腳式
西門子公司W(wǎng)erner Neubauer等人研制的微管道機器人有4、6、8支腳三種類型,可在各種類型的管里移動,其基本原理是利用腿推壓管來支撐個體,多腿可以方便地在各種形狀的彎管道內(nèi)移動。
3)蠕動式
清華大學(xué)研制了一套小型蠕動機器人系統(tǒng),其結(jié)構(gòu)如圖1-2,由1蠕動體和2、3、4電致伸縮位移器組成。蠕動體的蠕動變形形態(tài)由粘貼于柔性鉸鏈部位的電阻應(yīng)變實時感應(yīng),機器人的外形尺寸為150×61×46mm,重2Kg,最大步距10μm,行程40mm,運動精度0.2μm。
圖1-2 蠕動體結(jié)構(gòu)示意圖
(2)利用管道流體壓力
利用管道流體壓力對管道進行直接檢測和清理技術(shù)的研究始于上世紀(jì)50年代,受當(dāng)時的技術(shù)水平的限制,其主要的成果是無動力的管道清理設(shè)備——PIG,此類設(shè)備依靠管內(nèi)流體的壓力差產(chǎn)生驅(qū)動力,隨著管內(nèi)流體的流動方向向前移動,并可攜帶多種傳感器。但是PIG自身沒有行走能力,其移動速度、檢測區(qū)域不易控制。
上海大學(xué)利用石油管道的石油高壓研制成在役石油管道檢測機器人如圖1-3,該型機器人分成多節(jié),利用與管道密封的橡膠環(huán)(皮碗),相當(dāng)于活塞,在輸油管內(nèi)壓力油作用下,推動檢測機器人向前行走,主要由探頭1、高壓密封件2、電機倉3、電池倉4、儀器倉5、儀器倉6、萬向節(jié)7、里程倉8、清管器9和皮碗10組成。
圖1-3 利用管內(nèi)流體壓力的管道機器人
(3)管外加推力
日本東京科技學(xué)院利用外加推力研制成“螺旋原理”的微型機器人如圖1-4。利用在管外的電機推動帶有彈性的線推動驅(qū)動部件前進,該驅(qū)動部件可以越過小的臺階。
圖1-4 管外加力的管道機器人
1.3 蠕動式管道機器人概述
蠕動式機器人在柔軟狹窄環(huán)境中有著輪式和足式機器人無法比擬的優(yōu)勢,并具有良好的穩(wěn)定性和運動性能。因此,蠕動式機器人在太空探索,危險環(huán)境下作業(yè),工業(yè)和城市管道檢測以及醫(yī)療上的疾病診斷及微創(chuàng)手術(shù)等領(lǐng)域有著廣泛的應(yīng)用前景。
(1)蠕動式機器人的優(yōu)勢
1)穩(wěn)定性
在崎嶇不平的地區(qū)運動時,輪式和足式機器人存在翻倒的危險?;着c機器人的接觸點,形成一個凸多邊形,當(dāng)機器人系統(tǒng)的重心超出了由接觸點構(gòu)成的凸多邊形的邊線時,機器人就會摔倒。而驅(qū)動式機器人在大多數(shù)情況下的勢能會處于較低的狀態(tài),因此,機器人因重心超出凸多邊形邊線而摔倒的問題幾乎不存在,其運動的穩(wěn)定性更好。
2)穿越能力
蠕動式機器人在理論上能夠越過數(shù)倍于其高度的障礙,這對于輪式和足式機器人幾乎是不可能的。很多運動系統(tǒng)采用輪式來獲得足夠的運動能力,但輪式機器人在松軟的地面和柔軟材料的表面上很難進行有效的運動;足式機器人在粗糙不平的表面上運動存在被卡住的危險。而蠕動式機器人在柔軟或粗糙不平的表面上具有更好的運動能力,同時能夠穿越有障礙物的環(huán)境,具有良好的穿越能力。
3)牽引力
牽引力是指加到運動系統(tǒng)上,驅(qū)動其向前運動的力。牽引力通常受運動系統(tǒng)的重量和摩擦系數(shù)的影響。輪式和足式機器人的重量分布較為集中,在松軟的地面和柔軟材料的表面上容易陷入其中。而蠕動式機器人的重量相對來說分布在更大的面積上,在機器人具有同等重量的情況下,蠕動式機器人在松軟的表面上運動比輪式和足式機器人更有優(yōu)勢,能提供較大的牽引力。
4)尺寸微型化
相對于輪式和足式機器人,蠕動式機器人的驅(qū)動器和本體更適合采用智能材料,可以利用智能材料的特性來實現(xiàn)運動,其尺寸更易微型化,因此多數(shù)的蠕動機器人體形細(xì)長。對于細(xì)長狹窄的空間,蠕動式機器人更適合進入狹窄空間進行作業(yè)。
(2)蠕動式機器人的應(yīng)用
2)工業(yè)管道檢測
在工業(yè)領(lǐng)域中存在著大量的狹小區(qū)域,如水管,天然氣管道,輸油管道等。很多工業(yè)運用管道鏡來進行檢測,但是這要求工廠需要修改設(shè)計,增加通道入口來放置管道鏡。而蠕動式管道機器人可以通過運動到達(dá)需要檢測的地點,節(jié)省了費用。具有現(xiàn)場檢測和精確定位功能的高效蠕動式管道機器人不僅能夠節(jié)省費用,更能減少管道檢測的時間,提高管道檢測的效率。
2)醫(yī)療領(lǐng)域
蠕動式機器人因其在醫(yī)療領(lǐng)域的潛在應(yīng)用價值而受到關(guān)注。微創(chuàng)手術(shù)減少了手術(shù)中大面積切開皮膚組織的需要。這將大大減輕給患者帶來的嚴(yán)重不適及痛苦,減少對人體其它完好組織的傷害,縮短康復(fù)時間消除手術(shù)引起的副作用,降低醫(yī)療費用,減輕患者的生理痛苦和醫(yī)療人員手術(shù)操作時的心理壓力。內(nèi)窺鏡就屬于這類應(yīng)用。
