鐵罐外壁爬行機結(jié)構(gòu)設(shè)計含8張CAD圖
鐵罐外壁爬行機結(jié)構(gòu)設(shè)計含8張CAD圖,鐵罐,外壁,爬行,結(jié)構(gòu)設(shè)計,cad
附錄1:外文翻譯
新型爬壁機器人多向磁化永磁吸附裝置的設(shè)計
引言:
一種用于爬壁機器人的多向磁化永磁吸附裝置(PMAD)。在相同質(zhì)量下,新型PMAD能顯著提高吸附力。首先,基于本文提出的設(shè)計理論,對新型PMAD的磁路進行了優(yōu)化。新型PMAD包含多個排列緊密的不同磁化方向的永磁體。根據(jù)磁化方向的排列規(guī)律,磁體可分為若干個元件單元。在每個元件單元中,磁化方向沿半圓分布.其次,采用有限元分析軟件ansys workbench對結(jié)構(gòu)進行參數(shù)化建模和結(jié)構(gòu)特征分析。 對新型PMAD進行了特性分析、磁路模擬、吸附力計算和參數(shù)優(yōu)化。在此基礎(chǔ)上,提出了材料和體積相同的新型和Halbach型PMAD。 都是試制的。測定了不同氣隙厚度下的吸附力。實驗結(jié)果表明,在相同質(zhì)量下,與Halbach型PMAD相比,新型PMAD的吸附力平均提高了一倍,最大放大倍數(shù)為2.3倍。最后,將新型pMADs應(yīng)用于爬壁機器人的超聲波檢測中,提供了穩(wěn)定可靠的吸附性能。
1. 概況
爬墻機器人作為一種特殊的移動機器人,可以在墻、天花板等二維或復(fù)雜的三維環(huán)境中執(zhí)行各種任務(wù),除移動機器人用輪子或腿在地面上移動外,爬墻機器人還具有在移動時保持身體對抗重力的獨特特性。 因此,在爬壁機器人設(shè)計中,既要考慮移動性,又要考慮吸附性。根據(jù)吸附方式的不同,爬壁機器人可分為五類:真空吸附式、磁吸附式、夾持式、導(dǎo)軌式和仿生t型。 YPE3磁性吸附,包括永磁吸附和電磁吸附,比真空吸附更適用于鐵磁表面。
一般來說,磁路的設(shè)計應(yīng)該是為了最大限度地利用其中的材料。另一方面,如果在移動設(shè)備上安裝PMAD,則PMAD質(zhì)量的降低可以提高移動設(shè)備的移動性。因此,優(yōu)化PMAD的磁路以增加吸附量是非常必要的。
2. 多向磁化PMAD的結(jié)構(gòu)設(shè)計
將不同的部件單元緊密地布置可以使泄漏通量最小化并集中更多的磁感應(yīng)。 “期望區(qū)域”中的n行。同樣,沿y軸兩側(cè)也有泄漏通量。使任意兩個相鄰的元件單元排斥,可以使不同成分的回路產(chǎn)生排斥。 NT單位不相交。隨著組分N的加入量和磁體長度LM的增加,漏通量的比例減小,比吸附力fm增大。 ND逐漸接近上限值。
3. 新型PMAD在爬壁機器人中的應(yīng)用
為了驗證這種新型PMAD的可行性和實用性,在一個爬壁機器人上安裝了PMAD。爬墻機器人的結(jié)構(gòu)如圖1所示.
爬壁機器人的質(zhì)量為7.9kg,整體尺寸320 mm×300 mm×120毫米攀壁機器人是為自動爬墻而設(shè)計的。攀壁機器人是為了能夠自動爬墻而設(shè)計的。液壓發(fā)電站飛行時間的超聲波檢測繞射法(TOFD),可在水電站中任意位置移動大型壓力管和蝸殼。
圖1爬墻機器人的結(jié)構(gòu)
爬壁機器人由兩個步進電機驅(qū)動的兩個前輪和兩個由兩個通用輪組成的后驅(qū)動輪。機器人的速度和位移通過 調(diào)整步進電機的速度和角度。TOFD探針被探頭夾持,并被彈簧緊緊地壓在墻上。兩個ToFD探頭之間的距離可以通過沿導(dǎo)軌移動探針夾持器來調(diào)節(jié)。導(dǎo)軌由升降電機驅(qū)動升降。監(jiān)控攝像機MONITTO 前面的場景。兩個ToFD探頭之間的距離可以通過沿導(dǎo)軌移動探針夾持器來調(diào)節(jié)。導(dǎo)軌由升降電機驅(qū)動升降。監(jiān)控攝像機MONITTO 前面的場景。兩個新穎的PMAD安裝在底盤下。PMAD中永磁體的安裝方式與上述實驗相同。
圖1底盤下的PMAD
圖2吸附力調(diào)節(jié)機構(gòu)
圖3 吸附力FM與距離L的關(guān)系曲線
從結(jié)果中可以看到。1和2,所述PMAD通過連桿和螺桿對與底盤連接,所述四個部分構(gòu)成吸附力調(diào)節(jié)機構(gòu)。如圖15所示,r 調(diào)整螺桿對可調(diào)節(jié)PMADs的位置,然后調(diào)整吸附力。當(dāng)L=23 mm時,新的PMADs與鋼平面平行,氣隙厚度為5 mm; 吸附力的計算值約為1000 N,對操作者來說吸附力較大,而螺桿對則能有效地降低操作力。PMAD從280 N增加到991 N,新型PMAD的吸附力始終大于Halbach型PMAD,說明了新型PMAD的優(yōu)點。
為了比較新型PMAD和Halbach型PMAD在實際系統(tǒng)中的性能,在爬壁機器人中安裝了兩種體積相同的PMAD。在 E實驗中,L距離從5mm增加到23 mm,吸附力fm用平均重復(fù)測量值測量。吸附力FM與d的關(guān)系曲線 如圖3所示。實驗結(jié)果與第四節(jié)驗證實驗的結(jié)果基本一致。當(dāng)L從5mm增加到23 mm時,吸附力fm
除上述超聲波檢測爬壁機器人外,新型pmad還可為其他全位置爬壁機器人提供高性能的吸附裝置。
4. 結(jié)論
本課題成功地設(shè)計并演示了一種新型的PMAD,它能產(chǎn)生更大的單位質(zhì)量吸附力。主要結(jié)論如下:
(1) 根據(jù)設(shè)計理論,提出了一種多向磁化PMAD。設(shè)計理論認(rèn)為,一般情況下,pmad只應(yīng)由永磁體和比吸附f組成。 當(dāng)結(jié)構(gòu)參數(shù)等于最優(yōu)值時,Orce FM等于理論最大FM。這種新型PMAD是由一些排列緊密的具有多方向剩余磁感應(yīng)強度Br-矢量的永磁體組成的。磁鐵可分為幾個組分。
(2) 采用有限元法對新型PMAD進行了參數(shù)化建模、結(jié)構(gòu)特性分析、磁路模擬吸附力計算和結(jié)構(gòu)參數(shù)優(yōu)化。大 比吸附力FM隨磁體長度LM、組分單元N的數(shù)量和單元n中磁體數(shù)量的增加而增大,且趨于極限。T型 結(jié)構(gòu)參數(shù)優(yōu)化后,比吸附力FM達(dá)到理論最大FM的80%。
(3) 多向磁化PMAD能顯著提高比吸附力Fm。試驗生產(chǎn)了材料和體積相同的新型和Halbach型PMAD.關(guān)系c 測量了比吸附力fm與氣隙厚度lg之間的關(guān)系。實驗結(jié)果表明,所測值與計算值接近,符合要求。 與Halbach型PMAD相比,新型PMAD的C吸附力Fm平均翻一番。
(4) 多向磁化PMAD為爬壁機器人提供了一種新型的高性能吸附解決方案.新型pmad和Halbach型pmad在爬壁機器人f中的應(yīng)用 或超聲檢測,并相互比較。
(5) 實驗結(jié)果表明,該新型PMAD具有較好的性能。
(6) 新型PMADS的吸附力可從280N改為991 吸附穩(wěn)定可靠。
附錄2:外文原文
任務(wù)書
論文(設(shè)計)題目:鐵罐外壁爬行機結(jié)構(gòu)設(shè)計
工作日期:2017年12月18日 ~ 2018年05月18日
1.選題依據(jù):
在現(xiàn)實生活中,大型的鐵罐(如儲油罐,儲糧罐)在建造過程中需要對表面進行除銹處理,傳統(tǒng)的方式是人拿著噴槍進行表面處理,這種方式即污染環(huán)境又對人的身體傷害非常大。使用爬壁機器人不僅可以代替人進行危險作業(yè),而且可以把人們從惡劣的工作環(huán)境中解脫出來。人們也更多地寄希望于爬壁機器人來對儲罐進行視覺檢查、測厚及焊縫探傷、圓柱形大罐或球形罐的內(nèi)外壁面進行檢查或噴砂除銹、噴漆防腐、噴涂船艦體的內(nèi)、外壁等工作。
2.論文要求(設(shè)計參數(shù)):
設(shè)計說明書(不少于6000文字),相關(guān)圖紙(A0圖紙的不少于兩張,零件圖若干
),外文翻譯(不少于2000字)。
3.個人工作重點:
鐵罐外壁爬行機的整體結(jié)構(gòu)設(shè)計,行走機構(gòu)的設(shè)計,傳動系統(tǒng)的設(shè)計,材料選擇
,固定機構(gòu)設(shè)計,鋼絲繩的選擇及校核。
4.時間安排及應(yīng)完成的工作:
第1周:審題、查找并閱讀資料。第2周:查找并閱讀資料。
第3周:撰寫文獻綜述。
第4周:撰寫開題報告,開題答辯。答辯后根據(jù)老師的建議修改開題報告。寒假期間完成 外文的翻譯工作。
第5周:完成設(shè)計方案的設(shè)計并選擇。第6周:進行行走機構(gòu)設(shè)計。
第7周:進行注塑機的計算選擇。第8周:進行傳動系統(tǒng)設(shè)計。
第10周:進行結(jié)構(gòu)強度校核并根據(jù)結(jié)果進行修改。 第12周:進行裝配圖和零件圖的繪制。
第13周:撰寫說明書。
第14周:整理材料,打印材料,制作PPT,準(zhǔn)備答辯。
5.應(yīng)閱讀的基本文獻:
[1]黃金鳳,張陽,于江濤.罐體爬壁機器人控制系統(tǒng)硬件設(shè)計[J].機械工程與自動化
,2017(02):168-170.
