裝配圖底座注射模設(shè)計(有cad圖+文獻翻譯),裝配,底座,注射,設(shè)計,cad,文獻,翻譯
參數(shù)控制型腔布局設(shè)計系統(tǒng)
今天,塑料制品的生產(chǎn)時間正在變短,因此,籌備時間使注射可用模具正在減少。有潛力的省時模具設(shè)計階段,因為設(shè)計過程中的重復(fù)每個模具的設(shè)計都是標準的。本文提出了一種通過使用注塑模具標準化模板控制腔布局幾何參數(shù)的設(shè)計方法。在標準化模板腔布局設(shè)計中包括可能布局的配置。每一個布局結(jié)構(gòu)設(shè)計都有其自身所有的幾何布局設(shè)計表參數(shù)。這種標準化的模板是預(yù)定義為模具裝配設(shè)計的布局設(shè)計的水平。這將確保,所需的配置可以很快裝入模具裝配設(shè)計,而不需要重新設(shè)計布局。這使得制造前模具的產(chǎn)品設(shè)計和模具設(shè)計之間有用的技術(shù)討論??梢栽谟懻撨^程中立即改變?nèi)S腔布局設(shè)計,從而節(jié)省時間,避免誤差。這種腔布局的設(shè)計標準化模板使每個模具制造公司可以很容易地定制自己的標準。
關(guān)鍵詞:腔體布局設(shè)計;幾何參數(shù);模具裝配,注塑模具設(shè)計;標準化模板
1.導(dǎo)言
注塑是一種大眾生產(chǎn)高精度塑件的通用的方法。有兩種可用于注塑所需的主要項目。他們是注塑成型機,注塑模具。模具安裝在注塑成型機上注塑成型機并提供了溶化的塑料流到機器的模具,模具的夾具應(yīng)用壓力和形成的塑件注射壓力的一部分。注射模具是表達熔融塑料在最后階段塑件的形狀和尺寸的三維細節(jié)的工具。
今天,塑料件的生產(chǎn)時間,是越來越短,必須在較短的時間里生產(chǎn)出注塑模具。在注塑模具設(shè)計及相關(guān)領(lǐng)域已經(jīng)做了許多應(yīng)用計算機技術(shù)的研究。知識系統(tǒng)(KBS)的如IMOLD [1,2],IKMOULD[3],ESMOLD [4],全國程康的KBS大學(xué),臺灣[5],在德雷克塞爾大學(xué)[6]等韓國的注射模具設(shè)計已經(jīng)發(fā)展。系統(tǒng),如HyperQ /塑料[7],CIMP含量[8],飛度[9]等,都以制定塑料材料的選擇使用知識為基礎(chǔ)正在發(fā)展。技術(shù)也已經(jīng)成為設(shè)計注塑模具的發(fā)展趨勢[10-12]。據(jù)觀察,雖然模具制造行業(yè)正在使用的模具設(shè)計,三維CAD軟件,許多時間被浪費是每個項目的同樣設(shè)計過程。同時,如果重復(fù)的設(shè)計過程可以標準化就能避免日常任務(wù),則模具的設(shè)計階段巨大的省時的潛力。在模具裝配中一個組織良好的分層設(shè)計樹也是一個重要因素[13,14]。然而,腔布局設(shè)計控制參數(shù)的部分工作已經(jīng)完成,因此這方面將是我們的主要重點。雖然腔布局有許多設(shè)計方法[15,16],但模具設(shè)計人員往往只使用常規(guī)設(shè)計,因此有必要使腔布局設(shè)計水平標準化。
本文介紹了一種基于標準化模板通過控制參數(shù)設(shè)計注塑模具的型腔設(shè)計的方法。首先,組織嚴密模具裝配層次設(shè)計樹已經(jīng)建立起來。然后,腔布局配置的分類必須作出標準配置和那些非標準配置之間的區(qū)分。那個標準配置將列在配置數(shù)據(jù)庫并且每個配置都有自己的規(guī)劃設(shè)計表控制其自身的幾何參數(shù)。這種標準化模板被預(yù)定義為模具裝配設(shè)計的布局設(shè)計水平。
圖 1 前插入(腔)和后插入(核心)
2. 塑料注塑模具的腔布局設(shè)計
一個注塑模具是表達熔融塑料在最后階段塑件的形狀和尺寸的三維細節(jié)的工具。因此,模具包含最后部分的逆印象。對模具大多建立了兩半:前插入和背部插入。在某些模具制造工業(yè),前面插入也被稱為腔和背部插入被稱為核心。圖1顯示了前面插入(腔)和背部插入(核心)。熔融塑料注入印象填充。熔融塑料的固化,然后形成塑件。圖2顯示了一個簡單的兩板模裝配。
圖2一個簡單的模具裝配
2.1很多時候單腔和多腔模具之間的差異,印象中,塑料模具的填充也被稱為填補了腔。腔的安排被稱為腔布局。當一個模具包含多個腔時,它被稱為是一個多腔模具。圖3(a)和3(b)顯示了一個單腔模具和多腔模具。一個單腔模具通常是相當大的設(shè)計部分,如繪圖儀封面和電視外殼。對于較小的如手手機蓋和齒輪部件,它總是采用更多經(jīng)濟設(shè)計的多腔模具,使更多的地方可以形成生產(chǎn)成型周期。客戶通常確定腔的數(shù)量,因為要平衡投資成本。
2.2一個多腔模具在同一時間生產(chǎn)不同的產(chǎn)品,作為一個組合模具。然而,它不是模具不同腔的普通設(shè)計,由于腔未必都是熔融塑料在同一時間和同樣的溫度填補。另一方面,多腔模具的生產(chǎn)在整個成型周期同樣的產(chǎn)品可以有一個平衡布局或不平衡的布局。均衡布局在其中一腔都統(tǒng)一用相同條件下熔體在同一時間填補 [15,16時間]。短成型如果不平衡的布局正在使用,但是這通過修改的長度和跨節(jié)莖加以克服(為熔融塑性從澆口流動腔的通道)。由于這不是一種有效的方法,盡可能避免。圖4顯示了短期注塑情況是由于不平衡的布局。均衡布局可進一步分為兩類:直線和圓弧。線性均衡布局可容納2,4,8,16,32等型腔,即它遵循一個系列。均衡的圓形布局可以有3,4,5,6個或更多腔,但有一腔的數(shù)量限制,可安置在一個平衡的,因為圓的空間布局限制。圖5顯示了已經(jīng)被討論的多腔布局。