3)危險環(huán)境中作業(yè)
人類的活動有很多禁區(qū),如輻射、高溫、有毒、低壓等環(huán)境,然而這樣的地區(qū)卻是必須要被經(jīng)常檢查以確保安全。另外,在一些意外災(zāi)害,如地震、爆炸、颶風(fēng)、火災(zāi)等情況下,需要及時搜救被困人員,解救傷員。蠕動式機器人適合在狹窄的環(huán)境下作業(yè),能夠很好的在這些場合完成任務(wù)。在蠕動式機器人上安裝生命傳感器,進入受災(zāi)現(xiàn)場,能夠減少大型挖掘設(shè)備對受傷人員帶來的傷害,并提高救援效率。
第二章 總體設(shè)計與特性分析
2.1 驅(qū)動方式的選擇
蠕動式管道機器人運動是簡單的重復(fù)性運動,其主要運動形式只有“收縮一伸長”。蠕動式機器人的結(jié)構(gòu)設(shè)計并不是十分困難,但是對蠕動式機器人的控制相對困難。因此,必須全面考慮機器人系統(tǒng)的組成。適合做蠕動式機器人的驅(qū)動方式有SMA驅(qū)動,壓電驅(qū)動,電機驅(qū)動,電磁驅(qū)動和氣動驅(qū)動等。
表3.1為幾種驅(qū)動方式的比較
綜合考慮到蠕動式管道機器人的結(jié)構(gòu)和控制的簡單和方便性,本次選用伺服電機驅(qū)動。
2.2 結(jié)構(gòu)方案設(shè)計
2.2.1 蠕動方式選定
(1)方案1:曲柄滑塊式蠕動方式
曲柄滑塊式蠕動方式,如下圖:
圖2-1曲柄滑塊式蠕動方式
曲柄滑塊機構(gòu)容易實現(xiàn),成本較低,不需要太多的加工。但是由于曲柄滑塊機構(gòu)有急回特性,使蠕動式管道機器人的速度很難控制,并且不能實現(xiàn)它的勻速運動。而且曲柄滑塊機構(gòu)占用的空間很大,不利于機器人向小型化發(fā)展。
(2)方案2:齒輪齒條式蠕動方式
齒輪齒條式蠕動方式,如下圖:
圖2-2齒輪齒條式蠕動方式
齒輪齒條機構(gòu)相對其他的機構(gòu)來說最大的特點是能夠?qū)崿F(xiàn)勻速運動,同時剛度等條件容易達(dá)到規(guī)定的要求。成本也較低,只需要簡單的嚙合就能實現(xiàn)本設(shè)計的要求,而且占用的空間小,運動穩(wěn)定。
綜合以上的方案評價和比較和各類因素,選擇方案2的齒輪齒條式蠕動方式相對運行穩(wěn)定,結(jié)構(gòu)簡單,容易實現(xiàn),可以實現(xiàn)勻速運動。因此驅(qū)動方式選用齒輪齒條的形式,結(jié)構(gòu)如下圖示。
圖2-3齒輪齒條式蠕動方式
2.2.2 支撐夾緊機構(gòu)設(shè)計
為適應(yīng)管道截面的幾何變形,需設(shè)計可適應(yīng)不同截面大小的蠕動行走時的支撐夾緊機構(gòu),該機構(gòu)必須能根據(jù)不同截面形狀和大小自動調(diào)整支撐夾緊部件的長度。綜合考慮蠕動式管道機器人的結(jié)構(gòu)和控制的簡單和方便性,本次選用曲柄滑塊式支撐夾緊機構(gòu)。曲柄滑塊機構(gòu)容易實現(xiàn),成本較低,不需要太多的加工。曲柄滑塊式支撐夾緊機構(gòu)如下圖:
圖2-4 支撐夾緊機構(gòu)
2.3 總體方案確定
如圖2-5所示,該蠕動式管道機器人由上部支撐夾緊機構(gòu)、中間蠕動行走機構(gòu)、下部支撐夾緊機構(gòu)三部分組成。
圖2-5 蠕動式管道機器人總體結(jié)構(gòu)
2.4 運動及動力學(xué)特性分析
2.4.1直線運動
(1)直線運動原理分析
當(dāng)機器人直行時,如圖2-6中②-⑥所示過程,首先下部夾緊機構(gòu)與管道內(nèi)壁夾緊,中間蠕動行走機構(gòu)的四個齒輪同向同速轉(zhuǎn)動帶動齒條移動,此時上部夾緊機構(gòu)、中間蠕動行走機構(gòu)在齒條的作用下向前伸出到達(dá)極限位置時,上部夾緊機構(gòu)與管道內(nèi)壁夾緊,下部夾緊機構(gòu)松開,中間蠕動行走機構(gòu)的四個齒輪同向同速反轉(zhuǎn)帶動齒條移動,此時下部夾緊機構(gòu)、中間蠕動行走機構(gòu)在齒條的作用下向前收縮到達(dá)極限位置。這樣一次蠕動行走循環(huán)完成,進入下一個蠕動行走循環(huán)。在蠕動行走過程中由于夾緊裝置長度可根據(jù)不同管道截面形狀和尺寸徑變化因此可以適應(yīng)不同截面形狀和尺寸的管道。
圖2-6直線運動原理
圖2-7直線運動齒輪齒條狀態(tài)
(2)直線運動動力學(xué)分析
直線運動時受力比較簡單,腿部與管壁間的摩擦力提供機器人行走的驅(qū)動力,極限情況為機器人沿管壁垂直向上運動時克服自身重力上升。此時齒輪與齒條的負(fù)載為G1或G2,所需要的腿部總摩擦力為G1+G2,即滿足下述力學(xué)方程:
圖2-8 直線運動動力學(xué)分析
2.4.2轉(zhuǎn)彎運動