[2]周依霖,張華,葉艷輝,王帥,范宇.永磁吸附履帶式爬壁機器人轉(zhuǎn)向動力特性分析[J].機械設(shè)
計,2017,34(02):56-61.
[3]姚秋平,柯文德,武春英.永磁式油罐爬壁機器人研制[J].廣東石油化工學(xué)院學(xué)報
,2016,26(06):40-43.
[4]程楠. 具有壁面過渡能力的磁吸附爬壁機器人系統(tǒng)研究[D].中國計量大學(xué),2016.
[5]張沖沖,閆德峰,劉超冉,劉繁,龔亮.履帶式磁動力爬壁機器人本體設(shè)計[J].機電信息
,2016(09):111-112.
[6]汪興潮. 船舶除銹爬壁機器人技術(shù)研究[D].華南理工大學(xué),2016.
[7]滕迪. 負(fù)壓爬壁機器人及其控制技術(shù)研究[D].北京理工大學(xué),2016.
[8]王偉方,唐曉強,邵珠峰.八索立式儲罐并聯(lián)機器人設(shè)計及性能優(yōu)化[J].機械工程學(xué)報
,2016,52(09):1-8.
[9]黃忠,劉泉,王茂.新型爬壁機器人設(shè)計與運動特性分析[J].煤礦機械,2015,36(12):20-23.
[10]Rodrigo Valério Espinoza,André Schneider de Oliveira,Lúcia Valéria Ramos de
Arruda,Flávio Neves Junior. Navigation’s Stabilization System of a Magnetic Adherence-Based
Climbing Robot[J]. Journal of Intelligent & Robotic Systems,2015,78(1).
[11]Chenfei Yan,Zhenguo Sun,Wenzeng Zhang,Qiang Chen. Design of novel multidirectional
magnetized permanent magnetic adsorption device for wall-climbing robots[J]. International
Journal of Precision Engineering and Manufacturing,2016,17(7).
指導(dǎo)教師簽字:
何榮國
教研室主任意見:
同意
簽字:王建維 2017年12月14日
教學(xué)指導(dǎo)分委會意見:
同意
簽字:XX 2017年12月15日 學(xué)院公章
進度檢查表
第
-1
周
工作進展情況
審題、查找資料、寫出文獻綜述 完成開題報告。做好論文編寫的準(zhǔn)備
2018年01月10日
指導(dǎo)教師意見
畢業(yè)設(shè)計任務(wù)下達(dá)后,該生按時完成了相關(guān)文獻集料的查找,完成了開題報告的撰寫,順利通過了開題答辯,繼續(xù)按計劃進行后續(xù)任務(wù)。
指導(dǎo)教師(簽字):何榮國 2018年01月11日
第 2
周
工作進展情況
查閱知網(wǎng),教材等相關(guān)資料,并下載相關(guān)論文,對鐵灌外壁爬行機的設(shè)計方案有了初步確定。接下來進行鐵罐外壁爬行機的結(jié)構(gòu)設(shè)計。
2018年03月18日
指導(dǎo)教師意見
開題報告完成后,按計劃繼續(xù)進行了設(shè)計工作,寒假期間完成了相關(guān)外文翻譯,結(jié)構(gòu)方案設(shè)計比較合理。繼續(xù)進行相關(guān)工作。
指導(dǎo)教師(簽字):何榮國 2018年03月27日
第 5
周
工作進展情況
查閱設(shè)計手冊及相關(guān)書籍材料,正在進行鐵罐外壁爬行機的結(jié)構(gòu)設(shè)計與計算。
2018年03月18日
指導(dǎo)教師意見
基本按計劃完成了部分的工作,進度稍慢了點,結(jié)構(gòu)設(shè)計及參數(shù)計算合理正確。繼續(xù)進行。
指導(dǎo)教師(簽字):何榮國 2018年04月11日
第 8
周
工作進展情況
完成個機構(gòu)的計算,正在進行鐵罐外壁爬行機的結(jié)構(gòu)圖紙繪制
2018年05月02日
指導(dǎo)教師意見
按計劃完成了所有工作,各項設(shè)計和計算基本正確合理,繼續(xù)進行圖紙繪制。
指導(dǎo)教師(簽字):何榮國 2018年05月07日
第 11
周
工作進展情況
完成圖紙繪制,現(xiàn)進行說明書撰寫,準(zhǔn)備材料,準(zhǔn)備答辯
2018年05月15日
指導(dǎo)教師意見
按時完成了相關(guān)設(shè)計工作,整理材料,打印相關(guān)資料,準(zhǔn)備答辯。
指導(dǎo)教師(簽字):何榮國 2018年05月17日
第周
工作進展情況
年 月 日
指導(dǎo)教師意見
指導(dǎo)教師(簽字): 年 月 日
過程管理評價表
評價內(nèi)容
具體要求
總分
評分
工作態(tài)度
態(tài)度認(rèn)真,刻苦努力,作風(fēng)嚴(yán)謹(jǐn)
3
2
遵守紀(jì)律
自覺遵守學(xué)校有關(guān)規(guī)定,主動聯(lián)系指導(dǎo)教師,接受指導(dǎo)
3
2
開題報告
內(nèi)容詳實,符合規(guī)范要求
5
3
任務(wù)完成
按時、圓滿完成各項工作任務(wù)
4
2
過程管理評分合計
9
過程管 理評語
該生在完成畢業(yè)設(shè)計的過程中表現(xiàn)出態(tài)度較為認(rèn)真,工作較刻苦努力,作風(fēng)較嚴(yán)謹(jǐn)。
學(xué)生能夠自覺遵守學(xué)校的有關(guān)規(guī)定,不遲到不早退,時間觀念意識較弱一些,聯(lián)系指導(dǎo)教師不太積極,在設(shè)計過程中,遇到問題時基本能與老師一起探討,虛心接受指導(dǎo)。
開題報告緊扣專業(yè)方向、緊扣現(xiàn)實,做到理論與實踐結(jié)合、與實習(xí)體會結(jié)合,有現(xiàn)實意義,內(nèi)容詳實,符合規(guī)范要求,該同學(xué)的 工作進度安排合理,對所設(shè)計的內(nèi)容理解不太透徹,工作進程緩慢
,后期努力,基本能正常完成各項工作任務(wù)。
指導(dǎo)教師簽字:何榮國 日期:2018-05-19
指導(dǎo)教師評價表
評價內(nèi)容
具體要求
總分
評分
選題質(zhì)量
符合培養(yǎng)目標(biāo)要求,有一定的研究價值和實踐意義,有一定的開拓性、創(chuàng)新性,深度、難度適宜,工作量飽滿
5
3
能力水平
有較強的綜合運用知識能力、科研方法運用能力、中文表達(dá)與外語能力、文獻資料檢索能力、計算機應(yīng)用能力
5
3
完成質(zhì)量
文題相符,概念準(zhǔn)確,分析、論證、計算、設(shè)計、實驗等正確合理,結(jié)論明確;論文結(jié)構(gòu)、撰寫格式、圖表等符合基本規(guī)
10
7
指導(dǎo)教師評分合計
13
指導(dǎo)教 師評語
鐵罐外壁爬行機的選題源于實際工程應(yīng)用,與實踐工作結(jié)合比較緊密,符合學(xué)生專業(yè)發(fā)展方向,對于提高學(xué)生的基本知識、技能和研究能力有益。符合學(xué)校的相關(guān)目標(biāo)要求,實踐意義較強,有一定的開拓性,難度適宜,工作量較飽滿。 從學(xué)生的工作過程中和論文圖紙完成的質(zhì)量來看,該生的綜合運用知識能力一般,中文表達(dá)較為準(zhǔn)確,外文能力有待提高,文獻資料檢索能力較好一些,計算機操作比較熟練。 論文的文題相符,概念基本準(zhǔn)確,其中的分析、論證、設(shè)計、計算等基本正確合理,結(jié)論明確。論文的撰寫格式、圖表等基本符合規(guī)范要求。
指導(dǎo)教師簽字:何榮國 日期:2018-05-19
評閱人評價表
評價內(nèi)容
具體要求
總分
評分
選題質(zhì)量
符合培養(yǎng)目標(biāo)要求,有一定的研究價值和實踐意義,有一定的
開拓性、創(chuàng)新性,深度、難度適宜,工作量飽滿
5
4
能力水平
有較強的綜合運用知識能力、科研方法運用能力、中文表
達(dá)與外語能力、文獻資料檢索能力、計算機應(yīng)用能力
5
3
完成質(zhì)量
文題相符,概念準(zhǔn)確,分析、論證、計算、設(shè)計、實驗等正確
合理,結(jié)論明確;論文結(jié)構(gòu)、撰寫格式、圖表等符合基本規(guī)
10
6
評閱人評分合計
13
評閱人 評語
鐵罐外壁爬行機結(jié)構(gòu)設(shè)計是對學(xué)生所學(xué)機械專業(yè)技術(shù)知識和計算繪圖能力的檢驗,符合應(yīng)用型技術(shù)人才培養(yǎng)的目標(biāo),且具有一定的實踐意義。作者在查閱資料的基礎(chǔ)上,制定了鐵罐外壁爬行機器人的結(jié)構(gòu)方案,進行了鐵罐外壁爬行機的吸附方式的設(shè)計計算以及電磁鐵的選擇及卷筒的設(shè)計,完成內(nèi)容表明該生掌握了一定的專業(yè)技術(shù)知識和計算機應(yīng)用能力。論文文題基本相符,結(jié)構(gòu)層次尚可
,但是內(nèi)容單薄,概念不夠準(zhǔn)確,設(shè)計與計算簡略,需進一步完善
。同意答辯。
評閱人簽字:XX 評閱人工作單位:機械工程學(xué)院日期:2018-05-23
答辯紀(jì)錄
學(xué)生姓名:XX 專業(yè)班級:XX
畢業(yè)論文(設(shè)計)題目: 鐵罐外壁爬行機結(jié)構(gòu)設(shè)計
答辯時間:2018年05月 日 時 分 ~ 時 分
答辯委員會(答
主任委員(組長): XX
辯小組)成員
委 員(組 員): XX
答辯委員會(答辯小組)提出的問題和答辯情況
