九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

人教版 高中數(shù)學(xué) 選修22優(yōu)化練習(xí):第一章 章末優(yōu)化總結(jié)

上傳人:仙*** 文檔編號:41741776 上傳時間:2021-11-23 格式:DOC 頁數(shù):10 大?。?86KB
收藏 版權(quán)申訴 舉報 下載
人教版 高中數(shù)學(xué) 選修22優(yōu)化練習(xí):第一章 章末優(yōu)化總結(jié)_第1頁
第1頁 / 共10頁
人教版 高中數(shù)學(xué) 選修22優(yōu)化練習(xí):第一章 章末優(yōu)化總結(jié)_第2頁
第2頁 / 共10頁
人教版 高中數(shù)學(xué) 選修22優(yōu)化練習(xí):第一章 章末優(yōu)化總結(jié)_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《人教版 高中數(shù)學(xué) 選修22優(yōu)化練習(xí):第一章 章末優(yōu)化總結(jié)》由會員分享,可在線閱讀,更多相關(guān)《人教版 高中數(shù)學(xué) 選修22優(yōu)化練習(xí):第一章 章末優(yōu)化總結(jié)(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2019年編人教版高中數(shù)學(xué) 章末檢測(一) 時間:120分鐘 滿分:150分 一、選擇題(本大題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的) 1.曲線y=xex-1在點(1,1) 處切線的斜率等于(  ) A.2e          B.e C.2 D.1 解析:由y=xex-1得y′=ex-1+xex-1,所以曲線在點(1,1)處切線的斜率k=y(tǒng)′|x=1=e1-1+1e1-1=2.故選C. 答案:C 2.二次函數(shù)y=f(x)的圖象過原點且它的導(dǎo)函數(shù)y=f′(x)的圖象是如圖所示的一條直線,y=f(x)的圖象的頂點在(  )

2、 A.第Ⅰ象限 B.第Ⅱ象限 C.第Ⅲ象限 D.第Ⅳ象限 解析:設(shè)f(x)=ax2+bx+c,∵二次函數(shù)y=f(x)的圖象過原點,∴c=0,∴f′(x)=2ax+b,由y=f′(x)的圖象可知,2a<0,b>0,∴a<0,b>0,∴->0,=->0,故選A. 答案:A 3.設(shè)函數(shù)f(x)=ax+3,若f′(1)=3,則a等于(  ) A.2 B.-2 C.3 D.-3 解析:∵f′(x)=li =li =a, ∴f′(1)=a=3. 答案:C 4.若f(x)=x2-2x-4ln x,則f(x)的單調(diào)遞增區(qū)間為(  ) A.(-1,0) B.(-1,0)∪(

3、2,+∞) C.(2,+∞) D.(0,+∞) 解析:f′(x)=2x-2-==,由f′(x)>0得x>2. 答案:C 5.已知f(x)=2x3-6x2+m(m為常數(shù))在[-2,2]上有最大值3,那么此函數(shù)在[-2,2]上的最小值為(  ) A.-37 B.-29 C.-5 D.-11 解析:由f′(x)=6x2-12x=6x(x-2)=0,解得x=0或x=2,又f(0)=m,f(2)=m-8, f(-2)=m-40,所以f(x)max=m=3,f(x)min=m-40=3-40=-37. 答案:A 6.已知f(x)=2cos2x+1,x∈(0,π),則f(x)的單

4、調(diào)遞增區(qū)間是(  ) A. B. C. D. 解析:∵f(x)=2cos2x+1=2+cos 2x,x∈(0,π), ∴f′(x)=-2sin 2x. 令f′(x)>0,則sin 2x<0. 又x∈(0,π),∴0<2x<2π. ∴π<2x<2π,即

5、x)有極大值f(-2)和極小值f(2) 解析:由圖可知,當(dāng)x<-2時,f′(x)>0;當(dāng)-22時, f′(x)>0.由此可以得到函數(shù)在x=-2處取得極大值,在x=2處取得極小值,選D. 答案:D 8.由y=-x2與直線y=2x-3圍成的圖形的面積是(  ) A. B. C. D.9 解析:解得交點A(-3,-9),B(1,-1). 如圖,由y=-x2與直線y=2x-3圍成的圖形的面積 S=-3(-x2)dx--3(2x-3)dx =-x3-(x2-3x)=. 答案:B 9.下列函數(shù)中,x=0是其極值點