當(dāng)機器人遇到T型或L型管道需要轉(zhuǎn)彎時,如圖2-7中①-⑧所示過程,原理與直線運動類似,不過需要變向時機器人用于驅(qū)動齒條伸縮的兩側(cè)齒輪轉(zhuǎn)速不同從而使機器人機身向需轉(zhuǎn)彎的方向彎曲實現(xiàn)轉(zhuǎn)彎。
圖2-9轉(zhuǎn)彎運動原理分析
圖2-10轉(zhuǎn)彎運動齒輪齒條狀態(tài)
圖2-10 轉(zhuǎn)彎運動學(xué)分析
幾何關(guān)系滿足:
其中
(xm,ym)坐標(biāo):
(xu,yu)坐標(biāo):
第三章 各組成部分的設(shè)計
3.1 性能參數(shù)的選定
通過對現(xiàn)在常用管道的截面形狀、尺寸、管道布置等的統(tǒng)計與分析初步選定本次設(shè)計的蠕動式管道機器人性能參數(shù)如下:
行走速度: 10 m/min
自重: 10 kg
凈載重: 5 kg
機身尺寸: 351mm155mm155mm
自適應(yīng)管道直徑范圍:150mm~400mm
工作電壓: 12V
3.2 蠕動行走機構(gòu)的設(shè)計
3.2.2 伺服電機的選定
(1)估算所需電機最大功率
根據(jù)第二章的分析可以知道該機器人行走時所需最大功率出現(xiàn)在機器人滿載5Kg重物下克服重力沿豎直管道向上行走時,此時機器人克服重力做功。
,因此選定電機額定功率為:30W
(2)電機轉(zhuǎn)速的選定
對于相同額定功率的伺服電機,轉(zhuǎn)速越高后面所需的減速裝置結(jié)構(gòu)尺寸、重量越大,轉(zhuǎn)速越底電機本身的結(jié)構(gòu)尺寸、重量越大以及價格也越貴。但轉(zhuǎn)速對減速裝置結(jié)構(gòu)尺寸和重量的影響相對較到,考慮到機器人的結(jié)構(gòu)緊湊性,本次選定額定轉(zhuǎn)速為500r/min的伺服電機
綜上述(1)、(2)蠕動行走機構(gòu)選定額定功率為30W,額定轉(zhuǎn)速為500r/min的伺服電機,型號為:SG-60ZYJ。
3.2.1 運動及動力參數(shù)計算
(1)總傳動比的計算
初步選定驅(qū)動齒條的齒輪分度圓直徑為30mm,則齒輪轉(zhuǎn)速為:
則總傳動比為:
(2)傳動比分配
為保證傳動系的結(jié)構(gòu)緊湊性,采用與伺服電機配套連接的減速器直接減速,開式齒輪只做傳遞動力用,不用做減速。即:
(3)各軸參數(shù)計算
各軸的轉(zhuǎn)速:
輸入錐齒輪軸 ;
圓柱齒輪軸 ;
各軸的輸入功率:
輸入錐齒輪軸 ;
圓柱齒輪軸 ;
各軸的輸入轉(zhuǎn)矩:
輸入錐齒輪軸 ;
圓柱齒輪軸 ;
3.2.3 減速器的選定
前述已選定減速比,為保證傳動系的結(jié)構(gòu)緊湊性,選用與伺服電機配套連接的減速器,減速比為。
3.2.3 圓錐齒輪傳動的設(shè)計
(1)選定齒輪類型、精度等級、材料及齒數(shù)
齒形角:;頂隙系數(shù):;齒頂高系數(shù):;軸夾角。
根據(jù)課本表10-1,材料選擇,大小齒輪材料均為45鋼(調(diào)質(zhì)),硬度均為280HBS。
根據(jù)課本表10-8,選擇7級精度。
傳動比u=/=1
節(jié)錐角,
不產(chǎn)生根切的最小齒數(shù):=12.1
選=20,=u=20×1=20
(2)按齒面接觸疲勞強度設(shè)計
≥2.92
試選載荷系數(shù):=1.5
計算小齒輪傳遞的扭矩:=2.383 N·m
選取齒寬系數(shù):=0.3
由課本表10-6查得材料彈性影響系數(shù):
由圖10-21d按齒面的硬度查得小齒輪的接觸疲勞強度極限:
大齒輪的接觸疲勞極限:
計算應(yīng)力循環(huán)次數(shù)
,
由圖10-19查得接觸疲勞壽命系數(shù):,
計算接觸疲勞許用應(yīng)力:
試算小齒輪的分度圓直徑,代入中的較小值得
≥2.92=36.3mm
計算圓周速度v
mm
=(3.14159×30.8×106.2)/(60×1000)=0.17m/s
計算載荷系數(shù)
齒輪的使用系數(shù)載荷狀態(tài)輕微震動,查表10-2得=1.2
由圖10-8查得動載系數(shù)=1.1
由表10-3查得齒間載荷分配系數(shù)==1.0
依據(jù)大齒輪兩端支承,小齒輪懸臂布置,查表10-9得軸承系數(shù)=1.17
由公式==1.2=1.2×1.17=1.4
接觸強度載荷系數(shù):==1.2×1.1×1.0×1.4=1.85
按實際的載荷系數(shù)校正所得的分度圓直徑
=36.3×=38.9mm
m=/=38.9/20=1.95mm取標(biāo)準(zhǔn)值m=2.0mm
計算齒輪的相關(guān)參數(shù)
=m=2×20=40 mm
=m=2×20=40 mm
=90-=45°
確定并圓整齒寬:
b=R=0.3×28.3=8.48mm,圓整取10,
(3)校核齒根彎曲疲勞強度
確定彎曲強度載荷系數(shù):K==1.9
計算當(dāng)量齒數(shù)
=/cos=20/cos45°=28.3