問題1:設(shè)計目標(biāo)參數(shù)是什么? 回 答: 有速度和分負(fù)載。
問題2:電磁鐵用了幾個,安在什么地方? 回 答: 用了1個,正下方。
問題3:如何保證間隙? 回 答: 用輪子實現(xiàn)。
問題4:吸引力如何計算的? 回 答: 用沖擊力計算的。
問題5:吸鐵受幾個力的作用? 回 答: 重力和磁力 。
記錄人: 2018年05月24日
答辯委員會評價表
評價內(nèi)容
具體要求
總分
評分
自述總結(jié)
思路清晰,語言表達(dá)準(zhǔn)確,概念清楚,論點正確,分析歸納合理
10
7
答辯過程
能夠正確回答所提出的問題,基本概念清楚,有理論根據(jù)
10
6
選題質(zhì)量
符合培養(yǎng)目標(biāo)要求,有一定的研究價值和實踐意義,有一定的
開拓性、創(chuàng)新性,深度、難度適宜,工作量飽滿
5
4
完成質(zhì)量
文題相符,概念準(zhǔn)確,分析、論證、計算、設(shè)計、實驗等正確
合理,結(jié)論明確;論文結(jié)構(gòu)、撰寫格式、圖表等符合基本規(guī)
10
6
能力水平
有較強的綜合運用知識能力、科研方法運用能力、中文表
達(dá)與外語應(yīng)用能力、文獻資料檢索能力、計算機應(yīng)用能力
10
7
答辯委員會評分合計
30
答辯委員會評語
XX同學(xué)在畢業(yè)設(shè)計工作期間,基本遵守各項紀(jì)律,表現(xiàn)一般。
能按時完成畢業(yè)設(shè)計有關(guān)任務(wù)。
論文立論正確,立論分析無原則性的錯誤,解決問題方案有一定的參考價值,結(jié)論基本正確。
論文使用的概念基本正確,語句通順,條理比較清楚。
論文中使用的圖表,設(shè)計中的圖紙在書寫和制作時,能夠執(zhí)行國家相關(guān)標(biāo)準(zhǔn),基本規(guī)范。
能夠查閱文獻資料,原始數(shù)據(jù)搜集得當(dāng),實驗或計算結(jié)論基本準(zhǔn)確。
答辯過程中,能夠闡述出論文的主要內(nèi)容,主要問題經(jīng)答辯教師啟發(fā)后能夠回答出來。
答辯成績: 30 答辯委員會主任: XX
成績評定
項目分類
成績評定
過程管理評分
9
指導(dǎo)教師評分
13
評閱人評分
13
答辯委員會評分
30
總分
65
成績等級
D
成績等級按“A、B、C、D、F”記載
成績審核人簽章: XX
學(xué)院審核人簽章: XX
一、選題依據(jù)
1.論文(設(shè)計)題目
鐵罐外壁爬行機結(jié)構(gòu)設(shè)計
2.研究領(lǐng)域
機械設(shè)計制造及其自動化—機械設(shè)計
3.論文(設(shè)計)工作的理論意義和應(yīng)用價值
壁面爬行機器人作為極限作業(yè)的一種特殊機器人,越來越受到人們的重視,原因是使用爬壁機器人不僅可以代替人進行危險作業(yè),而且可以把人們從惡劣的工作環(huán)境中解脫出來。在核工業(yè)、石化行業(yè)以及造船業(yè)等領(lǐng)域的某些特殊作業(yè)環(huán)境中,存在著一系列操作復(fù)雜、環(huán)境惡劣等嚴(yán)重限制人類作業(yè)的因素,因此,人們也更多地寄希望于爬壁機器人來對儲罐進行視覺檢查、測厚及焊縫探傷、圓柱形大罐或球形罐的內(nèi)外壁面進行檢查或噴砂除銹、噴漆防腐、噴涂船艦體的內(nèi)、外壁等工作,從而達(dá)到完成作業(yè)同時也保護人類自身安全的雙重目的。
各石油化工企業(yè)都擁有大量的儲油、儲水罐,大部分直徑都在 20-50 m,甚至達(dá)100 m 的超大儲罐,高 10-20 m,為了延長使用壽命,需要對這些儲罐進行定期除銹噴涂防腐工作,工作任務(wù)繁重。目前這些工作仍然以傳統(tǒng)的搭設(shè)腳手架作業(yè)方式為主, 但人工噴涂的質(zhì)量不易保證,涂料浪費嚴(yán)重,另外儲罐內(nèi)可能殘存有害氣體,影響噴涂工人的身體健康。
為保護工人的身體健康,提高噴涂質(zhì)量,節(jié)約能源,提高勞動生產(chǎn)率等,本論文的研究圍繞在石油、石化的大型儲罐上實施機器人作業(yè)這一目標(biāo),開展壁面爬行機器人平臺的研究,探索更加合適的機器人運動形式,提高系統(tǒng)的穩(wěn)定性、可靠性和運行效率,以便逐步實現(xiàn)替代人工作業(yè)的目的。
4.目前研究的概況和發(fā)展趨勢
壁面爬行機器人(簡稱爬壁機器人)是一種能夠在壁面爬行作業(yè)的特殊機器人, 它集機構(gòu)學(xué)、傳感技術(shù)、控制和信息技術(shù)等為一體,可以代替人進行危險作業(yè)。近幾十年來,隨著科技的不斷進步爬壁機器人的研究已經(jīng)取得了巨大進步,在各個行業(yè)中也得到了越來越廣泛的使用。
2002 年,日本的三菱重工集團研發(fā)出一種輪式永磁吸附爬壁作業(yè)機器人。該機器人具有多種用途,可以攜帶噴槍、刷子和攝像頭等完成噴涂、清洗和檢測工作。噴涂機構(gòu)安裝在機器人的尾部,由夾持器和噴槍組成,機器人的運動路徑就是噴涂軌跡, 爬壁機器人直線行走形成一字形噴涂軌跡。
1998 年,哈工大研制成功了一種爬壁噴涂機器人,采用永磁吸附、履帶驅(qū)動方式,它是專門為石油化工行業(yè)的大型儲罐設(shè)計的,移動速度 2-8 m/min,負(fù)重大于 30kg,
13
攜帶噴涂工具可完成罐壁噴砂除銹、噴涂防腐、測厚等工作。
2006 年,山東科技大學(xué)機器人研究中心,針對大型儲罐的除銹噴涂設(shè)計出一種新型油罐噴砂/噴涂設(shè)備。該設(shè)備安裝有與油罐輪廓線相似的對稱布置的導(dǎo)軌,導(dǎo)軌上對稱布置兩個機器人,其機械手具有俯仰、伸縮和噴槍劃圓功能,作業(yè)時,導(dǎo)軌帶動兩個噴涂機器人沿油罐周向運動,半圈后,由鋼絲繩牽引軸向上升 150-200mm,再反向周向噴涂,如此反復(fù)動作完成油罐的壁面涂裝作業(yè),形成螺旋線周向軌跡,涂層質(zhì)量較好。
2011 年,山東科技大學(xué)機器人研究中心針對船舶造修業(yè)的除銹噴涂作業(yè)研究出另外一種噴涂機器人。它有移動底座、水平移動導(dǎo)軌、豎直移動導(dǎo)軌、柱坐標(biāo)移動裝置及噴槍機構(gòu)組成,可以實現(xiàn)船艙內(nèi)各個平面和曲面的噴涂作業(yè)。移動機器人到達(dá)指定位置,噴槍一方面繞自身旋轉(zhuǎn)畫圓,另一方面沿水平導(dǎo)軌移動,形成螺旋線直線噴槍軌跡,涂層質(zhì)量較均勻。
二、論文(設(shè)計)研究的內(nèi)容
1.重點解決的問題
(1)鐵罐外壁爬行機的結(jié)構(gòu)設(shè)計,根據(jù)機爬行機的工作需求確定高效的工作方式, 工作原理并選擇和設(shè)計合理的機械結(jié)構(gòu),利用理論知識進行設(shè)計及計算爬行機的工作特性,控制參數(shù),最終得出設(shè)計結(jié)果。
(2)分析鐵罐外壁爬行機運動方式
2. 擬開展研究的幾個主要方面(論文寫作大綱或設(shè)計思路)
(1)查閱資料,了解做研究課題的研究意義、研究概況和發(fā)展趨勢; (2)利用現(xiàn)有的研究成果及理論知識進行創(chuàng)新,做出總體方案設(shè)計;
(3)設(shè)計計算爬行機的運動方式,確定各個機械元件的型號尺寸;
(4)進行爬行機的結(jié)構(gòu)設(shè)計。
3.本論文(設(shè)計)預(yù)期取得的成果
通過學(xué)習(xí)及查閱有關(guān)資料掌握鐵罐外壁爬行機的工作原理以及其機構(gòu)的設(shè)計, 了解現(xiàn)在鐵罐爬壁機的發(fā)展趨勢、相關(guān)技術(shù)的對比及市場前景。通過自主設(shè)計并選擇最合理的方案設(shè)計能夠得到以下結(jié)果:
(1)鐵罐外壁爬行機工作原理及總體方案設(shè)計;
(2)主要部件的結(jié)構(gòu)設(shè)計(裝配圖、零件圖)
(3)設(shè)計說明書;
(4)鐵罐外壁爬行機相關(guān)的一篇外文翻譯(2000 字以上)。
三、論文(設(shè)計)工作安排
1.擬采用的主要研究方法(技術(shù)路線或設(shè)計參數(shù));
設(shè)計參數(shù):爬壁機外形尺寸大約為 600mm×800mm×600mm,自重 10~30kg,負(fù)載重量 10~20kg,爬行速度為 80~200mm/s,清洗速度為 2~3m2/min。
技術(shù)路線:
a.查閱資料,了解做研究課題的研究意義、研究概況和發(fā)展趨勢; b.制定出鐵罐外壁爬行機的總體方案設(shè)計; c.對鐵罐外壁爬行機仿真方案的具體部分進行理論計算;
d.進行鐵罐外壁爬行機的結(jié)構(gòu)設(shè)計;
e.利用計算機輔助設(shè)計對方案進行校核。
2.論文(設(shè)計)進度計劃
第一周至第三周:審題、查找資料、寫出文獻綜述。第四周:開題報告。
第五周至第六周:完成系統(tǒng)的方案設(shè)計。
第七周至第八周:完成系統(tǒng)結(jié)構(gòu)草圖,進行運動參數(shù)設(shè)計計算。 第九周至第十周:對鐵罐外壁爬行機的設(shè)計方案進行改進、完善。第十一周至第十二周:完成所有的裝配圖和零件圖。
第十三周:總體完善,達(dá)到設(shè)計要求,完善畢業(yè)設(shè)計說明書。第十四周:制作 PPT,打印相關(guān)文件,準(zhǔn)備答辯。
四、需要閱讀的參考文獻
[1]黃金鳳,張陽,于江濤.罐體爬壁機器人控制系統(tǒng)硬件設(shè)計[J].機械工程與自動化,2017(02):168-170.
[2]周依霖,張華,葉艷輝,王帥,范宇.永磁吸附履帶式爬壁機器人轉(zhuǎn)向動力特性分析
[J].機械設(shè)計,2017,34(02):56-61.