6、的函數(shù)是(  ) A.f(x)=-x3 B.f(x)=-cos x C.f(x)=sin x-x D.f(x)= 解析:對于A,f′(x)=-3x2≤0恒成立,在R上單調(diào)遞減,沒有極值點;對于B,f′(x)=sin x,當(dāng)x∈(-π,0)時,f′(x)<0,當(dāng)x∈(0,π)時,f′(x)>0,故f(x)=-cos x在x=0的左側(cè)區(qū)間(-π,0)內(nèi)單調(diào)遞減,在其右側(cè)區(qū)間(0,π)內(nèi)單調(diào)遞增,所以x=0是f(x)的一個極小值點;對于C,f′(x)=cos x-1≤0恒成立,在R上單調(diào)遞減,沒有極值點;對于D,f(x)=在x=0沒有定義,所以x=0不可能成為極值點,綜上可知,答案選B.

7、 答案:B 10.已知函數(shù)f(x)=asin x-bcos x在x=時取得極值,則函數(shù)y=f(-x)是(  ) A.偶函數(shù)且圖象關(guān)于點(π,0)對稱 B.偶函數(shù)且圖象關(guān)于點(,0)對稱 C.奇函數(shù)且圖象關(guān)于點(,0)對稱 D.奇函數(shù)且圖象關(guān)于點(π,0)對稱 解析:∵f(x)的圖象關(guān)于x=對稱,∴f(0)= f(),∴-b=a, ∴f(x)=asin x-bcos x=asin x+acos x=asin(x+), ∴f(-x)=asin(-x+)=asin(π-x)=asin x. 顯然f(-x)是奇函數(shù)且關(guān)于點(π,0)對稱,故選D. 答案:D 11.已知定義在實數(shù)

8、集R上的函數(shù)f(x)滿足f(1)=2,且f(x)的導(dǎo)數(shù)f′(x)在R上恒有f′(x)<1(x∈R),則不等式f(x)<x+1的解集為(  ) A.(1,+∞) B.(-∞,-1) C.(-1,1) D.(-∞,-1)∪(1,+∞) 解析:不等式f(x)<x+1可化為f(x)-x<1, 設(shè)g(x)=f(x)-x, 由題意g′(x)=f′(x)-1<0,g(1)=f(1)-1=1,故原不等式?g(x)<g(1),故x>1. 答案:A 12.函數(shù)f(x)=(1-cos x)sin x在[-π,π]的圖象大致為(  ) 解析:在[-π,π]上, ∵f(-x)=[1-cos(-

9、x)]sin(-x)=(1-cos x) (-sin x)=-(1-cos x)sin x=-f(x), ∴f(x)是奇函數(shù),∴f(x)的圖象關(guān)于原點對稱,排除B. 取x=,則f()=(1-cos)sin=1>0,排除A. ∵f(x)=(1-cos x)sin x,∴f′(x)=sin xsin x+(1-cos x)cos x =1-cos2x+cos x-cos2x=-2cos2x+cos x+1. 令f′(x)=0,則cos x=1或cos x=-. 結(jié)合x∈[-π,π],求得f(x)在(0,π]上的極大值點為π,靠近π,選C. 答案:C 二、填空題(本大題共4小題,每

10、小題4分,共16分,把答案填在題中的橫線上) 13.設(shè)函數(shù)f(x)在(0,+∞)內(nèi)可導(dǎo),且f(ex)=x+ex,則f′(1)=________. 解析:令ex=t,則x=ln t,所以f(x)=ln x+x,即 f′(x)=1+,則f′(1)=1+1=2. 答案:2 14.曲線y=e-5x+2在點(0,3)處的切線方程為________. 解析:因為y=e-5x+2,所以y′=-5e-5x,所求切線的斜率為k=y(tǒng)′|x=0=-5e0=-5,故所求切線的方程為y-3=-5(x-0),即y=-5x+3或5x+y-3=0. 答案:y=-5x+3或5x+y-3=0 15.若函數(shù)f(x)