3.設(shè)計方法
本節(jié)介紹的設(shè)計方法是一個注塑模具參數(shù)控制腔布局設(shè)計開發(fā)系統(tǒng)的概述。建立有效的工作模具設(shè)計方法是建立各種部件和組件到最適當?shù)膶哟谓Y(jié)構(gòu)設(shè)計樹。圖6顯示了模具裝配第一級組件和部件的層次設(shè)計樹。其他部件和組件的裝配是從第二級開始到第n模具裝配水平層次設(shè)計樹。對于這個系統(tǒng),重點將僅在“腔布局設(shè)計”。
3.1標準化程序
為了節(jié)省在模具設(shè)計過程中的時間,有必要確定設(shè)計通常功能的使用。每一個重復(fù)模具設(shè)計過程,然后可以標準化。圖7可以看出,在標準化 “腔布局設(shè)計” 的相互作用程序中有兩個區(qū)段:組件裝配標準化和模腔布局配置標準化。
3.1.1組件標準化 腔布局配置前可以標準化,但必須認識到部件和組件是通過腔布局中各種腔被重復(fù)的。圖8顯示了詳細的“腔布局設(shè)計”等級設(shè)計樹。
主要插入組件(腔中)層次結(jié)構(gòu)設(shè)計樹的第二層有許多部件和組裝部件從層次結(jié)構(gòu)的設(shè)計樹第三層開始直接插入。它們可以被看作是主要部分和次要組件。主要部分存在于每一個模具設(shè)計。次要組成部分依賴于塑件的生產(chǎn),所以他們可能存在或可能不存在在模具設(shè)計。因此,把這些元件及部件歸于主要插入組件,確保每一個重復(fù)的主要插入(腔)繼承從第三級開始層次設(shè)計樹的相同的部件和零部件。因此,沒有必要重新設(shè)計類似的部件和組件中的每一個腔腔布局。
布局設(shè)計809圖3 (a)單腔模具 (b)多腔模具
圖 4 在短成型布局不平衡
810雜木低和堪薩斯州利
圖5 多腔布局
圖6 模具裝配分層設(shè)計樹
圖7 在標準化的相互作用過程
3.1.2腔布局配置標準化 有必要把那些有標準的,哪些是非標準的腔布局配置進行研究和分類。圖9顯示了腔布局配置的標準化程序。腔布局設(shè)計,也可以采取為多腔布局或單腔布局,但始終由顧客確定這一決定。一個單腔布局總是視為標準配置。多腔模具可以在同一時間生產(chǎn)不同的產(chǎn)品或在同一時間生產(chǎn)同一產(chǎn)品。腔布局設(shè)計系統(tǒng)811
圖8詳細的“腔布局設(shè)計”分層設(shè)計樹
模具在同一時間生產(chǎn)不同的產(chǎn)品被稱為組合模具,這是一個非傳統(tǒng)的設(shè)計。因此,多腔組合模具有一個非標準配置。生產(chǎn)同一種產(chǎn)品的多腔模具包含一個平衡的布局設(shè)計和失衡的布局設(shè)計。不平衡的布局設(shè)計是很少使用,因此,它被認為是一個非標準配置。不過,均衡布局的設(shè)計也可以包括任何線性布局設(shè)計或圓形布局設(shè)計圖。這取決于那些根據(jù)客戶要求的模腔數(shù)。必須指出,雖然,有任何其他腔非標準的數(shù)量也被列為一個非標準配置。在標準的布局設(shè)計分類后,其詳細信息可以被列入標準化模板。這種標準化的模板被預(yù)定義為在模具裝配設(shè)計和支持所有的標準配置的腔布局的設(shè)計水平。這將確保所需的配置可以很快加載進入模具裝配設(shè)計布局而不需要重新設(shè)計。
3.2標準化模板從圖10可看出,有兩個部分標準化模板:一個配置數(shù)據(jù)庫和布局設(shè)計表。
配置數(shù)據(jù)庫包括所有布局的標準配置,每個布局結(jié)構(gòu)都有自己的布局設(shè)計表的幾何參數(shù)。由于模具制造行業(yè)有自己的標準,配置數(shù)據(jù)庫可以將那些以前采取定制的視為非標準設(shè)計。
圖9 標準化程序腔的布局配置
圖10 標準化模板
3.2.1配置數(shù)據(jù)庫 數(shù)據(jù)庫可以被用來包含的所有不同標準配置的名單。在這個數(shù)據(jù)庫中的配置總數(shù)相當于在模具配置的腔布局設(shè)計水平中可用的布局配置的數(shù)量。在數(shù)據(jù)庫中所列出的信息是配置數(shù)量,類型和腔的數(shù)量。表1顯示了一個配置數(shù)據(jù)庫的例子。配置數(shù)量是相應(yīng)類型可用布局配置的每一個名字的腔的數(shù)量。當布局的特殊類型和數(shù)量被定義時,適當?shù)牟季峙渲脤⒈患虞d到腔設(shè)計中。
3.2.2布局設(shè)計表 在配置數(shù)據(jù)庫中的每一個標準配置都有自己的布局設(shè)計表。布局設(shè)計表包含每一個配置的布局結(jié)構(gòu)的幾何參數(shù)并且每個配置是獨立的。一個更復(fù)雜布局結(jié)構(gòu)將有更多的幾何參數(shù)去控制腔布局。圖11(a)和11(b)顯示回模具板(核心板)與大型腔和裝配四個小型腔相同的四腔布局。它總是更經(jīng)濟,容易加工,而不是機器個別一大型腔在鋼塊小型腔。機械加工的優(yōu)勢一個大型腔是:
812雜木低和堪薩斯州利
圖11 凹模板
