2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第五章 平面向量、數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 課時(shí)規(guī)范練25 平面向量的數(shù)量積與平面向量的應(yīng)用 文 北師大版.doc
《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第五章 平面向量、數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 課時(shí)規(guī)范練25 平面向量的數(shù)量積與平面向量的應(yīng)用 文 北師大版.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第五章 平面向量、數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 課時(shí)規(guī)范練25 平面向量的數(shù)量積與平面向量的應(yīng)用 文 北師大版.doc(5頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
課時(shí)規(guī)范練25 平面向量的數(shù)量積與平面向量的應(yīng)用 基礎(chǔ)鞏固組 1.已知向量BA=12,32,BC=32,12,則∠ABC= ( ) A.30 B.45 C.60 D.120 2.(2018河北保定一模,4)已知非零向量a=(x,2x),b=(x,-2),則“x<0或x>4”是“向量a與b的夾角為銳角”的( ) A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件 3.已知△ABC是邊長為1的等邊三角形,點(diǎn)D,E分別是邊AB,BC的中點(diǎn),連接DE并延長到點(diǎn)F,使得DE=2EF,則AFBC的值為( ) A.- B. C. D.118 4.若向量BA=(1,2),CA=(4,5),且CB(λBA+CA)=0,則實(shí)數(shù)λ的值為( ) A.3 B.- C.-3 D.- 5.在四邊形ABCD中,AC=(1,2),BD=(-4,2),則該四邊形的面積為( ) A.5 B.25 C.5 D.10 6.(2018湖南長郡中學(xué)四模,3)已知向量a=(x-1,2),b=(2,1),則“x>0”是“a與b夾角為銳角”的( ) A.充分不必要條件 B.充要條件 C.必要不充分條件 D.既不充分也不必要條件 7.(2018北京,文9)設(shè)向量a=(1,0),b=(-1,m).若a⊥(ma-b),則m= . 8.(2018河南鄭州三模,14)已知向量a與b的夾角為30,且|a|=1,|2a-b|=1,則|b|= . 9.(2018河北衡水中學(xué)考前仿真,13)已知平面向量a=(2m-1,2),b=(-2,3m-2),|a+b|=|a-b|,則5a-3b的模等于 . 10.已知點(diǎn)P在圓x2+y2=1上,點(diǎn)A的坐標(biāo)為(-2,0),O為原點(diǎn),則AOAP的最大值為 . 11.(2018衡水中學(xué)16模,13)已知平面向量a,b,|a|=1,|b|=2,且ab=1,若e為平面單位向量,則(a-b)e的最大值為 . 綜合提升組 12.(2018北京,理6)設(shè)a,b均為單位向量,則“|a-3b|=|3a+b|”是“a⊥b”的( ) A.充分而不必要條件 B.必要而不充分條件 C.充分必要條件 D.既不充分也不必要條件 13.(2018河北保定一模,10)已知向量a=sin4,cos4,向量b=(1,1),函數(shù)f(x)=ab,則下列說法正確的是 ( ) A.f(x)是奇函數(shù) B.f(x)的一條對稱軸為直線x=π4 C.f(x)的最小正周期為2π D.f(x)在π4,π2內(nèi)是減少的 14.在△ABC中,∠A=60,AB=3,AC=2,若BD=2DC,AE=λAC-AB(λ∈R),且ADAE=-4,則λ的值為 . 15.在平面直角坐標(biāo)系中,O為原點(diǎn),A(-1,0),B(0,3),C(3,0),動(dòng)點(diǎn)D滿足|CD|=1,則|OA+OB+OD|的最大值是 . 創(chuàng)新應(yīng)用組 16.(2018衡水中學(xué)九模,9)若實(shí)數(shù)x,y滿足不等式組x+y+2≥0,x+2y+1<0,y≥0,m=y,1x+1,n=1x+1,2,則mn的取值范圍為( ) A.-∞,-32 B.[2,+∞) C.-12,2 D.-∞,-12∪[2,+∞) 17.(2018河南鄭州三模,11)已知P為橢圓x24+y23=1上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作圓(x+1)2+y2=1的兩條切線,切點(diǎn)分別是A,B,則PAPB的取值范圍為( ) A.32,+∞ B.32,569 C.22-3,569 D.[22-3,+∞) 課時(shí)規(guī)范練25 平面向量的數(shù)量積與平面向量的應(yīng)用 1.A 由題意得cos∠ABC=BABC|BA||BC|=1232+321211=32,所以∠ABC=30,故選A. 2.B “向量a與b的夾角為銳角”的充要條件為ab>0且向量a與b不共線,即x2-4x>0,x∶x≠2x∶(-2),∴x>4或x<0,且x≠-1,故“x>4或x<0”是“向量a與b的夾角為銳角”的必要不充分條件,選B. 3.B 設(shè)BA=a,BC=b,則DE=12AC=12(b-a),DF=32DE=34(b-a),AF=AD+DF=- a+ (b-a)=- a+b.