=/cos=20/cos45=28.3
查表10-5得:=2.91,=1.53,=2.91,=1.53
計算彎曲疲勞許用應(yīng)力
由圖10-18查得彎曲疲勞壽命系數(shù):=0.82,=0.82
取安全系數(shù):=1.3
由圖10-20c查得齒輪的彎曲疲勞強度極限: =500Mpa,=380Mpa
按脈動循環(huán)變應(yīng)力確定許用彎曲應(yīng)力:
校核彎曲強度
根據(jù)彎曲強度條件公式:
=34.47 MPa
=33.2 Mpa
滿足彎曲強度要求,所選參數(shù)合適。
(4)數(shù)據(jù)整理
名稱
符號
公式
直齒圓錐齒輪1
直齒圓錐
齒輪2
齒數(shù)
20
20
模數(shù)
m
m
2
傳動比
i
i
1
分度圓錐度
,
分度圓直徑
40
40
齒頂高
2
2
齒根高
2.4
2.4
齒全高
h
4.4
4.4
齒頂圓直徑
,
42.83
(大端)
42.83
(大端)
齒根圓直徑
36.61
36.61
齒距
p
6.28
6.28
齒厚
s
3.14
3.14
齒槽寬
e
3.14
3.14
頂隙
c
0.4
0.4
錐距
R
28.3
28.3
齒頂角
,
齒根角
齒頂圓錐角
,
齒根圓錐角
,
齒寬
10
10
3.2.4 齒輪齒條傳動的設(shè)計
(1)選精度等級、材料和齒數(shù)
采用7級精度,選擇齒輪材料為45(調(diào)質(zhì))硬度為240HBS,機器人轉(zhuǎn)彎時齒條需彎曲因此選定齒條材料為能夠彎曲的樹脂材料。
初選齒輪齒數(shù),
(2)按齒面接觸疲勞強度設(shè)計
由設(shè)計計算公式進行試算,即
由于本傳動為齒輪齒條傳動,傳動比近似無窮大,所以=1
確定公式各計算數(shù)值
試選載荷系數(shù):
計算齒輪傳遞的轉(zhuǎn)矩:
選取齒寬系數(shù):
由表6.3查得材料的彈性影響系數(shù):
由圖6.14按齒面硬度查得
齒輪的接觸疲勞強度極限
由式6.11計算應(yīng)力循環(huán)次數(shù)
由圖6.16查得接觸疲勞強度壽命系數(shù):
計算接觸疲勞強度許用應(yīng)力
取失效概率為1%,安全系數(shù)為S=1,由式10-12得
試算齒輪分度圓直徑
計算圓周速度:
計算齒寬:
模數(shù)
齒高
計算載荷系數(shù)K
根據(jù),7級精度,查得動載荷系數(shù)
假設(shè),由表查得:
由于齒條需經(jīng)常彎曲,選定使用系數(shù):
由表查得,
故載荷系數(shù)
按實際的載荷系數(shù)校正所算得的分度圓直徑,由式可得
(3)按齒根彎曲強度設(shè)計
彎曲強度的設(shè)計公式為:
確定公式內(nèi)的計算數(shù)值
由圖6.15查得
齒輪的彎曲疲勞強度極限
由圖6.16查得彎曲疲勞壽命系數(shù):
計算彎曲疲勞許用應(yīng)力,取失效概率為1%,安全系數(shù)為S=1.3
計算載荷系數(shù):
查取齒形系數(shù):由表6.4查得
查取應(yīng)力校正系數(shù) 由表6.4查得:
計算齒輪的,
計算模數(shù):
對比計算結(jié)果,由齒根彎曲疲勞強度計算的模數(shù)大于由齒面接觸疲勞強度計算的模數(shù),可取有彎曲強度算得的模數(shù)1.31mm,并圓整為標(biāo)準(zhǔn)值取m=1.5mm
(4)幾何尺寸計算
計算分度圓直徑
計算齒寬寬度:
序號
名稱
符號
計算公式及參數(shù)選擇
1
齒數(shù)
Z
20
2
模數(shù)
m
1.5mm
3
分度圓直徑
4
齒頂高
5
齒根高
6
全齒高
7
頂隙
8
齒頂圓直徑
9
齒根圓直徑
10
齒寬
B
3.2.5 傳動軸的設(shè)計及軸上零件的選定
軸上的功率P2,轉(zhuǎn)速n2和轉(zhuǎn)矩T2
,,
(1)初步確定軸的最小直徑
先按式初步估算軸的最小直徑。選取軸的材料45鋼,調(diào)質(zhì)處理。根據(jù)機械設(shè)計表11.3,取,于是得:
該處開有鍵槽故軸徑加大10%~15%,且最小直徑顯然是安裝齒輪處的直徑,由于計算軸徑比較小,鍵槽對小軸徑軸的強度削弱比較大,因此該處軸徑適當(dāng)加大,取;。
(2)根據(jù)軸向定位的要求確定軸的各段直徑和長度
(a)為了滿足大帶輪的軸向定位的要求2軸段左端需制出軸肩,軸肩高度軸肩高度,取故取2段的直徑,長度。
(b)初步選擇滾動軸承。因軸承同時受有徑向力較小,故選用深溝球軸承。根據(jù),查機械設(shè)計手冊選取0基本游隙組,標(biāo)準(zhǔn)精度級的深溝球軸承6003,故,。
(c)齒輪處由于齒輪分度圓直徑,故采用齒輪與軸分開采用鍵連接的形式,齒輪寬度B=15mm,故取。
(3)軸上零件的周向定位
查機械設(shè)計表,聯(lián)接大帶輪的平鍵截面。
(4)強度校核計算
(a)求作用在軸上的力
已知高速級齒輪的分度圓直徑為=52 ,根據(jù)《機械設(shè)計》(軸的設(shè)計計算部分未作說明皆查此書)式(10-14),則