[3]姚秋平,柯文德,武春英.永磁式油罐爬壁機器人研制[J].廣東石油化工學(xué)院學(xué)報,2016,26(06):40-43.
[4]程楠. 具有壁面過渡能力的磁吸附爬壁機器人系統(tǒng)研究[D].中國計量大學(xué),2016.
[5]張沖沖,閆德峰,劉超冉,劉繁,龔亮.履帶式磁動力爬壁機器人本體設(shè)計[J].機電信息,2016(09):111-112.
[6]汪興潮. 船舶除銹爬壁機器人技術(shù)研究[D].華南理工大學(xué),2016.
[7]滕迪. 負(fù)壓爬壁機器人及其控制技術(shù)研究[D].北京理工大學(xué),2016.
[8]王偉方,唐曉強,邵珠峰.八索立式儲罐并聯(lián)機器人設(shè)計及性能優(yōu)化[J].機械工程學(xué)報,2016,52(09):1-8.
[9]黃忠,劉泉,王茂.新型爬壁機器人設(shè)計與運動特性分析[J].煤礦機械,2015,36(12):20-23.
[10]閆久江,趙西振,左干,李紅軍.爬壁機器人研究現(xiàn)狀與技術(shù)應(yīng)用分析[J].機械研究與應(yīng)用,2015,28(03):52-54+58.
[11]孫玲. 除銹爬壁機器人壁面行走控制技術(shù)研究[D].大連海事大學(xué),2015. [12]周新建,劉祥勇.大型油罐爬壁機器人吸附結(jié)構(gòu)的優(yōu)化設(shè)計[J].機械設(shè)計與制造,2014(09):181-184.
[13]任健,杜堅,張超,陳酉江.一種儲油罐內(nèi)壁清潔機器人的設(shè)計[J].信息通信,2014(06):49-50.
[14]何富君,李浩,常忠偉,張瑞杰.儲罐爬壁噴涂機構(gòu)的運動學(xué)分析[J].機械設(shè)計與制造,2014(06):210-212+216.
[15]何富君,李浩,張瑞杰,張靈聰.儲罐爬壁機器人的噴漆機構(gòu)設(shè)計及 ADAMS 仿真
[J].制造業(yè)自動化,2013,35(21):107-110.
[16]李浩. 儲罐爬壁機器人的噴涂機構(gòu)研究[D].東北石油大學(xué),2013. [17]Rodrigo Valério Espinoza,André Schneider de Oliveira,Lúcia Valéria
Ramos de Arruda,Flávio Neves Junior. Navigation’s Stabilization System of a Magnetic Adherence-Based Climbing Robot[J]. Journal of Intelligent & Robotic Systems,2015,78(1).
[18]Chenfei Yan,Zhenguo Sun,Wenzeng Zhang,Qiang Chen. Design of novel multidirectional magnetized permanent magnetic adsorption device for wall-climbing robots[J]. International Journal of Precision Engineering and
Manufacturing,2016,17(7).
附:文獻綜述或報告一、引言
鐵罐外壁爬行機有著很大的發(fā)展前景,國內(nèi)外也有不少組織進行研究。爬壁機器人作為移動機器人領(lǐng)域一個重要組成部分,由于豎直壁面爬行時,機器人受重力作用需可靠的吸附力保證機器人的安全吸附,這使得機器人的壁面運動能力有所降低,尤其是機器人的壁面過渡問題成為爬壁機器人完成大型豎直壁面檢測任務(wù) 的一大難題?,F(xiàn)如今有很多爬壁機的研究成果:將移動機構(gòu)( 車輪、履帶、腿等) 與將它吸附在壁面上的吸附機構(gòu)( 磁鐵、吸盤等,根據(jù)使用環(huán)境選擇) 組合起來實現(xiàn)的,它將地面移動技術(shù)拓展到垂直空間上,充實了機器人的應(yīng)用范圍。
二、課題國內(nèi)外現(xiàn)狀
文獻[6][11]做的是船舶除銹爬壁機器人,除銹爬壁機器人集高壓水、真空回收、氣源、電氣信號等為一體,通過防護吊墜保障機器人爬壁作業(yè)。
機器人采用履帶式行走機構(gòu),利用間隙式永磁吸附和真空吸附相結(jié)合的方式吸附于船舶壁面。除誘爬壁機器人的基本結(jié)構(gòu)包括移動裝置、吸附裝置W及除鎊作業(yè)機構(gòu)裝置,其主體結(jié)構(gòu)框架如圖 1.1
圖 1.1 除繡爬壁機器人主體框架示意圖
履帶式爬壁機器人在轉(zhuǎn)向時由于履帶存在橫向摩擦力導(dǎo)致驅(qū)動力矩大,轉(zhuǎn)向困難,因此分析爬壁機器人轉(zhuǎn)向動力學(xué)并計算機器人轉(zhuǎn)向時的驅(qū)動力矩至關(guān)重要。爬壁機器人轉(zhuǎn)向是通過兩側(cè)驅(qū)動輪差速運動實現(xiàn)的,爬壁機器人的轉(zhuǎn)向半徑和轉(zhuǎn)向速度也是由兩側(cè)驅(qū)動輪的運動速度決定的。
文獻[15][16]對儲罐爬壁機器人提出了基于爬壁機器人平臺的 Z 字型噴涂軌跡的實現(xiàn)方法,在噴涂機構(gòu)上采用了可轉(zhuǎn)換方位的噴槍導(dǎo)軌,通過噴槍導(dǎo)軌的方位變換以及與機器人速度的配合實現(xiàn)了相互平行的噴涂軌跡,使涂面重疊區(qū)更加合理,能夠?qū)崿F(xiàn)良好的噴涂效果。以及提出了自上而下的儲罐表面涂裝軌跡規(guī)劃;根據(jù)待施工面的幾何形狀將其劃分為矩形平面和邊角平面,并進行了噴槍軌跡規(guī)劃,進一步提高了機器人的施工效率。
為了實現(xiàn)工作軌跡及噴涂工藝要求,噴涂機器人應(yīng)具有 6 個自由度,以實現(xiàn)噴槍高度調(diào)節(jié)、噴涂行程轉(zhuǎn)換、噴涂速度調(diào)節(jié)、噴射角度調(diào)節(jié)、噴槍間距調(diào)節(jié)功能。分別由移動座垂直升降機構(gòu)、導(dǎo)向架旋轉(zhuǎn)機構(gòu)、水平移動機構(gòu)、噴槍座旋轉(zhuǎn)機構(gòu)及噴槍間距調(diào)整機構(gòu)實現(xiàn),另外爬壁機器人提供連續(xù)直線運動。爬壁噴涂機構(gòu)的結(jié)構(gòu)如圖1.2 所示。
圖 1.2 爬壁噴涂機構(gòu)的機構(gòu)圖
文獻[7]參考了國內(nèi)外不同的爬壁機器人的技術(shù)基礎(chǔ)上,主要對爬壁機器人的移動機構(gòu),密閉的吸附機構(gòu),以及對不同的葉輪進行仿真,來實現(xiàn)了機器人能夠穩(wěn)定的吸附在壁面上并且可以在其上進行移動的操作。其中主要包括機器人的總體機構(gòu),運動系統(tǒng),吸附系統(tǒng),驅(qū)動電路,上位機軟件等機器人的部件從上到下依次分別是:高速無刷電機,葉輪的支撐機構(gòu),葉輪,機器人的殼體,最下面是有刷電機和驅(qū)動輪。機器人采用的是單吸盤負(fù)壓吸附方式,通過四輪驅(qū)動機構(gòu)讓機器人在壁面平穩(wěn)運動, 毛刷式的密封機構(gòu)保證機器人的氣體不會泄露,使其吸附可靠。高速無刷電機在機器人的殼體外面,從而可以減少對電機的負(fù)載,對機器人的傾覆力矩有降低的作用,同時可以減少對吸出的氣體的阻擋,提高機器人的性能和效率。
文獻[1]罐體爬壁機器人控制系統(tǒng)硬件設(shè)計,所實現(xiàn)的功能如下:①實現(xiàn)爬行機構(gòu)前后滑塊組件抬腿、落腿;②按需要調(diào)節(jié)爬壁機器人爬行動作速度;③電磁鐵協(xié)調(diào)抬腿、落腿動作按周期性工作,為機身提供吸附力;④前行或后退過程能主動避障;
⑤打磨電機按路徑打磨壁銹。
罐體爬壁機器人控制系統(tǒng)采用施耐德一體化驅(qū)動方式,機器人本體控制部分主要由4臺直行電機、一臺轉(zhuǎn)向電機、一臺打磨電機、遠(yuǎn)程I/O模塊以及吸附電磁鐵組成。
圖 1.3 爬壁機器人控制系統(tǒng)結(jié)構(gòu)框圖
文獻[13]內(nèi)壁清潔機器人的機器人單元是基于飛思卡爾 MC9S12XS12 單片機機制的四輪磁力吸附式爬壁機器人,能夠執(zhí)行前進、后退、轉(zhuǎn)彎等動作,并具有對儲油罐壁的清潔和監(jiān)測的功能;遙控器單元主要功能是控制機器人單元動作,并對視頻采集器以及清洗機構(gòu)進行控制;上位機單元采用 Visul Basic6.0 編寫完成,其主要功能是接收來自視頻采集器的數(shù)據(jù)并將儲油罐內(nèi)的圖像顯示在電腦屏幕上,而且能計算機器人的位置坐標(biāo),對機器人定位并顯示其行進路線,便于快速確定檢測缺陷的位置
三、發(fā)展趨勢
爬壁機器人由于其作業(yè)環(huán)境的特殊性,己經(jīng)成為機器人技術(shù)發(fā)展的熱點之一。而爬壁機器人以其綠色環(huán)保、解放人力等優(yōu)點,在船舶壁面除銹、大型儲罐清理等領(lǐng)域具有重要的應(yīng)用價值。一般來說,爬壁機器人工作量很大,自動化改進需求迫切,但在壁面定位、路徑規(guī)劃、自動控制等方面的研究還不滿足應(yīng)用要求。除繡爬壁機器人工作過程中的變負(fù)載特性,給其運動控制帶來了困難。
目前爬壁機器人不同的研究方向主要歸結(jié)于吸附方式與運動形式上兩點。根據(jù)上述研究現(xiàn)狀,大多數(shù)研究者是根據(jù)使用用途選用吸附方式,如在玻璃或光滑壁面上工作時,主要采用真空吸附或者仿生吸附,在鋼制壁面上主要采用磁力吸附,主要包括永磁吸附和電磁吸附; 而在復(fù)雜壁面上或者是彎曲壁面上大多采用混合吸附方式,目前爬壁機器人的吸附方式主要有真空吸附 磁力吸附、仿生吸附、靜電吸附、推力吸附、機械吸附。
四、存在問題
爬壁機器人經(jīng)過幾十年的研究發(fā)展,取得了一定的成績,但是從產(chǎn)業(yè)化或者是從研究應(yīng)用來講,還有很大的差距,總體來看爬壁機器人技術(shù)還存在一些難以克服的問題:
(1) 工業(yè)應(yīng)用與樣機驗證的差距。
(2) 運動靈活性與吸附穩(wěn)定性之間的矛盾。(3) 仿生研究與功能性的背道而馳。
指導(dǎo)教師評閱意見(對選題情況、研究內(nèi)容、工作安排、文獻綜述等方面進行評閱)
審核
意 教研室主任意見
見
簽字: 年 月 日
簽字: 年 月 日
學(xué)院教學(xué)指導(dǎo)委員會意見
簽字: 年 月 日公章:
鐵罐外壁爬行機結(jié)構(gòu)設(shè)計
摘 要
爬壁機器人是一種能夠在垂直壁面上進行清洗、除銹、噴漆作業(yè)的移動式服務(wù)機器人。它屬于極限作業(yè)機器人的一種,使用鐵罐外壁爬行機進行大型工業(yè)儲罐的自動噴砂除銹,其實現(xiàn)的關(guān)鍵是機器人的移動方式、吸附方式。本文研究的目的是設(shè)計一種面向鐵罐壁面的可靠、高效、省時、安全的噴砂作業(yè)系統(tǒng)。
這個設(shè)計先是講述了國內(nèi)及國外爬壁機器人的研究狀況,表明了本課題研究的目的、意義。然后進一步選擇了鐵罐外壁爬行機器人的結(jié)構(gòu)方案選擇。然后進行了鐵罐外壁爬行機的吸附方式的設(shè)計計算以及電磁鐵的選擇;爬壁機爬行機構(gòu)的卷揚機鋼絲繩選擇以及卷筒設(shè)計,減速機構(gòu)采用錐齒輪和蝸輪蝸桿傳動組合并對減速箱進行詳細(xì)設(shè)計,噴槍傳動機構(gòu)的設(shè)計計算。最后闡述了本課題設(shè)計的結(jié)論,表明了本課題設(shè)計概念以及其未來的發(fā)展。
關(guān)鍵詞:爬壁機器人;吸附;移動
ABSTRACT
Wall climbing robot is a mobile service robot which can clean, remove rust and spray paint on vertical wall.It belongs to a kind of extreme operation robot, which uses wall climbing robot to automatically blast sand to remove rust from large industrial storage tank. The key to its realization is the movement mode, adsorption mode of robot.The purpose of this paper is to design a reliable, efficient, time-saving and safe sand blasting system for the wall of iron tank.
