2019-2020年高中數(shù)學(xué) 第四章 定積分 4.1 定積分的概念 曲邊梯形的面積教案 北師大版選修2-2.doc
《2019-2020年高中數(shù)學(xué) 第四章 定積分 4.1 定積分的概念 曲邊梯形的面積教案 北師大版選修2-2.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué) 第四章 定積分 4.1 定積分的概念 曲邊梯形的面積教案 北師大版選修2-2.doc(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué) 第四章 定積分 4.1 定積分的概念 曲邊梯形的面積教案 北師大版選修2-2 一、教學(xué)目標(biāo):理解求曲邊圖形面積的過(guò)程:分割、以直代曲、逼近,感受在其過(guò)程中滲透的思想方法。 二、教學(xué)重難點(diǎn): 重點(diǎn):掌握過(guò)程步驟:分割、以直代曲、求和、逼近(取極限) 難點(diǎn):對(duì)過(guò)程中所包含的基本的微積分 “以直代曲”的思想的理解 三、教學(xué)方法:探析歸納,講練結(jié)合 四、教學(xué)過(guò)程 1、創(chuàng)設(shè)情景 我們學(xué)過(guò)如何求正方形、長(zhǎng)方形、三角形等的面積,這些圖形都是由直線段圍成的。那么,如何求曲線圍成的平面圖形的面積呢?這就是定積分要解決的問(wèn)題。定積分在科學(xué)研究和實(shí)際生活中都有非常廣泛的應(yīng)用。本節(jié)我們將學(xué)習(xí)定積分的基本概念以及定積分的簡(jiǎn)單應(yīng)用,初步體會(huì)定積分的思想及其應(yīng)用價(jià)值。 一個(gè)概念:如果函數(shù)在某一區(qū)間上的圖像是一條連續(xù)不斷的曲線,那么就把函數(shù)稱(chēng)為區(qū)間上的連續(xù)函數(shù).(不加說(shuō)明,下面研究的都是連續(xù)函數(shù)) 2、新課探析 問(wèn)題:如圖,陰影部分類(lèi)似于一個(gè)梯形,但有一邊是曲線的一段,我們把由直線和曲線所圍成的圖形稱(chēng)為曲邊梯形.如何計(jì)算這個(gè)曲邊梯形的面積? 例題:求圖中陰影部分是由拋物線,直線以及軸所圍成的平面圖形的面積S。 思考:(1)曲邊梯形與“直邊圖形”的區(qū)別?(2)能否將求這個(gè)曲邊梯形面積S的問(wèn)題轉(zhuǎn)化為求“直邊圖形”面積的問(wèn)題? 分析:曲邊梯形與“直邊圖形”的主要區(qū)別:曲邊梯形有一邊是曲線段,“直邊圖形”的所有邊都是直線段.“以直代曲”的思想的應(yīng)用. x x x 1 x 1 x y 1 x y y 把區(qū)間分成許多個(gè)小區(qū)間,進(jìn)而把區(qū)邊梯形拆為一些小曲邊梯形,對(duì)每個(gè)小曲邊梯形“以直代取”,即用矩形的面積近似代替小曲邊梯形的面積,得到每個(gè)小曲邊梯形面積的近似值,對(duì)這些近似值求和,就得到曲邊梯形面積的近似值.分割越細(xì),面積的近似值就越精確。當(dāng)分割無(wú)限變細(xì)時(shí),這個(gè)近似值就無(wú)限逼近所求曲邊梯形的面積S.也即:用劃歸為計(jì)算矩形面積和逼近的思想方法求出曲邊梯形的面積. 解: (1).分割 在區(qū)間上等間隔地插入個(gè)點(diǎn),將區(qū)間等分成個(gè)小區(qū)間:,,…, 記第個(gè)區(qū)間為,其長(zhǎng)度為 分別過(guò)上述個(gè)分點(diǎn)作軸的垂線,從而得到個(gè)小曲邊梯形,他們的面積分別記作: ,,…,顯然, (2)近似代替 記,如圖所示,當(dāng)很大,即很小時(shí),在區(qū)間上,可以認(rèn)為函數(shù)的值變化很小,近似的等于一個(gè)常數(shù),不妨認(rèn)為它近似的等于左端點(diǎn)處的函數(shù)值,從圖形上看,就是用平行于軸的直線段近似的代替小曲邊梯形的曲邊(如圖).這樣,在區(qū)間上,用小矩形的面積近似的代替,即在局部范圍內(nèi)“以直代取”,則有 ① (3)求和:由①,上圖中陰影部分的面積為 ====,從而得到的近似值 (4)取極限:分別將區(qū)間等分8,16,20,…等份(如圖),可以看到,當(dāng)趨向于無(wú)窮大時(shí),即趨向于0時(shí),趨向于,從而有 從數(shù)值上的變化趨勢(shì): 3.求曲邊梯形面積的四個(gè)步驟:第一步:分割.在區(qū)間中任意插入各分點(diǎn),將它們等分成個(gè)小區(qū)間,區(qū)間的長(zhǎng)度,第二步:近似代替,“以直代取”。用矩形的面積近似代替小曲邊梯形的面積,求出每個(gè)小曲邊梯形面積的近似值.第三步:求和.第四步:取極限。 說(shuō)明:1.歸納以上步驟,其流程圖表示為:分割以直代曲求和逼近 2.最后所得曲邊形的面積不是近似值,而是真實(shí)值 練習(xí):課本P76練習(xí)題:設(shè)S表示由曲線,x=1,以及x軸所圍成平面圖形的面積。 四、課堂小結(jié):求曲邊梯形的思想和步驟:分割以直代曲求和逼近 (“以直代曲”的思想) 五、教學(xué)后記- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高中數(shù)學(xué) 第四章 定積分 4.1 定積分的概念 曲邊梯形的面積教案 北師大版選修2-2 2019 2020 年高 數(shù)學(xué) 第四 積分 概念 梯形 面積 教案 北師大 選修
鏈接地址:http://m.szxfmmzy.com/p-2691325.html