(b)求軸上的載荷
首先根據(jù)軸的結(jié)構(gòu)圖作出軸的計算簡圖。在確定軸承支點位置時,從手冊中查取a值。對于6003型深溝球軸承,由手冊中查得a=8mm。因此,軸的支撐跨距為L1=68mm。
根據(jù)軸的計算簡圖作出軸的彎矩圖和扭矩圖。從軸的結(jié)構(gòu)圖以及彎矩和扭矩圖可以看出截面C是軸的危險截面。先計算出截面C處的MH、MV及M的值列于下表。
載荷
水平面H
垂直面V
支反力F
,
,
C截面彎矩M
總彎矩
扭矩
圖3-1 軸的軸力、彎矩和扭矩圖
(c)按彎扭合成應(yīng)力校核軸的強度
根據(jù)式(15-5)及上表中的數(shù)據(jù),以及軸單向旋轉(zhuǎn),扭轉(zhuǎn)切應(yīng)力,取,軸的計算應(yīng)力
已選定軸的材料為45Cr,調(diào)質(zhì)處理。由表15-1查得。因此,故安全。
(4)鍵的選擇
采用圓頭普通平鍵A型(GB/T 1096-1979)連接,聯(lián)接齒的平鍵截面,。齒輪與軸的配合為,滾動軸承與軸的周向定位是過渡配合保證的,此外選軸的直徑尺寸公差為。
校核鍵聯(lián)接的強度
鍵、軸材料都是鋼,由機械設(shè)計查得鍵聯(lián)接的許用擠壓力為
鍵的工作長度
,合適
(5)軸上軸承的計算
查的預(yù)計壽命30000h
查表得軸承的基本額定動載荷C=40.8KN
溫度系數(shù)=1(假定工作時溫度100度)
載荷系數(shù)=1.2
由上面軸的力學(xué)分析可得:
由,可得徑向載荷系數(shù)
軸向載荷系數(shù)
故其當(dāng)量動載荷取最大值P=53.7N=0.0537KN
= > 軸承的預(yù)期壽命30000 h
因此滾動軸承的設(shè)計合理。
3.2.6 機架的設(shè)計
機架部分的主要功能為連接伺服電機組件、圓錐齒輪組、齒輪齒條組,保證機器人穩(wěn)定工作。因此該處的機架主要起連接作用。這里設(shè)計該機架的關(guān)鍵是配合伺服電機組件、圓錐齒輪組、齒輪齒條組等的結(jié)構(gòu)及尺寸,因此此處采用Pro/E三維設(shè)計軟件進行結(jié)構(gòu)配比和優(yōu)化設(shè)計。設(shè)計原則為在保證伺服電機組件、圓錐齒輪組、齒輪齒條組等有效連接的基礎(chǔ)上盡量實現(xiàn)結(jié)構(gòu)緊湊化和輕量化。
為保證機架的輕量化,機架選用鋁合金材料。
3.3 支撐夾緊機構(gòu)設(shè)計
3.3.1 伺服電機的選定
(1)夾緊伺服電機的選定
該伺服電機主要用于驅(qū)動支持夾緊機構(gòu)的曲柄動作使得機器人支撐用的腿可以壓緊在管道內(nèi)壁上以提供行走時的附著力。
同蠕動行走驅(qū)動電機的選定,該處選定額定功率為30W,額定轉(zhuǎn)速為200r/min的伺服電機,型號為:SG-80ZYJ。
(2)回轉(zhuǎn)伺服電機的選定
該伺服電機主要用于驅(qū)動上部模塊回轉(zhuǎn)以適應(yīng)不同的管道形狀及尺,驅(qū)動負(fù)載很小,只需克服構(gòu)件本身的摩擦阻力,因此該處只需選用小功率的伺服電機。該處回轉(zhuǎn)要求轉(zhuǎn)速低。綜合考慮回轉(zhuǎn)伺服電機選定額定功率為10W,額定轉(zhuǎn)速為150r/min的伺服電機,型號為:SG-20ZYJ。
3.3.2 運動及動力參數(shù)選定
支撐夾緊機構(gòu)性能參數(shù)選定如下:
腿部滑塊滑行速度:v=100mm/s
回轉(zhuǎn)轉(zhuǎn)速:n=30°/s
腿部滑塊行程:125mm(由于該機器人自適應(yīng)管道直徑范圍為150mm~400mm)
腿部滑塊單行行程各曲柄旋轉(zhuǎn)角度:60°
3.3.3減速器的選定
根據(jù)上述選定的支撐夾緊機構(gòu)性能參數(shù)可知:
曲柄軸轉(zhuǎn)速:
所需減速器的減速比為:
同樣,為保證傳動系的結(jié)構(gòu)緊湊性,選用與伺服電機配套連接的減速器,減速比為。
3.3.4 曲柄滑塊機構(gòu)設(shè)計
(1)曲柄滑塊機構(gòu)的運動分析
曲柄滑塊機構(gòu)的運動簡圖如圖2所示,0點表示曲軸的旋轉(zhuǎn)中心,A點表示連桿與曲柄的連接點,B點表示連桿與滑塊的連接點,OA表示曲柄半徑R,AB表示連桿長度。當(dāng)OA以角速度作旋轉(zhuǎn)運動時,B點則以速度V作直線運動。
圖3-2 曲柄滑塊機構(gòu)運動簡圖
a.滑塊位移
圖3-2為對心的曲柄滑塊機構(gòu)的運動關(guān)系簡圖。(所謂對心,是指滑塊和連桿的連結(jié)點B的運動軌跡位于曲柄旋轉(zhuǎn)中心O和連結(jié)點的連線上。)滑塊的位移和曲柄轉(zhuǎn) 角之間的關(guān)系可表達(dá)為
而
令
而
整理得 由于一般小于1,普通的曲柄滑塊機構(gòu),一般在0.30.6范圍內(nèi),故上述公式可進行簡化。根號部分可用泰勒級數(shù)展開略去高階項得:
上述公式變?yōu)椋?