11、=在區(qū)間(m,2m+1)上單調(diào)遞增,則實數(shù)m的取值范圍是________. 解析:f′(x)=,令f′(x)> 0,得-10,當(dāng)

12、x∈(,10)時,V′(x)<0, ∴當(dāng)x=時,V(x)取得最大值為π cm3. 答案:π cm3 三、解答題(本大題共有6小題,共74分,解答應(yīng)寫出文字說明、證明過程或演算步驟) 17.(本小題滿分12分)求曲線y=x3在點(3,27)處的切線與兩坐標(biāo)軸所圍成的三角形的面積. 解析:因為f′(3)=li =27,所以在點(3,27)處的切線方程為y-27=27(x-3),即y=27x-54. 此切線與x軸、y軸的交點分別為(2,0),(0,-54). 所以切線與兩坐標(biāo)軸圍成的三角形的面積為254=54. 18.(本小題滿分12分)已知函數(shù)f(x)=ex(ax+b)-x2-4x

13、,曲線y=f(x)在點(0,f(0))處的切線方程為y=4x+4. (1)求a,b的值; (2)討論f(x)的單調(diào)性,并求f(x)的極大值. 解析:(1)f′ (x)=ex(ax+a+b)-2x-4. 由已知得f(0)=4,f′(0)=4.故b=4,a+b=8. 從而a=4,b=4. (2)由(1)知,f(x)=4ex(x+1)-x2-4x,f′(x)=4ex(x+2)-2x-4=4(x+2)(ex-). 令f′(x)=0,得x=-ln 2或x=-2. 從而當(dāng)x∈(-∞,-2)∪(-ln 2,+∞)時,f′(x)>0;當(dāng)x∈(-2,-ln 2)時,f′(x)<0. 故f(x)

14、在(-∞,-2),(-ln 2,+∞)上單調(diào)遞增,在(-2,-ln 2)上單調(diào)遞減. 當(dāng)x=-2時,函數(shù)f(x)取得極大值,極大值為f(-2)=4(1-e-2). 19. (本小題滿分12分)已知函數(shù)f(x)=-x3+ax2+bx在區(qū)間(-2,1)內(nèi)x=-1時取極小值,x=時取極大值. (1)求函數(shù)y=f(x)在x=-2時的對應(yīng)點的切線方程; (2)求函數(shù)y=f(x)在[-2,1]上的最大值與最小值. 解析:(1)f′(x)=-3x2+2ax+b. 又x=-1,x=分別對應(yīng)函數(shù)取得極小值、極大值, 所以-1,為方程-3x2+2ax+b=0的兩個根. 所以a=-1+,-=(-1)

15、. 于是a=-,b=2,則f(x)=-x3-x2+2x. 當(dāng)x=-2時,f(-2)=2,即(-2,2)在曲線上. 又切線斜率為k=f′(-2)=-8,所求切線方程為y-2=-8(x+2), 即為8x+y+14=0. (2)當(dāng)x變化時,f′(x)及f(x)的變化情況如下表: x -2 (-2,-1) -1 (-1,) (,1) 1 f′(x) - 0 + 0 - f(x) 2  -   則f(x)在[-2,1]上的最大值為2,最小值為-. 20.(本小題滿分12分)已知二次函數(shù)f(x)=3x2-3x,直線l1:x=

16、2和l2:y=3tx(其中t為常數(shù),且0

17、3x)-3tx]dx =+ =(t+1)3-6t+2. (2)依據(jù)定義,h(x)=(x+1)3-6x+2,x∈R,則 h′(x)=3(x+1)2-6. 因為m≠4,則點A(1,m)不在曲線y=h(x)上. 過點A作曲線y=h(x)的切線,設(shè)切點為M(x0,y0), 則切線方程為:y-y0=[3(x0+1)2-6](x-x0), 所以 消去y0,化簡整理得2x-6x0+m=0,其有三個不等實根. 設(shè)g(x0)=2x-6x0+m,則g′(x0)=6x-6. 由g′(x0)>0,得x0>1或x0<-1; 由g′(x0)<0,得-1