Firstly, the research status of wall climbing robot at home and abroad is introduced, and the purpose and significance of this research are expounded.Then the design and calculation of the adsorption method of the outer wall crawler and the selection of the electromagnet are carried out.Selection of Winch Wire Rope and Reel Design for crawling Mechanism of Wall climbing Machine,The gear reducer is combined with bevel gear and worm gearing and the gearbox is designed in detail.Design and calculation of gun transmission mechanism.Finally, the conclusion of the project design is expounded, and the concept of the subject design and its development in the future are indicated.
Key Words: climbing robot;adsorption ; move
II
目 錄
摘 要 I
ABSTRACT II
1 緒論 2
1.1 爬壁機器人概述 2
1.2 目前研究的概況和發(fā)展趨勢 2
2 鐵罐外壁爬行機結(jié)構(gòu)設(shè)計方案 4
2.1 技術(shù)性能指標(biāo) 4
2.2 爬壁機器人的方案選擇 4
3 爬行機結(jié)構(gòu)設(shè)計計算 6
3.1 電磁計算及電磁鐵選擇 6
3.2 行走機構(gòu)設(shè)計計算 6
3.3 減速箱設(shè)計計算 8
4 噴砂傳動機構(gòu)設(shè)計 17
5 結(jié)論................................................................ ..18
參 考 文 獻 19
附錄1:外文翻譯 20
附錄2:外文原文 24
致謝..................... ................................................32
I
鐵罐外壁爬行機結(jié)構(gòu)設(shè)計
1 緒論
1.1 爬壁機器人概述
由于工業(yè)社會發(fā)展,很多工作環(huán)境必須實施良好的安全防護措施才能進行作業(yè),而爬壁機器人便是為了避免人力作業(yè)的危險而得到了很好的發(fā)展,目前,爬壁機器人已在多種領(lǐng)域內(nèi)發(fā)揮作用,如下:
核工業(yè) 對核廢液貯管進行視覺檢查、測厚及焊縫探傷等;
石化工業(yè) 大型儲罐內(nèi)壁以及外壁面進行探測或噴砂清潔、噴漆等工作;
建筑行業(yè) 用于高樓外墻面和大型墻壁的涂料噴涂、清潔玻璃壁面等工作;
消防部門 用于傳遞救援物資、進行救援工作等;
造船行業(yè) 用于噴涂船體或輪船內(nèi)壁等;
電力行業(yè) 對電站鍋爐水冷壁管壁厚度的測量等。
現(xiàn)如今,各石油化工企業(yè)都擁有大量的儲油、儲水罐,大部分直徑都在 20-50米,甚至達(dá)100米的超大儲罐,高10-20米,為了延長使用壽命,需要對這些儲罐進行定期除銹噴涂防腐工作,工作任務(wù)繁重。目前這些工作仍然以傳統(tǒng)的搭設(shè)腳手架的方式來進行,但人工噴涂的質(zhì)量不能輕易得到保證,浪費涂料,另外儲罐內(nèi)可能殘存有害氣體,威脅到噴涂工人的身體健康。
為保護工人的身體健康,提高噴涂質(zhì)量,節(jié)約能源,提高勞動生產(chǎn)率等,本論文的研究圍繞在石油、石化的大型儲罐上實施機器人作業(yè)這一目標(biāo),開展壁面爬行機器人平臺的研究,探索更加合適的機器人運動形式,提高系統(tǒng)的穩(wěn)定性、可靠性和運行效率,以便逐步實現(xiàn)替代人工作業(yè)的目的。
1.2 目前研究的概況和發(fā)展趨勢
壁面爬行機器人是一種能夠在壁面爬行作業(yè)的特殊機器人,機構(gòu)學(xué)、傳感技術(shù)、控制和信息技術(shù)集于一身,可以代替人在危險、極端的環(huán)境中工作。近幾十年來,隨著科技的不斷進步爬壁機器人的研究已經(jīng)取得了很好的成績,在各個行業(yè)中也得到了越來越廣泛的應(yīng)用。
1998 年,哈工大研制成功了一種爬壁噴涂機器人,采用永磁吸附、履帶驅(qū)動方式,它是專門為石油化工行業(yè)的大型儲罐設(shè)計的,移動速度 2-8 m/min,負(fù)重大于30kg,攜帶噴涂工具可完成罐壁噴砂除銹、噴涂防腐、測厚等工作。
2002 年,日本的三菱重工集團研制出一種輪式永磁吸附爬壁工作的機器人。該機器人具有多種用途,可以安裝噴槍、刷子和攝像頭等裝置完成噴涂、清洗和檢測工作。
2006 年,山東科技大學(xué)機器人研究中心,針對大型儲罐的除銹噴涂設(shè)計出一種新型油罐噴砂噴涂設(shè)備。該設(shè)備安裝有與油罐輪廓線相似的對稱布置的導(dǎo)軌,導(dǎo)軌上對稱布置兩個機器人,其機械手具有俯仰、伸縮和噴槍劃圓功能,作業(yè)時,導(dǎo)軌帶動兩個噴涂機器人沿油罐周向運動,半圈后,由鋼絲繩牽引軸向上升150-200mm,再反向周向噴涂,如此反復(fù)動作完成油罐的壁面涂裝作業(yè),形成螺旋線周向軌跡,涂層質(zhì)量較好。
2011 年,山東科技大學(xué)機器人研究中心針對船舶造修業(yè)的除銹噴涂作業(yè)研究出另外一種噴涂機器人。它由移動的底座、水平導(dǎo)軌、豎直導(dǎo)軌和柱坐標(biāo)移動裝置及噴槍機構(gòu)組成,可以實現(xiàn)船艙內(nèi)各個位置的噴涂作業(yè)。移動機器人到達(dá)指定位置,噴槍一方面繞自身旋轉(zhuǎn)畫圓,另一方面沿水平導(dǎo)軌移動,形成螺旋線直線噴槍軌跡,涂層質(zhì)量較均勻。
2 鐵罐外壁爬行機結(jié)構(gòu)設(shè)計方案
本課題的研究目的是使用爬壁機器人代替人們進行危險作業(yè),把人們從惡劣的工作環(huán)境中解放。在很多工業(yè)、建筑業(yè)、化工業(yè)領(lǐng)域中,存在很多人力無法作業(yè)的極端環(huán)境,比如大型化工儲罐的探測與修護,高樓玻璃面的清潔,船體的除銹噴漆,這些環(huán)境的工作對人造成一定的傷害,因此這就產(chǎn)生了對人工智能爬行機器人的需求。
2.1 技術(shù)性能指標(biāo)
爬壁機器人的結(jié)構(gòu)設(shè)計首先要確定機器人的工作參數(shù),而工作參數(shù)是由機器人所要完成的任務(wù)確定的。爬壁機的技術(shù)指標(biāo)之間是會相互影響、有著緊密的聯(lián)系的,技術(shù)性能指標(biāo)的預(yù)設(shè)合理與否跟爬壁機的結(jié)構(gòu)設(shè)計有著密切相關(guān)。對于鐵罐外壁爬行機來說,它的工作環(huán)境和工作內(nèi)容的要求是比較清楚的,因此需要以此為出發(fā)點設(shè)計機器人的各項技術(shù)性能指標(biāo)。技術(shù)性能設(shè)計指標(biāo):
鐵罐外壁爬行機的爬行速度為80~200mm/s
移動速度設(shè)定主要根據(jù)鐵罐外壁爬行機的工作需求和安全性兩個因素考慮的。
控制方式:無線遙控或程序控制
控制系統(tǒng)指的是對組成鐵罐外壁爬行機各個部分進行的行走,清洗,壁面吸附以及停止。
鐵罐外壁爬行機最大負(fù)載:60Kg
2.2 爬壁機器人的方案選擇
2.2.1 鐵罐外壁爬行機器人的移動方式
鐵罐外壁爬行機器人的關(guān)鍵技術(shù)就是要能夠達(dá)到機器人能安全地在豎直平面上爬行的目的,現(xiàn)在所研究出來爬壁機器人有四種移動方式,分別是步行式、履帶式、車輪式、框架式[8]。
根據(jù)本課題中爬行機器人的工作要求,本設(shè)計采用車輪式,利用卷揚機結(jié)構(gòu)給爬行機提供牽引力,完成爬行機的y軸方向運動。