圖3-3 曲柄滑塊機構(gòu)的運動關(guān)系簡圖
式中滑塊位移,從下死點算起,向上方向為正,以下均相同;
曲柄半徑;
曲柄轉(zhuǎn)角,從下死點算起,與曲柄旋轉(zhuǎn)方向相反為正,以下均相同;
連桿系數(shù),(其中是連桿長度,當(dāng)連桿長度可調(diào)時,取最短時數(shù)值。)
利用余弦定理可得:
,令
則式可寫成
滑塊速度
由于,
式中 滑塊速度,向下方向為正;下同。
曲柄角速度;
曲柄轉(zhuǎn)速,亦即滑塊行程次數(shù)。
滑塊加速度
式中 滑塊加速度,向下方向為正,下同。
參數(shù)確定
由上述分析,結(jié)合運動關(guān)系簡圖
可知, 當(dāng) ;時;
=62.5mm
取
則
(2)曲柄滑塊機構(gòu)的受力分析
a.連桿及導(dǎo)軌受力
圖3-4曲柄滑塊機構(gòu)受力簡圖
考慮B點力的平衡得:
,
由前推導(dǎo)得知,,遠(yuǎn)小于0.3,遠(yuǎn)小于。因此可認(rèn)為,,故上二式可寫成:,
其中:PAB——連桿作用力
Q——導(dǎo)軌作用力
P——工件變形力
——曲柄轉(zhuǎn)角
——連桿系數(shù)
3.3.5 機架的設(shè)計
機架部分的主要功能為支撐在管道內(nèi)行走的管道機器人,使支撐腿能緊密的貼在管道壁面,產(chǎn)生足夠的附著力,帶動管道機器人往前行走。
為了適應(yīng)不同直徑管道的檢測,管道檢測機器人通常需要具備管徑適應(yīng)調(diào)整的機架機構(gòu),即主要有兩個作用:① 在不同直徑的管道中能張開或收縮,改變機器人的外徑尺寸,使機器人能在各種直徑的管道中行走作業(yè);② 可以提供附加正壓力增加機器人的支撐腿部與管道內(nèi)壁間的壓力,改善機器人的牽引性能,提高管內(nèi)移動檢測距離。因此此處采用Pro/E三維設(shè)計軟件進行結(jié)構(gòu)配比和優(yōu)化設(shè)計。為保證機架的輕量化,機架選用鋁合金材料。
3.4 機器人各模塊基于Pro/E的三維設(shè)計
3.4.1 蠕動行走模塊
圖3-5蠕動行走模塊三維模型
3.4.2 上部支撐夾緊模塊
圖3-6上部支撐夾緊模塊三維模型
3.4.3 下部支撐夾緊模塊
圖3-7下部支撐夾緊模塊三維模型
3.4.3 機器人整體設(shè)計
圖3-8 蠕動式管道機器人三維模型
第四章 控制系統(tǒng)的設(shè)計
4.1 控制系統(tǒng)組成
4.1.1 蠕動式機器人控制系統(tǒng)
機器人的控制系統(tǒng)主要由AVR Atmegal6L單片機,L298N芯片,WYK.30582直流穩(wěn)壓穩(wěn)流電源等組成,機器人控制電路原理圖如圖4.2所示。ATmegal6L內(nèi)部的定時器/計數(shù)器以相位頻率可調(diào)模式可產(chǎn)生4通道PWM信號。三極管起開關(guān)和放大作用,基極輸入的是從AVR單片機輸出的PWM信號。PWM信號為高電平時,三極管導(dǎo)通,SMA驅(qū)動器處于通電加熱狀態(tài);PWM信號為低電平時,三極管截止,SMA驅(qū)動器處于斷電冷卻狀態(tài)。單片機按照機器人的運動機制所要求的時序輸出不同占空比的控制信號,SMA驅(qū)動器中就會通過對應(yīng)的脈沖電流,機器人將會按照設(shè)計的運動機制進行運動。
4.1.2核心器件的選擇
(1)AVR單片機概述
單片機是整個機器人系統(tǒng)控制電路的核心,主要負(fù)責(zé)對機器人提供合適的電流和時序。高可靠性、功能強、高速度、低功耗和低價位,一直是衡量單片機性能的重要指標(biāo),因此選擇適合應(yīng)用的單片機顯的尤為重要。早期單片機由于工藝及設(shè)計水平不高、功耗高和抗干擾性能差等原因,采用較高分頻系數(shù)對時鐘分頻,使得指令周期長,執(zhí)行速度慢。ATMEL公司推出的AVR單片機,徹底打破這種就設(shè)計格局,廢除了機器周期,拋棄復(fù)雜指令計算機(cisc)追求指令完備的做法,采用精簡指令集(msc),取指周期短,實現(xiàn)流水作業(yè),故可高速執(zhí)行指令。AVR系列單片機是1997年由ATMEL公司研發(fā)出的增強型內(nèi)置Flash的RISC(ReducedInstruction Set CPU)精簡指令集高速8位單片機M8’4們。
AVR單片機硬件結(jié)構(gòu)采取8位機與16位機的折中策略,即采用局部寄存器存堆(32個寄存器文件)和單體高速輸入/輸出的方案(即輸入捕獲寄存器、輸出比較匹配寄存器及相應(yīng)控制邏輯)。提高了指令執(zhí)行速度(1Mips/MHz),克服了瓶頸現(xiàn)象,增強了功能:同時又減少了對外設(shè)管理的開銷,相對簡化了硬件結(jié)構(gòu),降低了成本。故AVR單片機在軟/硬件開銷、速度、性能和成本諸多方面取得了優(yōu)化平衡,是高性價比的單片機。AVR單片機內(nèi)嵌高質(zhì)量的Flash程序存儲器,片內(nèi)大容量的RAM不僅能滿足一般場合的使用,同時也更有效的支持使用高級語言開發(fā)系統(tǒng)程序,并可像MCS.51單片機那樣擴展外部RAM;I/O線全部帶可設(shè)置的上拉電阻、可單獨設(shè)定為輸入/輸出、可設(shè)定(初始)高阻輸入、驅(qū)動能力強(可省去功率驅(qū)動器件)等特性:增強性的高速同/異步串口,具有硬件產(chǎn)生校驗碼、硬件檢測和校驗偵錯、兩級接收緩沖等功能,提高了通信的可靠性,串口功能大大超過MCS.51/96單片機的串口,加之AVR單片機高速,中斷服務(wù)時間,具備AVR高檔單片機MEGA系列的全部性能和特點,成為AVR高檔單片機中內(nèi)部接口豐富、功能齊全、性能價格比較好的品種,因此本文選擇了AVR單片機中的中檔產(chǎn)品AVR ATmegal6進行開發(fā),片載的16KB的flash完全滿足了對程序的要求。