1、可以節(jié)省腔之間更多的空間,因此,小鋼塊都可以使用。2、相對于加工多個小型腔加工大型腔更快一些。3、相對加工多個較小的型腔加工一個大型腔有更高的精度。因此,幾何參數(shù)的默認值在布局設(shè)計中由表腔之間的距離決定。然而,為了使系統(tǒng)更加靈活,幾何參數(shù)的默認值可以修改以適應(yīng)每一個有需要的模具設(shè)計。
3.3建立幾何參數(shù) 幾何參數(shù)有三個變量:1、腔之間的距離(彈性)。腔之間的距離要在布局設(shè)計表中列出他們可以由用戶控制或修改。那個距離默認值,使得沒有腔之間的沒有距離。2、單型腔的圓角方向(彈性)。單型腔的圓角方向也要在布局設(shè)計表中列出,用戶可以更改。對多腔布局,所有的腔的圓角方向都必須和布局設(shè)計表所示的相同。如果修改圓角方向,所有的腔的圓角都必須改變相同的角度,而不影響布局配置。3、各腔之間的組裝關(guān)系(固定)。腔的圓角方向要相互配合,在單獨的布局設(shè)計中被預(yù)定義,而且被各腔之間的相互組裝關(guān)系控制,除了定制的,這適用于所有的布局設(shè)計。圖12顯示了一個單腔布局設(shè)計例子和幾何參數(shù)。主要插入/腔的起源是在該中心。 x1的默認值和Y1為零,使腔是該布局的中心(兩個相互重疊的起源)。用戶可以更改X1和Y1的默認值,使腔可以適當?shù)貜浹a。圖13顯示了一個八腔布局結(jié)構(gòu)例子和幾何參數(shù)。 X和Y的默認值是主要插入尺寸/腔。在默認情況下,x1和X2的默認值等于x,?1值等于為Y,因此腔之間不存在距離。X1,X2和?1可被提高以適應(yīng)設(shè)計中腔之間的距離。這些默認值會在布局設(shè)計表中列出。如果某個腔被調(diào)整90 °,那么其他腔也必須跟著調(diào)整相同的角度,但布局設(shè)計仍保持不變。用戶可以通過改變布局設(shè)計表格中的參數(shù)來改變腔的角度。布局如圖14。
圖12 單腔布局結(jié)構(gòu)和幾何參數(shù)
腔布局設(shè)計系統(tǒng)813
圖13 八腔布局結(jié)構(gòu)和幾何參數(shù)無腔旋轉(zhuǎn)
一個復(fù)雜的腔布局配置,有更多幾何參數(shù),必須使用的相關(guān)方程的參數(shù)。
4.塑料模具的控制腔布局設(shè)計
參數(shù)原型用奔騰三PC兼容的硬件執(zhí)行。這個原型系統(tǒng)使用了商用CAD系統(tǒng)(SolidWorks2001)和商業(yè)數(shù)據(jù)庫系統(tǒng)(Microsoft Excel)等軟件。該原型系統(tǒng)的開發(fā)使用微軟的Visual C + + V6.0的編程語言和SolidWorks的API(應(yīng)用編程接口)在Windows
圖14 八腔布局結(jié)構(gòu)和幾何參數(shù)與腔旋轉(zhuǎn)
NT的環(huán)境中。SolidWorks的選擇主要有兩個原因:1。主要由于硬件的采購成本,在CAD /CAM行業(yè)的上升趨勢已經(jīng)轉(zhuǎn)向以Windows為基礎(chǔ)的個人電腦的使用而不是基于UNIX。2。三維CAD軟件完全兼容Windows,從而它能夠從Microsoft Excel中順利整合信息到CAD文件中(零件,裝配和繪圖)[17]。這個原型系統(tǒng)有8個標準布局配置數(shù)據(jù)庫在Excel文件中列出。如圖15所示。(1)。與此相應(yīng)的配置數(shù)據(jù)庫,布局設(shè)計水平,這是一個具有相同的布局配置SolidWorks(layout.sldasm)的裝配文件。與Excel文件中的配置名稱相對應(yīng)的布局配置文件名稱,如圖15(b)所示。每腔布局文件(layout.sldasm)項目將預(yù)先加載這些布局配置。當所需的布局配置是通過用戶的要求接口,布局結(jié)構(gòu)將被加載。用戶界面如圖。16裝載要求的布局配置要事先下載。在加載要求的布局配置后,當前的布局配置信息將在列表框中列出。然后用戶可以改變當前的布局配置以適應(yīng)在配置數(shù)據(jù)庫中建立的任何相應(yīng)布局設(shè)計。如圖17所示。當用戶按下用戶界面底部的按鈕包含幾何參數(shù)的布局結(jié)構(gòu)的布局設(shè)計表會被激活。當幾何參數(shù)的默認值改變時腔的設(shè)計亦相應(yīng)更新。圖18顯示了當前的布局配置激活的布局設(shè)計表。
5.案例研究
手機外殼CAD模型,如圖19所示,是用在下面的案例研究。原始的CAD模型要根據(jù)使用的模具樹脂的收縮默認值來縮放設(shè)計插入件來阻止收縮部分,這整個組件被稱為主要插入組件(三十cavity.sldasm),814雜木低和堪薩斯州利
圖15 配置數(shù)據(jù)庫和布局模板原型系統(tǒng)
圖16 在用戶登陸界面之前加載所要求的配置
其中“xxx”是項目的名稱。圖20顯示的主要插入組件。主要插入件創(chuàng)建后,腔布局設(shè)計系統(tǒng),可用于制備模具裝配的腔布局。
5.1方案1:初步腔布局設(shè)計在模具設(shè)計中,所設(shè)計的模具總是由客戶決定,因為他們要平衡設(shè)備投資和最初的預(yù)算??蛻粢呀?jīng)要求設(shè)計一個兩腔模具生產(chǎn)手機外殼。創(chuàng)建主要插入組件后,模具設(shè)計師會下載一個使用此腔設(shè)計系統(tǒng)的兩腔線性布局配置。相應(yīng)配置的名稱是L02,并在用戶界面中列出如圖21所示。
