2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第四章 第7講 解三角形應(yīng)用舉例 文(含解析).doc
《2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第四章 第7講 解三角形應(yīng)用舉例 文(含解析).doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第四章 第7講 解三角形應(yīng)用舉例 文(含解析).doc(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第四章 第7講 解三角形應(yīng)用舉例 文(含解析) 一、選擇題 1.在某次測量中,在A處測得同一平面方向的B點(diǎn)的仰角是50,且到A的距離為2,C點(diǎn)的俯角為70,且到A的距離為3,則B、C間的距離為( ) A. B. C. D. 解析 因∠BAC=120,AB=2,AC=3. ∴BC2=AB2+AC2-2ABACcos ∠BAC =4+9-223cos 120=19. ∴BC=. 答案 D 2.如圖所示,為了測量某障礙物兩側(cè)A,B間的距離,給定下列四組數(shù)據(jù),不能確定A,B間距離的是( ). A.α,a,b B.α,β,a C.a(chǎn),b,γ D.α,β,b 解析 選項B中由正弦定理可求b,再由余弦定理可確定AB.選項C中可由余弦定理確定AB.選項D同B類似,故選A. 答案 A 3.一艘海輪從A處出發(fā),以每小時40海里的速度沿南偏東40的方向直線航行,30分鐘后到達(dá)B處,在C處有一座燈塔,海輪在A處觀察燈塔,其方向是南偏東70,在B處觀察燈塔,其方向是北偏東65,那么B,C兩點(diǎn)間的距離是 ( ). A.10海里 B.10海里 C.20海里 D.20海里 解析 如圖所示,易知,在△ABC中,AB=20海里,∠CAB=30,∠ACB=45,根據(jù)正弦定理得=,解得BC=10(海里). 答案 A 4. 如圖,兩座相距60 m的建筑物AB、CD的高度分別為20 m、50 m,BD為水平面,則從建筑物AB的頂端A看建筑物CD的張角為 ( ). A.30 B.45 C.60 D.75 解析 依題意可得AD=20(m),AC=30(m),又CD=50(m),所以在△ACD中,由余弦定理得cos∠CAD====,又0<∠CAD<180,所以∠CAD=45,所以從頂端A看建筑物CD的張角為45. 答案 B 5.如圖,設(shè)A、B兩點(diǎn)在河的兩岸,一測量者在A的同側(cè),在所在的河岸邊選定一點(diǎn)C,測出AC的距離為50 m,∠ACB=45,∠CAB=105后,就可以計算出A、B兩點(diǎn)的距離為( ) A.50 m B.50 m C.25 m D. m 解析 由題意,得B=30.由正弦定理,得=, ∴AB===50(m). 答案 A 6. 如圖,在湖面上高為10 m處測得天空中一朵云的仰角為30,測得湖中之影的俯角為45,則云距湖面的高度為(精確到0.1 m) ( ). A.2.7 m B.17.3 m C.37.3 m D.373 m 解析 在△ACE中, tan 30==.∴AE=(m). 在△AED中,tan 45==, ∴AE=(m),∴=, ∴CM==10(2+)≈37.3(m). 答案 C 二、填空題 7.如圖,為測得河對岸塔AB的高,先在河岸上選一點(diǎn)C,使C在塔底B的正東方向上,測得點(diǎn)A的仰角為60,再由點(diǎn)C沿北偏東15方向走10米到位置D,測得∠BDC=45,則塔AB的高是________米. 解析 在△BCD中,CD=10,∠BDC=45,∠BCD=15+90=105,∠DBC=30,=,BC==10.在Rt△ABC中,tan 60=,AB=BCtan 60=10(米). 答案 10 8.如圖,在日本地震災(zāi)區(qū)的搜救現(xiàn)場,一條搜救狗從A處沿正北方向行進(jìn)x m到達(dá)B處發(fā)現(xiàn)一個生命跡象,然后向右轉(zhuǎn)105,進(jìn)行10 m到達(dá)C處發(fā)現(xiàn)另一生命跡象,這時它向右轉(zhuǎn)135后繼續(xù)前行回到出發(fā)點(diǎn),那么x=________. 解析 由題知,∠CBA=75,∠BCA=45,∴∠BAC=180-75-45=60,∴=. ∴x= m. 答案 m 9. 在2012年7月12日倫敦奧運(yùn)會上舉行升旗儀式.如圖,在坡度為15的觀禮臺上,某一列座位所在直線AB與旗桿所在直線MN共面,在該列的第一個座位A和最后一個座位B測得旗桿頂端N的仰角分別為60和30,且座位A,B的距離為10米,則旗桿的高度為________米. 解析 由題可知∠BAN=105,∠BNA=30,由正弦定理得=,解得AN=20(米),在Rt△AMN中,MN=20 sin 60=30(米).故旗桿的高度為30米. 答案 30 10. 如圖,一船在海上自西向東航行,在A處測得某島M的方位角為北偏東α角,前進(jìn)m海里后在B處測得該島的方位角為北偏東β角,已知該島周圍n海里范圍內(nèi)(包括邊界)有暗礁,現(xiàn)該船繼續(xù)東行,當(dāng)α與β滿足條件________時,該船沒有觸礁危險. 