(2)ATmegal6特性介紹
ATmegal6是ATMEL公司在2002年第一季度推出的~款單片機。在AVR家族中,ATmegal6是一款采用低功耗CMOS工藝生產(chǎn)的基于AVR RISC結(jié)構(gòu)的8位單片機。AVR單片機的核心是將32個工作寄存器和豐富的指令集連接在一起,所有的工作寄存器都與ALU(算術(shù)邏輯單元)直接相連,實現(xiàn)了在一個時鐘周期內(nèi)執(zhí)行的一條指令同時訪問(讀寫)兩個獨立寄存器的操作。這種結(jié)構(gòu)提高了代碼效率,使得大部分指令執(zhí)行時間僅為一個時鐘周期。運行速度比普通CISC單片機高出10倍。
它的特點如下:
1)高性能,低功耗的8位AVR微控制器;
2)先進的RISC指令結(jié)構(gòu),功能強大的指令,多數(shù)為單時鐘周期指令;
3)非易失性程序和數(shù)據(jù)存儲器:16K字節(jié)的在線可編程Flash,12個字節(jié)的EEPROM,擦寫次數(shù)100000次;
4)外部特點:2個具有比較模式的帶預(yù)分頻器的8位定時器/計數(shù)器,具有比較和捕獲模式的16位定時器和計數(shù)器,具有獨立振蕩器的實時時鐘RTC,4個PWM通道,8路10位A/D轉(zhuǎn)換,內(nèi)部可校準(zhǔn)的RC振蕩器,內(nèi)外部的中斷源,6種休眠形式。
5)I/O口和封裝:32個可編程I/O口,44腳TQ鐘封裝,40腳PDIP封裝。
4.2蠕動式機器人的具體控制方法
在控制機器人運動時,利用AVR Studio編寫程序,編寫完程序后可以利用AVR Studio進行簡單的調(diào)試,查看整個程序的邏輯順序,寄存器的值的改變等一些基本的信息。而這對于一個實時性要求很高的系統(tǒng)來說,這樣是遠(yuǎn)遠(yuǎn)不夠的。VMLAB的出現(xiàn)彌補了AVR Studio的不足,其強大的功能甚至可以代替ICE(在線仿真器)。VMLAB的全稱為:Visual Micro Lab。它針對于AVR以及ST62系列單片機設(shè)計,是一個單片機的虛擬原型(virtual prototype)框架(frame),它可以提供給用戶一個真正意義上的虛擬微控制器(MCU)設(shè)計實驗室。它具有強大的多窗121、多文件的編輯器,微控制器的集成開發(fā)環(huán)境,擁有一系列的集成開發(fā)工具,圖形界面調(diào)試器,混合模式的模擬——數(shù)字電路仿真器,代碼質(zhì)量檢查器等等。硬件和應(yīng)用軟件能進行并發(fā)仿真,在絕大多數(shù)的情況下甚至可以代替ICE。通過VMLAB對程序進行仿真,大大提高了編程的效率,減少了程序的開發(fā)時間。
在控制機器人作直線運動時,通過AVR單片機的POTRA口控制機器人的SMA彈簧驅(qū)動器,通過設(shè)置單片機的參數(shù),使單片機輸出如圖4.4所示波形。假設(shè)機器人模塊一中連接三根SMA彈簧驅(qū)動器的導(dǎo)線兩端分別為A1,B1,C1(此三端連接在一個端面上)和A11,Bll,C11(此三端連接在~個端面上);模塊二中連接三根SMA彈簧驅(qū)動器的導(dǎo)線兩端分別為A2,B2,C2(此三端連接在一個端面上)和A21,B21,C21(此三端連接在一個端面上),其他模塊依此類推。將機器人各個模塊中連接在同一端面的導(dǎo)線連接在一起,便于控制,同時叉不影響機器人的直線運動。在圖4.4中,SMAl,SMA2,SMA3分別代表模塊一,模塊二和模塊三;0~T1時問段是模塊一完成收縮—伸長的時間,T1--T2是模塊二完成收縮一伸長的時間,模塊二伸長時借助于模塊一的收縮,可阻縮短伸長時問,T2~T3是模塊三收縮~伸長的時間,伸長時同樣借助模塊二的收縮。0--T3為三模塊機器人完成動作的一個周期。
結(jié) 論
蠕動式微型管道人近年來成為微型管道機器人領(lǐng)域的研究熱點,具有驅(qū)動方式較多,負(fù)載能力較強,動作可靠且易于微型化等優(yōu)點,但同時也有步距較小,速度較低且難以實現(xiàn)轉(zhuǎn)彎運動等不足。
這次設(shè)計的三個月時間里,我從不了解到深刻的理解蠕動式管道機器人的設(shè)計課題,,對我們大學(xué)四年所學(xué)到的知識,特別是對機械設(shè)計、機械原理、以及機械制圖方面的知識有了更深的理解和提高。并且從中培養(yǎng)了自己對問題的獨立思考能力以及分析問題的能力,對資料和文獻的檢索能力,也培養(yǎng)了我們將所學(xué)基礎(chǔ)理論與專業(yè)知識運用解決實際問題的能力。對培養(yǎng)我們的獨立工作能力和創(chuàng)新精神具有很重要的作用。當(dāng)然,在這些過程中也存在許多沒有解決好的并有待改進和提高的問題。雖然在設(shè)計中難免有不足之處,但是通過這次的鍛煉對我今后在事業(yè)上的成功奠定了堅實的基礎(chǔ)。這次的設(shè)計之所以能夠順利完成,這是與老師的細(xì)心指導(dǎo)是分不開的,同時在設(shè)計的過程中還得到了同組的兩位同學(xué)的熱心幫助,在此非常感謝他們,特別是要感謝老師在這幾個月來對我的細(xì)心指導(dǎo)使我順利完成這次畢業(yè)設(shè)計。當(dāng)然這次的設(shè)計肯定不是十分完美的,在設(shè)計中的許多不足之處,望老師能夠給予批評指正。