5.2方案2:腔布局設(shè)計改造與客戶與模具設(shè)計者之間的技術(shù)討論會是常見的。這使得對模具制造的三維CAD文件都要盡可能快的做出調(diào)整。變化幾乎總是不可避免的,模具設(shè)計人員從來沒有多余的時間。在這種情況下,在技術(shù)討論會上,為客戶改變了主意,需要一個四腔線性而不是兩腔模具使該
甲腔布局設(shè)計系統(tǒng)815
圖17 加載所要求的配置后的用戶界面
圖18 與布局設(shè)計表的用戶界面
816雜木低和堪薩斯州利
圖19 手的手機CAD模型
手機的生產(chǎn)量得到提高。模具設(shè)計者可以使用腔布局設(shè)計系統(tǒng)把現(xiàn)有腔布局設(shè)計修改成四腔線性模具。所要求的新的布局配置可以從圖22所示配置數(shù)據(jù)庫中選擇合適的配置數(shù)據(jù)庫。
圖21 線性兩腔配置
5.3方案3:腔之間的間隙是必需的
最后,在另一個技術(shù)討論會,模具設(shè)計師必須引用在縱向型腔之間20毫米的間隙,如圖23所示。
圖20 插入封裝的主要組成部分的縮小
腔布局設(shè)計系統(tǒng)817
圖22 線性,四腔布局配置(在布局配置更改后)
圖23 在腔之間的差距介紹
圖 24 ?1值在布局設(shè)計表中的修改意義
圖25 增加后的間隙,最終設(shè)計
腔布局設(shè)計系統(tǒng)819
在腔布局組件的水平中,模具設(shè)計采用腔布局系統(tǒng)啟動當前布局配置的布局設(shè)計表。把?1值從50毫米改為70毫米引用在縱向型腔之間20毫米的間隙。圖24顯示了在布局設(shè)計表中?1價值的改變。最后的設(shè)計結(jié)果,間隙增加后,如圖25。
6.結(jié)論
在本文中,使用標準化模板這一途徑是為用參數(shù)控制型腔布局設(shè)計系統(tǒng)的發(fā)展提出的建議。由于這種方法利用了標準化的使用,它可以進一步應(yīng)用于其他組件模具裝配設(shè)計,如果他們的設(shè)計流程是重復(fù)的或者他們認為有每一個模具常用功能設(shè)計的特征。發(fā)達國家腔布局系統(tǒng)的優(yōu)點如下:
1、在開發(fā)的系統(tǒng)具有用戶友好的界面。
2、因為數(shù)據(jù)庫的使用,它有高度的靈活性,并且模具制造等行業(yè)都有自己的標準可自定義的數(shù)據(jù)庫,以滿足他們的需要。
3、因為預(yù)先定義標準化模板在模具裝配設(shè)計布局的設(shè)計水平中是可用的,所需的布局配置可以很快被加載到模具裝配設(shè)計,而無需重新設(shè)計布局。
4、這個系統(tǒng)使產(chǎn)品設(shè)計和模具設(shè)計在模具制造之前預(yù)先有更多的有益的技術(shù)討論,例如在討論中改變布局可立即完成。
5、因為它刪除多余的工作,這個系統(tǒng)在模具設(shè)計過程中節(jié)省了時間。由于模具制造時間的減少這對于模具制造工業(yè)是非常主要的。開發(fā)的系統(tǒng)有一些限制。
雖然數(shù)據(jù)庫和布局設(shè)計表可以進行定制,定制將更加困難,更復(fù)雜的非標配置,因為正確的幾何參數(shù)待定。我們目前正在申請一個在模具設(shè)計中其他組件的一個標準化模板。
參考文獻
1. K. S. Lee, J. Y. H, Fuh, Y. F. Zhang, A. Y. C. Nee and Z. Li, “IMOLD: an intelligent plastic injection mold design and assembly system”, Proceedings of the 4th International Conference On Die and Mould Technology, pp. 30–37, Malaysia, 4–6 June 1997.
2. K. S. Lee, Z. Li, J. Y. H, Fuh, Y. F. Zhang and A. Y. C.
Nee, “Knowledge-based injection mold design system”, CIRP International Conference and Exhibition on Design and Production of Dies and Moulds, pp. 45–50, Turkey, 19–21 June 1997.
3. C. K. Mok, K. S. Chin and John K. L. Ho, “An interactive knowledge-based CAD system for mould design in injection moulding processes”, International Journal of Advanced Manufac- turing Technology, 17, pp. 27–38, 2001.
4. Kwai-Sang Chin and T. N. Wong, “Knowledge-based evaluation for the conceptual design development of injection molding parts”, Engineering Application of Artificial Intelligence, 9(4), pp. 359–
376, 1996.