18、1),(1,+∞)上單調(diào)遞增,在(-1,1)上單調(diào)遞減, 所以當(dāng)x0=-1時,函數(shù)g(x0)取極大值; 當(dāng)x0=1時,函數(shù)g(x0)取極小值. 因此,關(guān)于x0的方程2x-6x0+m=0有三個不等實根的充要條件是 即即-4

19、n x. 因為在區(qū)間(0,)上f′(x)=-xsin x<0,所以f(x)在區(qū)間[0,]上單調(diào)遞減. 從而f(x)≤f(0)=0. (2)當(dāng)x>0時,“>a”等價于“sin x-ax>0”;“0對任意x∈(0,)恒成立. 當(dāng)c≥1時,因為對任意x∈(0,),g′(x)=cos x-c<0,所以g(x)在區(qū)間[0,]上單調(diào)遞減.從而對 g(x)

20、=0. g(x)與g′(x)在區(qū)間(0,)上的情況如下: x (0,x0) x0 (x0,) g′(x) + 0 - g(x)   因為g(x)在區(qū)間[0,x0]上是增函數(shù),所以g(x0)>g(0)=0.進(jìn)一步,“g(x)>0對任意x∈(0,)恒成立”當(dāng)且僅當(dāng)g()=1-c≥0,即00對任意x∈(0,)恒成立;當(dāng)且僅當(dāng)c≥1時,g(x)<0對任意x∈(0,)恒成立. 所以,若a<

21、=2x3-3x. (1)求f(x)在區(qū)間[-2,1]上的最大值; (2)若過點P(1,t)存在3條直線與曲線y=f(x)相切,求t的取值范圍; (3)問過點A(-1,2),B(2,10),C(0,2)分別存在幾條直線與曲線y=f(x)相切?(只需寫出結(jié)論) 解析:(1)由f(x)=2x3-3x得f′(x)=6x2-3. 令f′(x)=0,得x=-或x=. 因為f(-2)=-10,f=,f=-, f(1)=-1, 所以f(x)在區(qū)間[-2,1]上的最大值為 f=. (2)設(shè)過點P(1,t)的直線與曲線y=f(x)相切于點(x0,y0), 則y0=2x-3x0,且切線斜率為k

22、=6x-3, 所以切線方程為y-y0=(6x-3)(x-x0), 因此t-y0=(6x-3)(1-x0),整理得4x-6x+t+3=0. 設(shè)g(x)=4x3-6x2+t+3, 則“過點P(1,t)存在3條直線與曲線y=f(x)相切”等價于“g(x)有3個不同零點”. g′(x)=12x2-12x=12x(x-1). g(x)與g′(x)的情況如下: x (-∞,0) 0 (0,1) 1 (1,+∞) g′(x) + 0 - 0 + g(x) ↗ t+3 ↘ t+1 ↗ 所以,g(0)=t+3是g(x)的極大值,g(1)=t+1是 g(x)的極

23、小值. 當(dāng)g(0)=t+3≤0,即t≤-3時,此時g(x)在區(qū)間 (-∞,1]和(1,+∞)上分別至多有1個零點,所以g(x)至多有2個零點. 當(dāng)g(1)=t+1≥0,即t≥-1時,此時g(x)在區(qū)間 (-∞,0)和[0,+∞)上分別至多1個零點,所以g(x)至多有2個零點. 當(dāng)g(0)>0且g(1)<0,即-30,所以g(x)分別在區(qū)間[-1,0),[0,1)和[1,2)上恰有1個零點.由于g(x)在區(qū)間(-∞,0)和(1,+∞)上單調(diào),所以g(x)分別在區(qū)間(-∞,0)和[1,+∞)上恰有1個零點. 綜上可知,當(dāng)過點P(1,t)存在3條直線與曲線y= f(x)相切時,t的取值范圍是(-3,-1). (3)過點A(-1,2)存在3條直線與曲線y=f(x)相切; 過點B(2,10)存在2條直線與曲線y=f(x)相切; 過點C(0,2)存在1條直線與曲線y=f(x)相切.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!