解析 由題可知,在△ABM中,根據(jù)正弦定理得=,解得BM=,要使該船沒有觸礁危險需滿足BMsin(90-β)=>n,所以當(dāng)α與β的關(guān)系滿足mcos αcos β>nsin(α-β)時,該船沒有觸礁危險. 答案 mcos αcos β>nsin(α-β) 三、解答題 11.如圖所示,甲船由A島出發(fā)向北偏東45的方向作勻速直線航行,速度為15 n mile/h,在甲船從A島出發(fā)的同時,乙船從A島正南40 n mile處的B島出發(fā),朝北偏東θ的方向作勻速直線航行,速度為m n mile/h. (1)若兩船能相遇,求m. (2)當(dāng)m=10時,求兩船出發(fā)后多長時間距離最近,最近距離為多少n mile? 解 (1)設(shè)t小時后,兩船在M處相遇, 由tanθ=,得sinθ=,cosθ=, 所以sin∠AMB=sin(45-θ)=. 由正弦定理,=,∴AM=40, 同理得BM=40. ∴t==,m==15. (2)以A為原點(diǎn),BA所在直線為y軸建立如圖所示的平面直角坐標(biāo)系,設(shè)在t 時刻甲、乙兩船分別在P(x1,y1),Q(x2,y2)處,則|AP|=15t,|BQ|=10t. 由任意角三角函數(shù)的定義,可得 即點(diǎn)P的坐標(biāo)是(15t,15t), 即點(diǎn)Q的坐標(biāo)是(10t,20t-40), ∴|PQ|== =≥20, 當(dāng)且僅當(dāng)t=4時,|PQ|取得最小值20,即兩船出發(fā)4小時時,距離最近,最近距離為20 n mile. 12.如圖所示,位于A處的信息中心獲悉:在其正東方向相距40海里的B處有一艘漁船遇險,在原地等待營救.信息中心立即把消息告知在其南偏西30、相距20海里的C處的乙船,現(xiàn)乙船朝北偏東θ的方向沿直線CB前往B處救援,求cos θ的值. 解 如題圖所示,在△ABC中,AB=40海里,AC=20海里,∠BAC=120,由余弦定理知,BC2=AB2+AC2-2ABACcos 120=2 800,故BC=20(海里). 由正弦定理得=, 所以sin∠ACB=sin∠BAC=. 由∠BAC=120,知∠ACB為銳角,則cos∠ACB=. 易知θ=∠ACB+30,故cos θ=cos(∠ACB+30) =cos∠ACBcos 30-sin∠ACBsin 30 =. 13.如圖,某測量人員為了測量西江北岸不能到達(dá)的兩點(diǎn)A,B之間的距離,她在西江南岸找到一個點(diǎn)C,從C點(diǎn)可以觀察到點(diǎn)A,B;找到一個點(diǎn)D,從D點(diǎn)可以觀察到點(diǎn)A,C;找到一個點(diǎn)E,從E點(diǎn)可以觀察到點(diǎn)B,C;并測量得到數(shù)據(jù):∠ACD=90,∠ADC=60,∠ACB=15,∠BCE=105,∠CEB=45,DC=CE=1百米. (1)求△CDE的面積; (2)求A,B之間的距離. 解 (1)在△CDE中,∠DCE=360-90-15-105=150,S△CDE=DCCEsin 150=sin 30==(平方百米). (2)連接AB,依題意知,在Rt△ACD中, AC=DCtan∠ADC=1tan 60=(百米), 在△BCE中,∠CBE=180-∠BCE-∠CEB=180-105-45=30, 由正弦定理=,得 BC=sin∠CEB=sin 45=(百米). ∵cos 15=cos(60-45)=cos 60cos 45+sin 60sin 45 =+=, 在△ABC中,由余弦定理AB2=AC2+BC2-2ACBCcos∠ACB, 可得AB2=()2+()2-2=2-, ∴AB=百米. 14.某港口O要將一件重要物品用小艇送到一艘正在航行的輪船上.在小艇出發(fā)時,輪船位于港口O北偏西30且與該港口相距20海里的A處,并正以30海里/時的航行速度沿正東方向勻速行駛.假設(shè)該小艇沿直線方向以v海里/時的航行速度勻速行駛,經(jīng)過t小時與輪船相遇. (1)若希望相遇時小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少? (2)假設(shè)小艇的最高航行速度只能達(dá)到30海里/時,試設(shè)計航行方案(即確定航行方向和航行速度的大小),使得小艇能以最短時間與輪船相遇. 解 (1)設(shè)相遇時小艇航行的距離為S海里,則 S= == . 故當(dāng)t=時,Smin=10(海里), 此時v==30(海里/時). 即小艇以30海里/時的速度航行,相遇時小艇的航行距離最?。? (2)設(shè)小艇與輪船在B處相遇,則v2t2=400+900t2-22030tcos(90-30), 故v2=900-+,∵0<v≤30, ∴900-+≤900,即-≤0,解得t≥. 又t=時,v=30海里/時. 故v=30海里/時時,t取得最小值,且最小值等于. 此時,在△OAB中,有OA=OB=AB=20海里,故可設(shè)計航行方案如下: 航行方向為北偏東30,航行速度為30海里/時,小艇能以最短時間與輪船相遇.- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高考數(shù)學(xué)一輪復(fù)習(xí) 第四章 第7講 解三角形應(yīng)用舉例 文含解析 2019 2020 年高 數(shù)學(xué) 一輪 復(fù)習(xí) 第四 三角形 應(yīng)用 舉例 解析
鏈接地址:http://m.szxfmmzy.com/p-3243845.html