5. Rong-Shean Lee, Yuh-Min Chen and Chang-Zou Lee, “Develop- ment of a concurrent mold design system: a knowledge-based approach”, Computer Integrated Manufacturing Systems, 10(4), pp. 287–307, 1997.
6. A. A. Tseng, J. D. Kaplan, O. B. Arinze and T. J. Zhao, “ Knowledge-based mold design for injection molding processing”, Proceedings of the 5th International Symposium on Intelligent Control, pp. 1199–1204, 1990.
7. K. Beiter, S. Krizan and K. Ishii, “HyperQ/Plastics: an expert system for plastic material and process selection”, Proceedings Computers in Engineering, ASME, 1, pp. 71–76, 1991.
8. W. R. Jong and K. K. Wang, “An intelligent system for resin selection”, Proceedings ANTEC’89, SPE, pp. 367–370, 1989.
9. M. Wiggins, “Expert systems in polymer selection”, Proceedings
ANTEC’86, SPE, pp. 1393–1395, 1986.
10. L. L. Chen, S. Y. Chou and T. C. Woo, “Parting directions for mould and die design”, Computer-Aided Design, 25(12), pp. 762–
768, 1993.
11. A. Y. C. Nee and M. W. Fu, “Determination of optimal parting
directions in plastic injection mold design”, Annals CIRP, 46(1), pp. 429–432, 1997.
12. B. Ravi and M. N. Srinivasan, “Decision criteria for computer-
aided parting surface design”, Computer-Aided Design, 22(1), pp. 11–18, 1990.
13. X. G. Ye, “Feature and associativity-based computer-aided design for plastic injection moulds”, PhD thesis, National University of
Singapore, 2000.
14. X. G. Ye, J. Y. H. Fuh and K. S. Lee, “Automated assembly modeling for plastic injection moulds”, International Journal of Advanced Manufacturing Technology, 16, pp. 739–747, 2000.
15. G. Menges, How to Make Injection Molds, Chapter 4, Hanser, Munich, 1986.
16. Joseph B. Dym, Injection Molds and Molding: A Practical Manual, Chapter 7, Van Nostrand Reinhold, New York, 1989.
17. SolidWorks 2001 Training Manual, “SolidWorks Essentials parts assemblies and drawings”, SolidWorks Corporation, Concord, Mas- sachusetts 01742, 2001.
20
底座注射模設(shè)計
摘 要
對塑料底座注射模結(jié)構(gòu)采用中心澆口進料,采用一模一腔的模具結(jié)構(gòu), 材料采用流動性能差的PC塑料,通過對塑件的分析,注射機的選定,澆注系統(tǒng)的設(shè)計,成型零件的設(shè)計計算,脫模推出機構(gòu)的設(shè)計,以及冷卻系統(tǒng)的設(shè)計和導(dǎo)向地位機構(gòu)的設(shè)計,給出了生產(chǎn)底座的一個實際參考設(shè)計生產(chǎn)流程。
通過本設(shè)計,可以對注塑模具有一個初步的認識,注意到設(shè)計中的某些細節(jié)問題,了解模具結(jié)構(gòu)及其工作原理;為以后從事本行業(yè)打下了良好的理論基礎(chǔ)。此次設(shè)計的過程中查閱了大量的模具設(shè)計資料,通過模具的設(shè)計與應(yīng)用,同原有的設(shè)計方法相比,模具的應(yīng)用提升了產(chǎn)品的質(zhì)量,模具整體設(shè)計的思路和要求符合現(xiàn)代設(shè)計潮流和未來的發(fā)展方向。
關(guān)鍵詞: PC;一模一腔;中心澆口;模具設(shè)計
ABSTRACT
To plastics base injection mould structure adopts center gate; Selected a mould for four cavity die structure, and selected the medium flow not well PC plastic for filling mold, improve the design compact and practical efficiency; PC Based on the analysis of the plastic parts, injection machine selection of the design of the shunt way, Lord, molding parts design calculation of mechanism design, stripping out, and the cooling system design and guide mechanism design, status are given a production of plastics base actual reference design of the production process.
The mould cognition having a first step by the fact that design, can produce plastic articles by injection moulding face to face , pay attention to knowing mould structure and their operating principle to some detail problem in designing that,; Be to be engaged in our industry hereafter having laid down fine rationale. I have consulted massive materials of the plastic mold design and manufacture in this design process .Through the design and application of the mold ,the processing technology ,compared with previous technology ,which increase the quality of the product. The overall design mentality and request conform to the modern design tidal and development direction of the future.
Keywords: pc; plastics base; center gate; mold design.