參考文獻
[1] 甘小明,徐濱士,董世運,張旭明.管道機器人的發(fā)展現(xiàn)狀.機器人技術(shù)與應(yīng)用,2003,6
[2] 楊志馨,孫寶元,董維杰,崔玉國.微機器入關(guān)鍵技術(shù)及應(yīng)用.機床與液壓.2002,6:3-6頁
[3 ]徐小云..管道檢測機器人系統(tǒng)及其基于模糊神經(jīng)網(wǎng)絡(luò)控制的研究.上海交通大學(xué)博士學(xué)位論文,2003
[4] 楊宜民,黃明偉.能源自給式管道機器人的機械結(jié)構(gòu)設(shè)計.機器人,2006,28(3)
[5] 逢境飛,張家梁,楊建國等.一種蠕動式管內(nèi)機器人的研制.機械設(shè)計與制造,2005(4)
[6] 劉曉洪,鄭毅,高雋愷等.新型蠕動式氣動嗷型管道機器人.液壓氣動與密封,2007(1)
[7] 吳雙力,崔劍,王伯嶺編著.AVR·GCC與AVR單片機C語言開發(fā).第一版.北京:北京航空航天大學(xué)出版社,2004
[8] Shuxiang Guo,Sasaki Z Fukuda f A Fin Type of Microrobot in Pipe。2002 International Symposiumon Micro—mechatronics and Human Science,2002:93-98P
[9] Klocke V.Trends in nanomanipulation:from nanometer to microproduction line.Eighth International Conference on N.ew Actuator.Bremen,Germany,2002:100—105P
[10] Elmustafa A A,Lagally M G.Flexural hinge guided motion nanopositioner stage for precision machining:finite element simulations.Precision Engineering,200 1(2 1):77—8 1 P
致 謝
時光飛逝,四年的大學(xué)學(xué)習(xí)生涯就要結(jié)束了,在這短暫而漫長的四年里,使我更進一步的熟悉和掌握了如何去學(xué)習(xí)、生活和工作。同時,也是校園讓我們學(xué)會了學(xué)習(xí),學(xué)會了思考,學(xué)會了做人,雖其短暫,但是在這四年里所學(xué)的知識必將可以使我受用終生。
在這大學(xué)生涯即將結(jié)束的最后半年的畢業(yè)設(shè)計過程中,不僅是對我們每一個人的一次全面的考查,同時也是對我們所學(xué)習(xí)和掌握知識的一次實際而綜合運用,這不僅僅是只是一次知識的檢驗,更是對我們認(rèn)識問題、分析問題、解決問題的綜合能力的鍛煉與培養(yǎng)。同時對于我們來說,這也是一次難能可貴的在校學(xué)習(xí)的經(jīng)歷,一次知識和經(jīng)驗的積累的機會。
為此,我應(yīng)該感謝給予我這個機會的人,是他們給予了我這次學(xué)習(xí)的機會,同時也是他們給予我了關(guān)懷與支持,正是在他們的關(guān)心、支持與幫助下,我的大學(xué)學(xué)習(xí),生活,以及這次畢業(yè)設(shè)計才能完滿結(jié)束,為我大學(xué)生涯畫上一個完美的句號。
在這里,我首先要感謝母校,是母校為我提供了這個平臺,給予我了夢寐已久的學(xué)習(xí)和生活的機會,從而是我的人生更加精彩。
其次,要感謝的是我的指導(dǎo)老師,在這幾個月畢業(yè)設(shè)計的日子里,對我們的耐心的關(guān)懷與輔導(dǎo)。在這四年的大學(xué)生涯中,以前學(xué)的專業(yè)知識,對于我們來說象一盤散沙,雜亂無章沒有系統(tǒng)性。但是在老師的悉心輔導(dǎo)下,使我們對自己的知識進行了整理、組織和裝配,使我的知識結(jié)構(gòu)更加明朗化、體系化了。在此感謝老師在我的畢業(yè)設(shè)計過程中給予了我莫大的支持和幫助。
同時,我還要感謝同組的成員,以及關(guān)心和支持我的所有的同學(xué),在我們共同學(xué)習(xí)、和生活的日子里,大家共同努力,克服困難,不斷提出和完善新的設(shè)計思路和方法,使我們的學(xué)習(xí)、生活和本次畢業(yè)設(shè)計工作得以順利而完滿的結(jié)束;生活上互相幫助,彼此間留下了最珍貴而溫馨的友誼。是你們讓我擁有了一段美好的大學(xué)生活。
最后,我要感謝所有的教過我的老師們,感謝您們的辛勤培育和無微不至的關(guān)懷,是你們的高尚品德和人格魅力影響了并改變了我。在以后的學(xué)習(xí)、生活、工作中,我將牢記您們的諄諄教誨,不斷學(xué)習(xí),不斷進步。在此,衷心地祝福和感謝你們!