2019高考數(shù)學一輪復習 第2章 函數(shù)與基本初等函數(shù) 第6課時 指數(shù)函數(shù)練習 理.doc
《2019高考數(shù)學一輪復習 第2章 函數(shù)與基本初等函數(shù) 第6課時 指數(shù)函數(shù)練習 理.doc》由會員分享,可在線閱讀,更多相關《2019高考數(shù)學一輪復習 第2章 函數(shù)與基本初等函數(shù) 第6課時 指數(shù)函數(shù)練習 理.doc(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第6課時 指數(shù)函數(shù) 1.給出下列結論: ①當a<0時,(a2)=a3; ②=|a|(n>1,n∈N*,n為偶數(shù)); ③函數(shù)f(x)=(x-2)-(3x-7)0的定義域是{x|x≥2且x≠}; ④若5a=0.3,0.7b=0.8,則ab>0. 其中正確的是( ) A.①② B.②③ C.③④ D.②④ 答案 B 解析 (a2)>0,a3<0,故①錯,∵a<0,b>0,∴ab<0.故④錯. 2.(2017北京)已知函數(shù)f(x)=3x-()x,則f(x)( ) A.是奇函數(shù),且在R上是增函數(shù) B.是偶函數(shù),且在R上是增函數(shù) C.是奇函數(shù),且在R上是減函數(shù) D.是偶函數(shù),且在R上是減函數(shù) 答案 A 解析 ∵f(-x)=3-x-()-x=()x-3x=-[3x-()x]=-f(x),∴f(x)為奇函數(shù).又函數(shù)y1=3x在R上為增函數(shù),y2=()x在R上為減函數(shù),∴y=3x-()x在R上為增函數(shù).故選A. 3.(2018北京大興區(qū)期末)下列函數(shù)中值域為正實數(shù)的是( ) A.y=-5x B.y=()1-x C.y= D.y=3|x| 答案 B 解析 ∵1-x∈R,y=()x的值域是正實數(shù), ∴y=()1-x的值域是正實數(shù). 4.若函數(shù)f(x)=(a+)cosx是奇函數(shù),則常數(shù)a的值等于( ) A.-1 B.1 C.- D. 答案 D 5.當x>0時,函數(shù)f(x)=(a2-1)x的值總大于1,則實數(shù)a的取值范圍是( ) A.1<|a|<2 B.|a|<1 C.|a|> D.|a|< 答案 C 6.在同一直角坐標系中,函數(shù)f(x)=2x+1與g(x)=21-x的圖像關于( ) A.y軸對稱 B.x軸對稱 C.原點對稱 D.直線y=x對稱 答案 A 解析 g(x)=()x-1,分別畫出f(x),g(x)的圖像知,選A. 7.設函數(shù)f(x)=若f(a)<1,則實數(shù)a的取值范圍是( ) A.(-∞,-3) B.(1,+∞) C.(-3,1) D.(-∞,-3)∪(1,+∞) 答案 C 解析 通解 當a<0時,不等式f(a)<1為()a-7<1,即()a<8,即()a<()-3,因為0<<1,所以a>-3,此時-30,a≠1)的圖像可能是( ) 答案 D 解析 通解 當a>1時,將y=ax的圖像向下平移個單位長度得f(x)=ax-的圖像,A,B都不符合;當00且a≠1)有兩個不等實根,則a的取值范圍是( ) A.(0,1)∪(1,+∞) B.(0,1) C.(1,+∞) D.(0,) 答案 D 解析 方程|ax-1|=2a(a>0且a≠1)有兩個不等實數(shù)根?函數(shù)y=|ax-1|與y=2a的圖像有兩個交點. ①當01時,如圖②, 而y=2a>1不符合要求. 綜上,00且a≠1)在[-1,1]上的最大值是14? 答案 a=3或a= 解析 令t=ax,則y=t2+2t-1. (1)當a>1時,∵x∈[-1,1], ∴ax∈[,a],即t∈[,a]. ∴y=t2+2t-1=(t+1)2-2在[,a]上是增函數(shù)(對稱軸t=-1<). ∴當t=a時,ymax=(a+1)2-2=14. ∴a=3或a=-5.∵a>1,∴a=3. (2)當02-x成立,求實數(shù)k的取值范圍. 答案 (1)k=-1 (2)(0,+∞) 解析 (1)∵f(x)=2x+k2-x是奇函數(shù),∴f(-x)=-f(x),x∈R,即2-x+k2x=-(2x+k2-x).∴(1+k)+(k+1)22x=0對一切x∈R恒成立,∴k=-1. (2)∵x∈[0,+∞),均有f(x)>2-x,即2x+k2-x>2-x成立,∴1-k<22x對x≥0恒成立,∴1-k<(22x)min.∵y=22x在[0,+∞)上單調(diào)遞增,∴(22x)min=1,∴k>0.∴實數(shù)k的取值范圍是(0,+∞). 18.已知函數(shù)f(x)=是奇函數(shù). (1)求實數(shù)m的值; (2)設g(x)=2x+1-a,若函數(shù)f(x)與g(x)的圖像至少有一個公共點,求實數(shù)a的取值范圍. 答案 (1)m=-1 (2)[2,+∞) 解析 (1)由函數(shù)f(x)是奇函數(shù)可知f(0)=1+m=0,解得m=-1.此時f(x)=2x-2-x,顯然是奇函數(shù). (2)函數(shù)f(x)與g(x)的圖像至少有一個公共點,即方程=2x+1-a至少有一個實根, 即方程4x-a2x+1=0至少有一個實根. 令t=2x>0,則方程t2-at+1=0至少有一個正根. 方法一:由于a=t+≥2,∴a的取值范圍為[2,+∞). 方法二:令h(t)=t2-at+1,由于h(0)=1>0, ∴只需解得a≥2. ∴a的取值范圍為[2,+∞).- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019高考數(shù)學一輪復習 第2章 函數(shù)與基本初等函數(shù) 第6課時 指數(shù)函數(shù)練習 2019 高考 數(shù)學 一輪 復習 函數(shù) 基本 初等 課時 指數(shù)函數(shù) 練習
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
相關資源
更多
正為您匹配相似的精品文檔
鏈接地址:http://m.szxfmmzy.com/p-3895940.html