目 錄
1 塑件成型工藝性分析 1
1.1 塑件的分析 1
1.2 PC工程塑料的性能分析 1
1.2.1基本性能 1
1.2.2 PC的主要性能指標 2
1.3 PC的注射成型過程及其工藝參數(shù) 2
1.3.1注射成型過程 2
1.3.2 注射工藝參數(shù) 3
2 擬定模具的結(jié)構(gòu)形式和初選注射機 4
2.1 分型面位置的確定 4
2.2 型腔數(shù)量和排列方式的確定 4
2.3 注射機型號的確定 4
2.3.1 注射量的計算 4
2.3.2 澆注系統(tǒng)凝料提及的初步估算 5
2.3.3 選擇注射機 5
2.3.4 注射機的相關(guān)參數(shù)的校核 6
3 澆注系統(tǒng)的設(shè)計 7
3.1澆注系統(tǒng)的設(shè)計原則 7
3.2主流道的設(shè)計 8
3.2.1主流道設(shè)計要點 8
3.2.2 主流道尺寸的確定 9
3.2.3 主流道的凝料體積 9
3.2.4 主流道當量半徑 9
3.2.5 主流道澆口套的形式 9
3.3 分流道的設(shè)計 10
3.3.1 分流道的布置形式 10
3.3.2 分流道的長度 10
3.3.3 分流道的當量直徑 10
3.3.4 分流道的截面形狀 10
3.3.5 分流道界面尺寸 10
3.3.6 凝料體積 11
3.3.7 校核剪切速率 11
3.3.8 分流道的表面粗糙度和脫模斜度 12
3.4. 澆口的設(shè)計 12
3.4.1輪輻式澆口尺寸的確定 12
3.4.2 輪輻式澆口剪切速率的校核 13
3.5 校核主流道的剪切速率 13
3.6 冷料穴的設(shè)計 13
4.成型零件的結(jié)構(gòu)設(shè)計及計算 14
4.1.成型零件的結(jié)構(gòu)設(shè)計 14
4.2.成型零件鋼材的選用 15
4.3 成型零件工作尺寸的計算 15
4.3.1 凹模徑向尺寸的計算 16
4.3.2凹模深度尺寸的計算 16
4.3.3動模凸凹模尺寸的計算 17
4.3.4大型芯尺寸的計算 19
4.3.5 小型芯尺寸的計算 20
4.4 成型零件尺寸及動模墊板厚度的計算 21
4.1.1凹模側(cè)壁厚度的計算 21
5.脫模推出機構(gòu)的設(shè)計 22
5.1 脫模力的計算 22
5.2. 推出方式的確定 23
5.2.1 推桿材料 23
5.2.2 推桿的安裝 24
5.2.3 校核推出應(yīng)力 24
6.模架的確定 25
6.1 各模板厚度尺寸的確定 25
6.2 計算并選擇模架型號 25
6.3 模架尺寸的校核 26
7.排氣槽的設(shè)計 27
8.冷卻系統(tǒng)的設(shè)計 28
8.1 冷卻介質(zhì) 28
8.2 冷卻系統(tǒng)的計算 28
8.2.1 單位時間內(nèi)注入模具中的塑料熔體的總質(zhì)量W 28
8.2.2 確定單位質(zhì)量的塑件在凝固時所放出的熱量 28
8.2.3 計算冷卻水的體積流量 28
8.2.4 確定冷卻水路的直徑 29
8.2.5 冷卻水在管內(nèi)的流速 29
8.2.6 求冷卻管壁與水交界的膜轉(zhuǎn)熱系數(shù) 29
8.2.7 計算冷卻水道的導(dǎo)熱總面積A 29
8.2.8 模具上應(yīng)開設(shè)的冷卻水道的孔數(shù)n 29
8.2.9 冷卻水道的布置 30
9.導(dǎo)向與定位機構(gòu)的設(shè)計 31
9.1 導(dǎo)柱導(dǎo)向機構(gòu) 31
10.模具零件的選材 32
10.1.1 模具材料選用原則 32
10.1.2 模具材料選用要求 32
10.2 注塑模具常用材料 32
10.2.1 塑料模具成型零件的選材 32
10.2.3 推出機構(gòu)零件的選材 33
10.2.4澆注系統(tǒng)零件 33
10.2.5 其它零件的選材 34
11零件的加工工藝過程 35
11.1小型芯制造工藝過程: 35
11.2型腔制造工藝過程 35
11.設(shè)計小結(jié) 38
參考文獻 39
1 塑件成型工藝性分析
1.1 塑件的分析
(1)外形尺寸 該塑件壁厚較厚,平均壁厚約為30mm,結(jié)構(gòu)較簡單,對稱度好,只需做幾個型芯即可,塑件為熱塑性塑料,流動性差,適于螺桿式注射機注射成型。
(2) 精度等級 該塑件重要尺寸和次重要尺寸精度等級均為MT4,由以上分析可見該零件的尺寸精度中等,對應(yīng)的模具相關(guān)零件的尺寸加工可以保證。
(3) 脫模斜度 pc的成型性能良好,成型收縮率較小,其脫模斜度根據(jù)參考文獻[1]中表2-19可知型腔的脫模斜度在,型芯的在,pc的流動性差,為使注射充型流暢,選擇塑件上型芯和凹模的統(tǒng)一脫模斜度為。
1.2 PC工程塑料的性能分析
1.2.1基本性能
PC聚碳酸酯無色透明,耐熱,抗沖擊阻燃,在普通使用溫度內(nèi)都有良好的機械性能。沖擊強度高,尺寸穩(wěn)定性好,著色性好,電絕緣蝕性、耐腐性、耐磨性好,但自潤滑性差,有應(yīng)力開裂傾向,高溫易水解,與其它樹脂相溶性差。適于制作儀表小零件、絕緣透明件和耐沖擊零件,阻燃,在普通使用溫度內(nèi)都有良好的機械性能。
成形特性:
無定形料,熱穩(wěn)定性好,成型溫度范圍寬,流動性差。吸濕小,但對水敏感,須經(jīng)干燥處理,成型收縮率小,易發(fā)生熔融開裂和應(yīng)力集中,故應(yīng)嚴格控制成形條件,塑件須經(jīng)退火處理。