2.2.2 爬壁清洗機器人吸附方式
爬壁機器人要能夠在豎直的壁面上移動,需要保證的是要使機器人能夠安全吸附在壁面上,不能掉落,這是鐵罐外壁爬行機最基本的對于安全穩(wěn)定工作的要求。當(dāng)今爬行機器人最常用的吸附方式分為真空吸附、磁吸附、推力吸附三類[6]。
真空吸附的優(yōu)點是不受壁面材料限制,但其缺點攀越壁面障礙的能力差,越障能力差導(dǎo)致了吸附不穩(wěn)定和承載力不穩(wěn)定。
電磁吸附爬行機器人的結(jié)構(gòu)簡單,吸附力強,壁面攀越墻面障礙的能力強,但是其對工作壁面的要求必須是導(dǎo)磁性材料。
爬壁機運用到的推力吸附是一種新型吸附方式,它能使爬壁機的越障能力提高。
綜合考慮:由于本課題設(shè)計的是鐵罐外壁爬行機結(jié)構(gòu),其工作環(huán)境為大型鋼質(zhì)儲罐,為了保證爬行機在進行噴砂工作時,能夠保證爬行機的平衡以及噴砂質(zhì)量,選用電磁鐵吸附方式。
3 爬行機結(jié)構(gòu)設(shè)計計算
3.1 電磁計算及電磁鐵選擇
圖3-1 爬行機受力分析圖
3.1.1 噴砂沖擊力計算
鐵罐爬行機的噴砂工藝參數(shù):,,,,砂料流量為,噴槍口噴射速度為。
根據(jù)圖3-1計算沖擊力:
(3.1)
式3.1中的ρ為砂料密度,q為流量,v為噴射速度。
(3.2)
3.1.2 電磁力計算
根據(jù)圖3-1受力分析可知B電磁力等于Fx沖擊力,所以:
查詢有關(guān)電磁鐵的產(chǎn)品材料,選用吸盤式電磁鐵,其型號為H16090-36V,,,
3.2 行走機構(gòu)設(shè)計計算
3.2.1 卷揚結(jié)構(gòu)部分的設(shè)計計算
(1) 鋼絲繩選用:因為
查取設(shè)計手冊選取D=10mm的6×7+FC纖維芯鋼絲繩,長度為32m。
卷筒的設(shè)計計算:
① 本次設(shè)計設(shè)定鋼絲繩為2層纏繞卷筒,需選用多層環(huán)繞卷筒[3]。
② 小車重力為600N,鋼絲繩線速度為0.16 m/s,鋼絲直徑10mm,卷揚機利用等級為T5/T6,載荷情況為,工作級別為M5-M7
表3-1 系數(shù)h值(摘自GB/T 3811-1983)
機構(gòu)工作級別
卷筒
滑輪
M1-M3
14
16
M4
16
18
M5
18
20
M6
20
22.4
M7
22.4
25
M8
25
28
查表選取h=18。
(2) 卷筒直徑D:
(3.5)
D1為卷筒最小直徑,D為鋼絲繩直徑。
取D=20mm。
(3) 卷筒長度L:
(3.6)
為鋼絲繩總長度, n為卷繞層數(shù),D為鋼絲繩直徑。
(3) 卷筒繩槽的選擇:
繩槽半徑R:
繩槽深度H:
繩槽節(jié)距P:
卷筒厚度:
(5) 卷筒強度計算: (3.7)
表3.2 系數(shù)A
卷筒層數(shù)n
1
2
3
≧4
≧5
系數(shù)A
1
1.75
2.0
2.25
2.5
式3.7中A是與卷筒纏繞層數(shù)有關(guān)的系數(shù)[3]; ,F(xiàn)max為鋼絲繩最大靜拉力,P 為節(jié)距,δ為卷筒壁厚[3],σbc 為抗壓強度,
σcp 為許用壓應(yīng)力(鑄鐵: )
將以上數(shù)值帶入式3.7中得:
綜上材料選擇合格。
3.3 減速箱設(shè)計計算
3.3.1 減速箱傳動方案
因為爬行機的爬行速度緩慢,以及考慮到裝置安裝位置等原因,鐵罐外壁爬行機運運用到的減速箱采用錐齒輪傳動與蝸輪蝸桿傳動結(jié)合,傳動方案設(shè)計簡圖如下:
圖3.2 減速箱傳動方案
3.3.2 電動的機選擇
(1) 確定電動機空量:
(3.8)
其中Pw為輸出功率,ηw為卷筒效率。
(3.9)
(3.10)
其中,,,。
(2) 卷筒轉(zhuǎn)速:
(3.11)
按傳動比的合理范圍,蝸輪蝸桿減速器的傳動比i范圍為5~80[4],所以鐵罐外壁爬行機所選用的電動機的轉(zhuǎn)速范圍為
綜合考慮電動機和傳動裝置的關(guān)系,以及鐵罐外壁爬行機的結(jié)構(gòu)尺寸以及重量等關(guān)系,決定選用Y系列三相異步電動機,這個電機的轉(zhuǎn)速為910r/min,型號為Y90s-6 ,其參數(shù)如表3.3:
表3.3 Y90s-6電動機參數(shù)
型號
額定功率(KW)
外形尺寸(mm)
轉(zhuǎn)速(r/min)
質(zhì)量(Kg)
Y90s-6
0.75
310×245×190
910
23
根據(jù)所選電機計算減速箱傳動比:,設(shè)定錐齒輪傳動比為,蝸輪蝸桿傳動比為。
3.3.3 錐齒輪傳動設(shè)計
本課題設(shè)計的減速箱中選擇齒輪類型為直齒錐齒輪,根據(jù)機械設(shè)計手冊選用的齒輪精度為7級,小錐齒輪選用的材料為40Cr(調(diào)質(zhì))齒面硬度為280HBS,大錐齒輪選用的材料為45鋼(調(diào)質(zhì))齒面硬度為240HBS[2]。
(1) 按齒面接觸疲勞強度設(shè)計小齒輪分度圓直徑
(3.12)
① 其中T1為小齒輪傳遞的轉(zhuǎn)矩:
(3.13)
② 齒數(shù)比:
③ 配對材料系數(shù)
④ 根據(jù)載荷情況,齒輪所選擇的精度和齒輪結(jié)構(gòu)位置取K=1.3
⑤ 計算接觸疲勞許用應(yīng)力[σH]
查取手冊可知小齒輪和大齒輪的接觸疲勞極限分別為、
接觸疲勞壽命系數(shù)分別為、
所以
即
將以上數(shù)據(jù)帶入式3.12中算得:
(2) 計算齒輪主要尺寸與參數(shù)
選定小齒輪齒數(shù)為:則
確定模數(shù):
取標(biāo)準(zhǔn)值
計算分度圓直徑:
計算分錐角:
計算錐距:
計算輪齒寬度:
其中齒輪寬度系數(shù):取
計算齒頂圓直徑:
計算平均圓周速度:
(3.14)
其中
(3) 驗算
① 按接觸強度校核齒輪的承載能力
(3.15)
(3.16)
其中查表得,,,,,,
綜上數(shù)據(jù)帶入式3.16算得
名稱
代號
小齒輪
大齒輪
分度圓直徑
d
48
96
齒數(shù)
z
24
48
模數(shù)
m
2
2
節(jié)錐角
δ
26.565°
63.4349°
錐距
R
53.67
53.67
齒寬
b
18
18
齒距
p
6.28
6.28
變位系數(shù)
x
0.345
-0.345
齒頂高
ha
2.69
1.31
齒根高
hf
1.71
3.09
齒頂間隙
c
0.4
0.4
齒根角
θf
1.82°
3.295°
齒頂角
θa
2.87°
1.398°
齒頂圓錐角
δa
29.435°
64.832°
齒根圓錐角
δb
24.745°
60.139°
齒頂圓直徑
da
52.8
97.17
節(jié)錐頂點到輪冠距離
AK
46.8
22.828
大端分度圓弧齒厚
s
3.64
2.64
分度圓弦齒厚
3.64
2.64
分度圓弦齒高
2.75
1.32
表3.4 直齒錐齒輪的幾何尺寸
② 按抗彎強度校核齒輪的承載能力
(3.17)
(3.18)
查取相關(guān)圖表最終算得
所以綜上錐齒輪傳動的設(shè)計及其驗算,該齒輪組符合要求。
(4) 綜上設(shè)計參數(shù)計算直齒錐齒輪幾何尺寸如表3.4
3.3.4 蝸輪蝸桿傳動設(shè)計
材質(zhì)選擇:本課題所設(shè)計的蝸桿選用45鋼,齒面淬火,硬度為45~50HRC;本課題的蝸輪選用錫青銅ZCuSn10Pb1,鑄造,。
(1) 確定主要參數(shù):,因為,所以
(2) 按齒面接觸疲勞強度設(shè)計計算:
(3.19)
其中蝸輪軸轉(zhuǎn)矩
載荷系數(shù)
許用接觸應(yīng)力
將以上數(shù)據(jù)帶入式3.19得:
查閱機械設(shè)計手冊得, 。
(3) 驗算滑動速度vs
計算蝸桿速度:
(3.20)
其中 ,,vs初估值合適。
(4) 驗算蝸輪輪齒彎曲強度
(3.21)
其中,,,,(按蝸輪當(dāng)量齒數(shù)查取),,。
將以上數(shù)據(jù)帶入式3.21可得:
因為,蝸輪蝸桿設(shè)計滿足條件。
(5) 蝸輪蝸桿的幾何尺寸計算
蝸桿頭數(shù):
蝸輪齒數(shù): 查表取
齒形角:
模數(shù):
蝸輪變位系數(shù):
中心距:
蝸桿軸向齒距:
蝸桿分度圓直徑:
蝸桿節(jié)圓直徑:
蝸桿齒頂高:
頂隙:
蝸桿齒頂圓直徑:
蝸桿齒根高:
蝸桿齒根圓直徑:
蝸桿齒高:
漸開線蝸桿基圓直徑:
漸開線蝸桿基圓導(dǎo)程角:,求得
蝸桿導(dǎo)程角:
蝸桿齒寬:
蝸輪分度圓直徑:
喉輪節(jié)圓直徑:
蝸輪齒頂高:
蝸輪齒根高:
蝸輪喉圓直徑:
蝸輪齒根圓直徑:
蝸輪齒高:
蝸輪外圓直徑: 取
蝸輪寬度:
蝸輪齒頂圓弧半徑:
蝸輪齒根圓弧半徑:
蝸桿軸向齒厚:
蝸桿法向齒厚:
蝸輪分度圓齒厚:
3.3.5 輸出軸的設(shè)計
(1) 擬定軸零件的裝配方案如下:
圖3.3 軸的結(jié)構(gòu)與裝配
(2) 初步確定軸的最小直徑
電機功率為,轉(zhuǎn)速為
輸出軸:
作用在齒輪上的力:
最小直徑:
(3.22)
其中(45鋼)
(3) 軸尺寸確定
① 軸的最小直徑出現(xiàn)在Ⅰ-Ⅱ,這段軸連接的是卷筒,取,為了滿足卷筒的軸向定位要求Ⅰ-Ⅱ軸左端需要做出軸肩,故?、?Ⅲ軸段的直徑為。
②初步選擇滾動軸承:選擇型號為30211E的軸承,其尺寸為
故,,根據(jù)軸承的安裝尺寸因此
③ 取安置蝸輪處軸段的直徑為,蝸輪輪右端與軸承端之間采取套筒定位,根據(jù)以上蝸輪蝸桿幾何尺寸的計算已經(jīng)得出蝸輪寬度為,為了使套筒能夠夾緊齒輪,蝸輪寬要長于這一軸段,故取,蝸輪左端需要用到軸肩定位,軸肩高度,由于直徑為64mm,查表得,因此,固定軸環(huán)寬度為取。
④ ,取端蓋外端與卷筒端間的距離為,故取。
⑤ ,
⑥ 軸上零件的周向定位:按Ⅳ-Ⅴ段的直徑查表取得該段平鍵截面為,長度為45mm,配合為,根據(jù)Ⅰ-Ⅱ段,選擇平鍵為。
3.3.6 蝸桿軸的設(shè)計
(1) 擬定軸零件的裝配方案如下:
圖3.4 蝸桿軸結(jié)構(gòu)與裝配
(2) 初步確定軸的最小直徑:
(3) 已知如圖3.4的軸為蝸桿軸,根據(jù)以上蝸輪蝸桿幾何尺寸的計算得出蝸桿齒寬為,齒頂圓直徑為,所以,又因為算得的蝸桿齒根圓直徑為,所以。
(4) 錐齒輪右端設(shè)計為軸肩固定,取,為了避免軸承過定位,所以Ⅱ-Ⅲ軸段直徑小于Ⅲ-Ⅳ軸段直徑,取,由于軸承蓋總寬度為34mm,所以設(shè)定Ⅰ-Ⅱ段連接噴槍傳動機構(gòu),采用鍵連接,取,
(5) 選擇滾動軸承:選擇的是圓錐滾子軸承,根據(jù)Ⅲ-Ⅳ段的直徑,選取軸承,其尺寸為。因為錐齒輪寬度為,取套筒寬度為15mm,取Ⅲ-Ⅳ軸左端面與軸承右端面距離為17mm,所以,根據(jù)軸承寬度取[2]。
(6) Ⅵ-Ⅶ軸段以及Ⅳ-Ⅴ軸段長度根據(jù)軸與減速箱箱體的裝配關(guān)系取得,。
3.3.7箱體結(jié)構(gòu)計算
箱座壁厚δ: 取
箱蓋壁厚δ1: 取
箱座凸緣厚度:
箱蓋凸緣厚度:
箱座底凸緣厚度:
箱座、蓋肋厚:,
軸承座端面外徑: 其中D為軸承外徑,為螺栓直徑
外箱壁至軸承端面距離:其中、與螺栓直徑有關(guān)
軸承旁凸臺半徑:
凸臺高度:h
大齒輪頂圓與內(nèi)箱壁距離:12mm
齒輪端面與內(nèi)箱壁距離:10mm
4 噴砂傳動機構(gòu)設(shè)計
噴槍的運動方式是鐵罐外壁爬行機進行噴砂作業(yè)能否達(dá)到工作需求的一個重要條件,根據(jù)以上行走方式的設(shè)計,本課題決定設(shè)計一個曲柄滑塊機構(gòu)來帶動噴槍的移動。
圖4.1 噴槍傳動機構(gòu)
(1) 設(shè)計該曲柄滑塊的沖程為500mm,偏心距為0。
由于曲柄滑塊中存在曲柄的條件:一是機構(gòu)中連桿長度長于曲柄長度;二是滑塊導(dǎo)軌足夠長。
如圖4.1 所示,設(shè) OA 的距離為a ,OB 距離為b 依圖可知,又因為,,綜上可以求得,
(2) 曲柄滑塊的連桿受到拉應(yīng)力,其值等于滑塊的重力與摩擦力的合力:
(4.1)
查手冊,根據(jù)連桿的受力情況,以材料的抗壓強度選取連桿的材料為45鋼,厚度為10mm。
(3) 驗算噴槍是否能夠均勻噴涂鐵罐壁面
已知曲柄轉(zhuǎn)速為7.8 r/s,根據(jù)以上設(shè)計,得到爬壁機的爬行速度為0.154m/s。由于曲柄滑塊速度不均勻,運用分割法計算,以一秒為單位計算,曲柄轉(zhuǎn)動一轉(zhuǎn)滑塊來回一次,噴槍口徑為10mm,因為噴口離罐壁有一定距離,所以假設(shè)噴槍噴涂涂的寬度為0.012m。
最終算得噴槍在一秒內(nèi)噴涂長度,而小車一秒內(nèi)的移動距離為0.154m,所以,該機構(gòu)能夠達(dá)到最初的工作要求。5 結(jié)論
鐵罐外壁爬行機器人的設(shè)計綜合了機器人機構(gòu)原理、運動方式、機械設(shè)計原理等多學(xué)科領(lǐng)域的知識,它的使用實現(xiàn)了大型的化工儲罐的噴砂除銹、噴漆防腐自動化,而且這個鐵罐外壁爬行機的設(shè)計及其應(yīng)用將會減少人力工作的強度、避免人工操作所存在的危險、降低成本,有著很好的推廣和研究價值。
本論文通過對爬行機器人的結(jié)構(gòu)設(shè)計研究,取得了如下結(jié)果:
(1) 本課題設(shè)計的鐵罐外壁爬行機與其他的爬行機相比,具有結(jié)構(gòu)簡單、工作效率高的、操作簡易的特點。采用電磁鐵吸附,既使機器人能夠穩(wěn)定吸附在罐壁保證其行走安全,同樣也可以獲得很好的的噴砂質(zhì)量。
(2) 本機器人卷揚機結(jié)構(gòu),實現(xiàn)了Y軸方向的移動,再通過其他設(shè)備移動滑輪帶動機器人實現(xiàn)X軸方向的移動。
(3) 機器人的清洗裝置采用曲柄滑塊機構(gòu)傳動,該機構(gòu)的曲柄直接連接在減速箱分出的軸上,減少了動力源的使用。簡化了機器結(jié)構(gòu)。
(4) 本課題著重設(shè)計了爬行機器人的減速裝置,運用蝸輪蝸桿機構(gòu),高效達(dá)到了減速需求。
綜上所述,鐵罐外壁機器人的設(shè)計已經(jīng)走上了正軌同樣也取得了階段性的成果,在未來的鐵罐外壁爬行機器人的未來發(fā)展方向是:
① 結(jié)構(gòu)更加簡單、質(zhì)量更加輕盈、更加安全、操作更加簡單;
② 控制系統(tǒng)小型化;
③ 能夠適應(yīng)復(fù)雜的壁面環(huán)境并能作出相應(yīng)的動作;
總的來說,隨著社會經(jīng)濟的發(fā)展和人們生活水平的提高,大型儲罐的探測、清潔、修護的自動化和現(xiàn)代化就變?yōu)楸厝唬瑱C器人技術(shù)的應(yīng)用在此領(lǐng)域也將會得到逐步的體現(xiàn)。鐵罐爬行機器人產(chǎn)品也會隨著自動化技術(shù)、傳感技術(shù)、無線遙控技術(shù)以及通訊業(yè)的迅速發(fā)展而得到充分的發(fā)展。
參 考 文 獻
[1] 韓曉娟.機械設(shè)計課程設(shè)計指導(dǎo)手冊[M].北京:中國標(biāo)準(zhǔn)出版社,2008.
[2] 濮良貴,陳定國,吳立言.機械設(shè)計[M].北京:高等教育出版社,2013.
[3] 聞邦椿.機械設(shè)計手冊.起重運輸零部件和操作件[M].北京:機械工業(yè)出版社,2014.
[4] 毛謙德,李振清.袖珍機械設(shè)計師手冊[M].北京:機械工業(yè)出版社,2000.
[5] 馮仁余,張麗杰.機械設(shè)計典型應(yīng)用圖例[M].北京:化學(xué)工業(yè)出版社,2015.
[6] 孫玲. 除銹爬壁機器人壁面行走控制技術(shù)研究[D].大連海事大學(xué),2015.
[7] 李浩. 儲罐爬壁機器人的噴涂機構(gòu)研究[D].東北石油大學(xué),2013.
[8] 何富君,李浩,常忠偉,張瑞杰.儲罐爬壁噴涂機構(gòu)的運動學(xué)分析[J].機械設(shè)計與制造,2014(06):210-212+216.
[9] 周新建,劉祥勇.大型油罐爬壁機器人吸附結(jié)構(gòu)的優(yōu)化設(shè)計[J].機械設(shè)計與制造,2014(09):181-184.
[10] 吳洪興. 一種新型玻璃幕墻清洗機器人的研究[D]. 哈爾濱工業(yè)大學(xué), 2002.
[11] 宋健. 開放式茄子采摘機器人關(guān)鍵技術(shù)研究[D]. 中國農(nóng)業(yè)大學(xué), 2006.
[12] 程楠. 具有壁面過渡能力的磁吸附爬壁機器人系統(tǒng)研究[D].中國計量大學(xué),2016.
[13] 任健,杜堅,張超,陳酉江.一種儲油罐內(nèi)壁清潔機器人的設(shè)計[J].信息通信,2014(06):49-50.
[14] 閆久江,趙西振,左干,李紅軍.爬壁機器人研究現(xiàn)狀與技術(shù)應(yīng)用分析[J].機械研究與應(yīng)用,2015,28(03):52-54+58.