故AFBC=-ab+b2=-58+34=18,應(yīng)選B. 4.C ∵BA=(1,2),CA=(4,5), ∴CB=CA+AB=CA-BA=(3,3), λBA+CA=(λ+4,2λ+5). 又CB(λBA+CA)=0, ∴3(λ+4)+3(2λ+5)=0, 解得λ=-3. 5.C 依題意,得ACBD=1(-4)+22=0,∴AC⊥BD. ∴四邊形ABCD的面積為12|AC||BD|=1212+22(-4)2+22=5. 6.C 若a與b夾角為銳角,則ab>0,且a與b不平行,所以ab=2(x-1)+2=2x>0,得x>0,且x-1≠4,x≠5,所以“x>0”是“x>0,且x≠5”的必要不充分條件,故選C. 7.-1 由題意,得ma-b=(m,0)-(-1,m)=(m+1,-m). ∵a⊥(ma-b),∴a(ma-b)=0,即m+1=0, ∴m=-1. 8.3 ∵|2a-b|=1, ∴(2a-b)2=1, ∴4-4|a||b|cos 30+|b|2=1, 即|b|2-23|b|+3=0,∴|b|=3. 9.170 ∵|a+b|=|a-b|, ∴a⊥b,-2(2m-1)+2(3m-2)=0,解得m=1. a=(1,2),b=(-2,1),5a-3b=(11,7),|5a-3b|=121+49=170. 10.6 (方法1)設(shè)P(cos α,sin α),α∈R, 則AO=(2,0),AP=(cos α+2,sin α),AOAP=2cos α+4. 當(dāng)α=2kπ,k∈Z時(shí),2cos α+4取得最大值,最大值為6. 故AOAP的最大值為6. (方法2)設(shè)P(x,y),x2+y2=1,-1≤x≤1,AO=(2,0),AP=(x+2,y),AOAP=2x+4,故AOAP的最大值為6. 11.3 由|a|=1,|b|=2,且ab=1, 得cos=ab|a||b|=12, ∴cos=60. 設(shè)a=(1,0),b=(1,3),e=(cos θ,sinθ), ∴(a-b)e=-3sin θ, ∴(a-b)e的最大值為3,故答案為3. 12.C 由|a-3b|=|3a+b|,得(a-3b)2=(3a+b)2. ∵a,b均為單位向量, ∴1-6ab+9=9+6ab+1.∴ab=0,故a⊥b,反之也成立.故選C. 13.D f(x)=ab=sin4+cos4x2=sin2x2+cos2x22-2sin2cos2=1-sin2x=3+cos2x4,所以f(x)是偶函數(shù),x=不是其對稱軸,最小正周期為π,在π4,π2內(nèi)是減少的,所以選D. 14.311 ∵BD=2DC, ∴AD=AB+BD=AB+23BC=AB+23(AC-AB)=23AC+13AB. 又AE=λAC-AB,∠A=60,AB=3,AC=2,ADAE=-4. ∴ABAC=3212=3,23AC+13AB(λAC-AB)=-4, 即2λ3AC2-13AB2+λ3-23ABAC=-4, ∴2λ34-139+λ3-233=-4,即113λ-5=-4,解得λ=311. 15.1+7 設(shè)D(x, y),由|CD|=1,得(x-3)2+y2=1,向量OA+OB+OD=(x-1,y+3), 故|OA+OB+OD|=(x-1)2+(y+3)2的最大值為圓(x-3)2+y2=1上的動(dòng)點(diǎn)到點(diǎn)(1,-3)距離的最大值,其最大值為圓(x-3)2+y2=1的圓心(3,0)到點(diǎn)(1,-3)的距離加上圓的半徑, 即(3-1)2+(0+3)2+1=1+7. 16.A 作出可行域,如圖,∵m=y,1x+1,n=1x+1,2, ∴mn=y+2x+1. 記z=y+2x+1表示可行域上的動(dòng)點(diǎn)與(-1,-2)連線的斜率,由x+y+2=0,x+2y+1=0得點(diǎn)A(-3,1),點(diǎn)B(-1,0),點(diǎn)C(-2,0),由圖不難發(fā)現(xiàn)z=y+2x+1∈-∞,-32. 17.C 橢圓x24+y23=1的a=2,b=3,c=1.圓(x+1)2+y2=1的圓心為(-1,0),半徑為1. 由題意設(shè)PA與PB的夾角為2θ, 則|PA|=|PB|=1tanθ, ∴PAPB=|PA||PB|cos 2θ=1tan2θcos 2θ=1+cos2θ1-cos2θcos 2θ. 設(shè)cos 2θ=t,則y=PAPB=t(1+t)1-t=(1-t)+21-t-3≥22-3. ∵P在橢圓的右頂點(diǎn)時(shí),sin θ=13, ∴cos 2θ=1-219=79, 此時(shí)PAPB的最大值為1+791-7979=569, ∴PAPB的取值范圍是22-3,569.- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第五章 平面向量、數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 課時(shí)規(guī)范練25 平面向量的數(shù)量積與平面向量的應(yīng)用 北師大版 2020 高考 數(shù)學(xué) 一輪 復(fù)習(xí) 第五 平面 向量 擴(kuò)充 復(fù)數(shù) 引入 課時(shí)
鏈接地址:http://m.szxfmmzy.com/p-5484022.html