1.熔融溫度高,粘度高,大于200g的塑件宜采用螺桿式注射機。
2流動性差,溢邊料0.06m左右。
3冷卻速度快,模具澆注系統(tǒng)以短、粗為原則,宜設(shè)冷料穴,澆口宜取大。
4.料濕過低會造成缺料,塑件無光澤,料溫過高易溢邊,塑件起泡。模溫低時收縮率、抗沖擊強度高,抗彎、抗壓強度低,模溫超過時塑件冷卻慢,易變形粘模。
圖1 塑件圖
1.2.2 PC的主要性能指標
表1 PC的主要技術(shù)指標
技術(shù)指標
PC
技術(shù)指標
PC
密度
比體積
吸水率
熔點
硬度
沖擊韌度
1.20g/cm3
0.83 cm3/g 0.09~0.15% (24h)
220~250℃
11.4HB
無缺口 不斷
有缺口 55.8~90 k / Jm2
熱變形溫度
抗拉屈服強度
拉伸強度模量
彎曲強度
擊穿電壓
體積電阻率
132~141℃(0.45MPa)
132~138℃(1.82MPa)
72MPa
1440MPa
113MPa
17~22KV/mm
3.06
1.3 PC的注射成型過程及其工藝參數(shù)
1.3.1注射成型過程
(1)成型前準備。對PC的色澤、粒度和均勻度等進行檢驗,成型前必須預(yù)干燥,水分含量應(yīng)低于0.02%,微量水份在高溫下加工會使制品產(chǎn)生白濁色澤,銀絲和氣泡。常用方法是循環(huán)鼓風(fēng)干燥,溫度控制是120℃,時間8~12h以上。
(2)注射過程。塑料在注射機料筒內(nèi)經(jīng)過加熱、塑化達到流動狀態(tài)后,由模具的澆注系統(tǒng)進入模具的型腔成型,其過程分為充模、壓實、保壓、倒流和冷卻五個階段。
(3)塑件的后處理(退火)。退火處理的方法為紅外線燈、烘箱,處理溫度為100℃~130℃,處理時間為2h~8h。
1.3.2 注射工藝參數(shù)
(1)注射機:螺桿式,螺桿轉(zhuǎn)速為30r/min.。
(2)料筒溫度t/℃:前段210~240;
中段230~280;
后段240~285。
(3)模具溫度t/℃:90~110;
(4)注射壓力(p/Mpa):80~130;
(5)成型時間(s):高壓時間 0~5S
注射時間 20~90 S
冷卻時間 20~90 S
總周期 40~190 S
2 擬定模具的結(jié)構(gòu)形式和初選注射機
2.1 分型面位置的確定
通過對塑件結(jié)構(gòu)形式的分析,分型面應(yīng)選在塑件截面積最大,且有利于開模,其位置如圖2所示。
圖2 分型面的選擇
2.2 型腔數(shù)量和排列方式的確定
(1)型腔數(shù)量的確定 由于該塑件精度要求中等,塑件尺寸較大,塑料流動性差,結(jié)構(gòu)高度對稱,為了便于順利充型,初步選用一模一腔。
(2)模具結(jié)構(gòu)形式的初步確定 由以上分析可知,本模具設(shè)計是一模一腔,,根據(jù)塑件結(jié)構(gòu)形狀,推出機構(gòu)初選推件板推出或是推出桿推出方式。澆注系統(tǒng)設(shè)計時,因為塑件中間帶有比主流道直徑大的孔,所以為了進料均勻,采用平衡式流道和輪輻式澆口。因此,定模部分不需要單獨開設(shè)分型面取出凝料,動模部分需要添加型芯固定板、支撐板或推件板。由上綜合分析可確定采用大水口(或帶推件板)的單分型面注射模。
2.3 注射機型號的確定
2.3.1 注射量的計算
通過Pro/E建模分析得塑件質(zhì)量屬性如圖4所示。
圖3 塑件質(zhì)量屬性
塑件體積:
塑件質(zhì)量:=1.2×1745.4=2094.4g …………(1)
式中,ρ可根據(jù)參考文獻[3]表9-6取為1.20。
2.3.2 澆注系統(tǒng)凝料提及的初步估算
由于澆注系統(tǒng)的凝料在設(shè)計之前不能確定準確的數(shù)值,但是可以根據(jù)經(jīng)驗按照塑件提及的0.2倍~1倍來估算。由于本次設(shè)計采用的流道簡單并且較短,因此澆注系統(tǒng)的凝料按塑件體積的0.3倍來估算。故一次注入模具型腔塑料熔體的總體積(即澆注系統(tǒng)的凝料和4個塑件體積之和)為:
=1.3×1×1745.4=2269 ……………(2)
2.3.3 選擇注射機
根據(jù)以上計算得出在一次注射過程中,注入模具型腔的塑料的總體積為=57.6,由參考文獻[2]式4-18,=/0.8=2269/0.8=2836。根據(jù)以上的計算,查參考文獻[3]中表13-1,初步選定公稱注射量為3000,注射機型號為XZY-3000的螺桿式注射機,其主要技術(shù)參數(shù)見表2。
表2注射機主要技術(shù)參數(shù)
技術(shù)指標
參數(shù)
技術(shù)指標
參數(shù)
理論注射量
螺桿柱塞直徑/mm
注射壓力
注射時間s
塑化能力
鎖模力/KN
噴嘴口直徑/mm
3000g/cm3
120
115
3.8
80
630
8
拉桿內(nèi)向距/mm
移模行程/mm
最大模具厚度/mm
最小模具厚度/mm
鎖模形式
模具定位孔直徑/mm
噴嘴球半徑/mm
900×800
1120
680
400
充壓式
250
25
2.3.4 注射機的相關(guān)參數(shù)的校核