[15] 張沖沖,閆德峰,劉超冉,劉繁,龔亮.履帶式磁動力爬壁機器人本體設(shè)計[J].機電信息,2016(09):111-112.
[16] 周依霖,張華,葉艷輝,王帥,范宇.永磁吸附履帶式爬壁機器人轉(zhuǎn)向動力特性分析[J].機械設(shè)計,2017,34(02):56-61.
[17] 汪興潮. 船舶除銹爬壁機器人技術(shù)研究[D].華南理工大學(xué),2016.
[18] 黃忠,劉泉,王茂.新型爬壁機器人設(shè)計與運動特性分析[J].煤礦機械,2015,36(12):20-23.
[19] Chenfei Yan,Zhenguo Sun,Wenzeng Zhang,Qiang Chen. Design of novel multidirectional magnetized permanent magnetic adsorption device for wall-climbing robots[J]. International Journal of Precision Engineering and Manufactturing,2016,17(7).
[20] Rodrigo Valério Espinoza,André Schneider de Oliveira,Lúcia Valéria Ramos de Arruda,Flávio Neves Junior. Navigation’s Stabilization System of a MagneticAdherence-Based Climbing Robot[J]. Journal of Intelligent & Robotic Systems,2015,78(1).
- 19 -
附錄1:外文翻譯
新型爬壁機器人多向磁化永磁吸附裝置的設(shè)計
引言:
一種用于爬壁機器人的多向磁化永磁吸附裝置(PMAD)。在相同質(zhì)量下,新型PMAD能顯著提高吸附力。首先,基于本文提出的設(shè)計理論,對新型PMAD的磁路進行了優(yōu)化。新型PMAD包含多個排列緊密的不同磁化方向的永磁體。根據(jù)磁化方向的排列規(guī)律,磁體可分為若干個元件單元。在每個元件單元中,磁化方向沿半圓分布.其次,采用有限元分析軟件ansys workbench對結(jié)構(gòu)進行參數(shù)化建模和結(jié)構(gòu)特征分析。 對新型PMAD進行了特性分析、磁路模擬、吸附力計算和參數(shù)優(yōu)化。在此基礎(chǔ)上,提出了材料和體積相同的新型和Halbach型PMAD。 都是試制的。測定了不同氣隙厚度下的吸附力。實驗結(jié)果表明,在相同質(zhì)量下,與Halbach型PMAD相比,新型PMAD的吸附力平均提高了一倍,最大放大倍數(shù)為2.3倍。最后,將新型pMADs應(yīng)用于爬壁機器人的超聲波檢測中,提供了穩(wěn)定可靠的吸附性能。
1. 概況
爬墻機器人作為一種特殊的移動機器人,可以在墻、天花板等二維或復(fù)雜的三維環(huán)境中執(zhí)行各種任務(wù),除移動機器人用輪子或腿在地面上移動外,爬墻機器人還具有在移動時保持身體對抗重力的獨特特性。 因此,在爬壁機器人設(shè)計中,既要考慮移動性,又要考慮吸附性。根據(jù)吸附方式的不同,爬壁機器人可分為五類:真空吸附式、磁吸附式、夾持式、導(dǎo)軌式和仿生t型。 YPE3磁性吸附,包括永磁吸附和電磁吸附,比真空吸附更適用于鐵磁表面。
一般來說,磁路的設(shè)計應(yīng)該是為了最大限度地利用其中的材料。另一方面,如果在移動設(shè)備上安裝PMAD,則PMAD質(zhì)量的降低可以提高移動設(shè)備的移動性。因此,優(yōu)化PMAD的磁路以增加吸附量是非常必要的。
2. 多向磁化PMAD的結(jié)構(gòu)設(shè)計
將不同的部件單元緊密地布置可以使泄漏通量最小化并集中更多的磁感應(yīng)。 “期望區(qū)域”中的n行。同樣,沿y軸兩側(cè)也有泄漏通量。使任意兩個相鄰的元件單元排斥,可以使不同成分的回路產(chǎn)生排斥。 NT單位不相交。隨著組分N的加入量和磁體長度LM的增加,漏通量的比例減小,比吸附力fm增大。 ND逐漸接近上限值。
3. 新型PMAD在爬壁機器人中的應(yīng)用
為了驗證這種新型PMAD的可行性和實用性,在一個爬壁機器人上安裝了PMAD。爬墻機器人的結(jié)構(gòu)如圖1所示.
爬壁機器人的質(zhì)量為7.9kg,整體尺寸320 mm×300 mm×120毫米攀壁機器人是為自動爬墻而設(shè)計的。攀壁機器人是為了能夠自動爬墻而設(shè)計的。液壓發(fā)電站飛行時間的超聲波檢測繞射法(TOFD),可在水電站中任意位置移動大型壓力管和蝸殼。
圖1爬墻機器人的結(jié)構(gòu)
爬壁機器人由兩個步進電機驅(qū)動的兩個前輪和兩個由兩個通用輪組成的后驅(qū)動輪。機器人的速度和位移通過 調(diào)整步進電機的速度和角度。TOFD探針被探頭夾持,并被彈簧緊緊地壓在墻上。兩個ToFD探頭之間的距離可以通過沿導(dǎo)軌移動探針夾持器來調(diào)節(jié)。導(dǎo)軌由升降電機驅(qū)動升降。監(jiān)控攝像機MONITTO 前面的場景。兩個ToFD探頭之間的距離可以通過沿導(dǎo)軌移動探針夾持器來調(diào)節(jié)。導(dǎo)軌由升降電機驅(qū)動升降。監(jiān)控攝像機MONITTO 前面的場景。兩個新穎的PMAD安裝在底盤下。PMAD中永磁體的安裝方式與上述實驗相同。
圖1底盤下的PMAD
圖2吸附力調(diào)節(jié)機構(gòu)
圖3 吸附力FM與距離L的關(guān)系曲線
從結(jié)果中可以看到。1和2,所述PMAD通過連桿和螺桿對與底盤連接,所述四個部分構(gòu)成吸附力調(diào)節(jié)機構(gòu)。如圖15所示,r 調(diào)整螺桿對可調(diào)節(jié)PMADs的位置,然后調(diào)整吸附力。當(dāng)L=23 mm時,新的PMADs與鋼平面平行,氣隙厚度為5 mm; 吸附力的計算值約為1000 N,對操作者來說吸附力較大,而螺桿對則能有效地降低操作力。PMAD從280 N增加到991 N,新型PMAD的吸附力始終大于Halbach型PMAD,說明了新型PMAD的優(yōu)點。
為了比較新型PMAD和Halbach型PMAD在實際系統(tǒng)中的性能,在爬壁機器人中安裝了兩種體積相同的PMAD。在 E實驗中,L距離從5mm增加到23 mm,吸附力fm用平均重復(fù)測量值測量。吸附力FM與d的關(guān)系曲線 如圖3所示。實驗結(jié)果與第四節(jié)驗證實驗的結(jié)果基本一致。當(dāng)L從5mm增加到23 mm時,吸附力fm
除上述超聲波檢測爬壁機器人外,新型pmad還可為其他全位置爬壁機器人提供高性能的吸附裝置。
4. 結(jié)論
本課題成功地設(shè)計并演示了一種新型的PMAD,它能產(chǎn)生更大的單位質(zhì)量吸附力。主要結(jié)論如下:
(1) 根據(jù)設(shè)計理論,提出了一種多向磁化PMAD。設(shè)計理論認(rèn)為,一般情況下,pmad只應(yīng)由永磁體和比吸附f組成。 當(dāng)結(jié)構(gòu)參數(shù)等于最優(yōu)值時,Orce FM等于理論最大FM。這種新型PMAD是由一些排列緊密的具有多方向剩余磁感應(yīng)強度Br-矢量的永磁體組成的。磁鐵可分為幾個組分。
(2) 采用有限元法對新型PMAD進行了參數(shù)化建模、結(jié)構(gòu)特性分析、磁路模擬吸附力計算和結(jié)構(gòu)參數(shù)優(yōu)化。大 比吸附力FM隨磁體長度LM、組分單元N的數(shù)量和單元n中磁體數(shù)量的增加而增大,且趨于極限。T型 結(jié)構(gòu)參數(shù)優(yōu)化后,比吸附力FM達(dá)到理論最大FM的80%。
(3) 多向磁化PMAD能顯著提高比吸附力Fm。試驗生產(chǎn)了材料和體積相同的新型和Halbach型PMAD.關(guān)系c 測量了比吸附力fm與氣隙厚度lg之間的關(guān)系。實驗結(jié)果表明,所測值與計算值接近,符合要求。 與Halbach型PMAD相比,新型PMAD的C吸附力Fm平均翻一番。
(4) 多向磁化PMAD為爬壁機器人提供了一種新型的高性能吸附解決方案.新型pmad和Halbach型pmad在爬壁機器人f中的應(yīng)用 或超聲檢測,并相互比較。
(5) 實驗結(jié)果表明,該新型PMAD具有較好的性能。
(6) 新型PMADS的吸附力可從280N改為991 吸附穩(wěn)定可靠。
附錄2:外文原文
致 謝
經(jīng)過這幾個月的努力,本次的設(shè)計已經(jīng)接近尾聲,作為一個本科生由于對機械產(chǎn)品了解不充分,初始的設(shè)計概念模糊,無法正確切入設(shè)計主題,還有在設(shè)計過程中,由于沒有設(shè)計經(jīng)驗,走了彎路。但是在指導(dǎo)老師何老師的幫助下,這些問題都逐步得到了解決,何老師平日里工作繁多,但在我做畢業(yè)設(shè)計的每個階段,從查閱資料到設(shè)計草案的確定和修改,中期檢查,后期詳細(xì)設(shè)計,裝配草圖等整個過程中都給予了我熟悉的指導(dǎo)。我的設(shè)計較為復(fù)雜繁瑣,但何老師仍然細(xì)心地糾正圖紙中的錯誤。從何老師身上看到了他的治學(xué)嚴(yán)謹(jǐn)和科學(xué)研究的精神也是我永遠(yuǎn)學(xué)習(xí)的榜樣,并將積極影響我今后的學(xué)習(xí)和工作。
整個設(shè)計中會因為難題弄得焦頭爛額,也會因為老師或同學(xué)的提點豁然開朗,真的感謝老師孜孜不倦的解答,以及同學(xué)朋友的鼓勵,我才能夠順利完成此次的畢業(yè)設(shè)計。同時,也要感謝大連大學(xué)機械工程學(xué)院的每一位老師,在大學(xué)的四年期間有你們的陪伴與教導(dǎo)。謝謝!
收藏
鏈接地址:http://m.szxfmmzy.com/p-3053779.html