(1) 注射壓力校核 查參考文獻[4]可知,PC所需注射壓力為80MPa~130MPa,這里取=90MPa,該注射機的公稱注射壓力P公=130 MPa,注射壓力安全系數(shù)k1=1.25~1.4,這里取k1=1.3,則:
k1 P0=1.3×90=117 MPa
1.32m/s …………(44)
大于最低流速1.32m/s,達到湍流狀態(tài),滿足冷卻要求。
8.2.6 求冷卻管壁與水交界的膜轉(zhuǎn)熱系數(shù)
因為平均水溫為23.5℃,查參考文獻[2]表4-31可得,則有:
h=3.6f kJ/(m2h℃) ……(45)
8.2.7 計算冷卻水道的導(dǎo)熱總面積A
m2 …………(46)
為模具溫度與冷卻管道之間的平均溫度,模具溫度為100℃。
8.2.8 模具上應(yīng)開設(shè)的冷卻水道的孔數(shù)n
n= …………(47)
式中:
B——模仁長度,為270mm,但冷卻水孔的長度達不到270mm,實際只有240mm
8.2.9 冷卻水道的布置
圖14動模仁冷卻水路示意圖 圖15定模仁冷卻水路示意圖
9.導(dǎo)向與定位機構(gòu)的設(shè)計
注射模的導(dǎo)向機構(gòu)用于動模、定模之間的開合模導(dǎo)向和脫模機構(gòu)的運動導(dǎo)向。按作用分為模外定位和模內(nèi)定位。模外定位是通過定位圈與注射機相配合,是模具的澆口套能與注射機噴嘴精確定位;而模內(nèi)定位機構(gòu)則通過導(dǎo)柱導(dǎo)套進行合模定位。錐面定位則用于動、定模之間的精密定位。本模具所成型的塑件比較簡單,模具定位精度要求不是很高,因此可采用木架本身所自帶的定位機構(gòu)。
9.1 導(dǎo)柱導(dǎo)向機構(gòu)
模具導(dǎo)柱導(dǎo)向的導(dǎo)柱、導(dǎo)套結(jié)構(gòu),適用于精度要求高、生產(chǎn)批量大的模具。同時在設(shè)計導(dǎo)柱和導(dǎo)套時還應(yīng)注意以下幾點:
(1) 導(dǎo)柱應(yīng)合理的均布在模具分型面的四周,導(dǎo)柱中心至模具外緣應(yīng)有足夠的距離,以保證模具的強度。
(2) 導(dǎo)柱的長度應(yīng)比型芯端面高出6~8mm,以免型芯進入凹模時與凹模相碰而損壞。
(3) 導(dǎo)柱和導(dǎo)套應(yīng)有足夠的耐磨度和強度,導(dǎo)柱常采用20#低碳鋼經(jīng)滲碳0.5~0.8 mm,淬火48~55HRC,也可用T8A、T10A碳素工具鋼,經(jīng)淬火處理,硬度達到50~55HRC。導(dǎo)套一般采用T10A或者經(jīng)過滲碳處理20鋼,熱處理50~55HRC,公差采用6級。
(4) 為了使導(dǎo)柱能順利地入導(dǎo)套、導(dǎo)柱端部應(yīng)做成錐形或半球形,導(dǎo)套的前端也應(yīng)倒角。
(5) 導(dǎo)柱設(shè)在動模一側(cè)可以保護型芯不受損傷,而設(shè)在定模一側(cè)則便于順利脫模取出塑件,因此可根據(jù)需要而決定裝配方式。
(6) 導(dǎo)柱配合部分采用H7/f7,固定配合部分采用H7/k6;導(dǎo)套固定配合采用H7/k6,配合長度為配合直徑的1.5-2倍。其余部分可擴孔,減小摩擦或降低加工難度。
(7) 除了動模、定模之間設(shè)導(dǎo)柱、導(dǎo)套外,一般還在動模座板與推反之間設(shè)置導(dǎo)柱和導(dǎo)套,以保證推出機構(gòu)的下常運動。
(8) 導(dǎo)柱的直徑應(yīng)根據(jù)模具大小而決定,可參考標準模架數(shù)據(jù)選取。
10.模具零件的選材
10.1.1 模具材料選用原則
用于注塑模具的鋼材,大致應(yīng)滿足如下要求:
(1)機械加工性能優(yōu)良:易切削,適于深孔、深溝槽、窄縫等難加工部位的加工和三維復(fù)雜形面的雕刻加工;
(2)拋旋旋旋光性能優(yōu)良:沒有氣孔等內(nèi)部缺陷,顯微組織均勻,具有一定的使用硬度(40HRC以上);
(3)良好的表面腐蝕加工性:要求鋼材質(zhì)地細而均勻,適于花紋腐蝕加工;
(4)耐磨損,有韌性:可以在熱交變負荷的作用下長期工作,耐摩擦;
(5)熱處理性能好:具有良好的淬透性和很小的變形,易于滲氮等表面處理;
(6)焊接性好:具有焊接性,焊后硬度不發(fā)生變化,且不開裂、變形等;
(7)熱膨脹系數(shù)小,熱傳導(dǎo)效率高:防止變形,提高冷卻效果;
(8)性能價格比合理,市場上容易買到,供貨期短。
10.1.2 模具材料選用要求
在選擇注射模具鋼材時,要綜合考慮塑件的生產(chǎn)批量、尺寸精度、復(fù)雜程度、體積大小和外觀要求等因素。對于塑件生產(chǎn)批量大、尺寸精度要求高的場合,應(yīng)選用優(yōu)質(zhì)模具鋼。對于結(jié)構(gòu)復(fù)雜或體積比較大的塑件應(yīng)選用易切削鋼。外觀要求高的塑件可以選用鏡面鋼材。
10.2 注塑模具常用材料
10.2.1 塑料模具成型零件的選材
1)定模:定模成型的是塑件外表面,因而應(yīng)根據(jù)塑件外表面的質(zhì)量要求,來選擇不同拋旋旋旋光性能的模具材料,選用45鋼,它具有高的淬透性、耐磨性,熱處理變形小,強度和韌性都比較好,適合于制造形狀復(fù)雜的各種模具型腔。
2) 動模凸凹模:型芯在成型過程中容易磨損,同時,該動模凸凹模形狀比較復(fù)雜,故要求所選材料的加工性能要好。所以這里選用4