2019-2020年高考數(shù)學(xué)一輪總復(fù)習(xí) 10.7 空間角及其求法教案 理 新人教A版.doc
《2019-2020年高考數(shù)學(xué)一輪總復(fù)習(xí) 10.7 空間角及其求法教案 理 新人教A版.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué)一輪總復(fù)習(xí) 10.7 空間角及其求法教案 理 新人教A版.doc(4頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué)一輪總復(fù)習(xí) 10.7 空間角及其求法教案 理 新人教A版 典例精析 題型一 求異面直線所成的角 【例1】(xx天津模擬)如圖,在長方體ABCD-A1B1C1D1中,E,F(xiàn)分別是棱BC,CC1上的點(diǎn),CF=AB=2CE,AB∶AD∶AA1=1∶2∶4. (1)求異面直線EF與A1D所成角的余弦值; (2)求證:AF⊥平面A1ED; (3)求二面角A1-ED-F的正弦值. 【解析】方法一:如圖所示,建立空間直角坐標(biāo)系,點(diǎn)A為坐標(biāo)原點(diǎn),設(shè)AB=1,依題意得D(0,2,0),F(xiàn)(1,2,1),A1(0,0,4),E(1,,0). 易得=(0,,1),=(0,2,-4), 于是cos〈,〉==-. 所以異面直線EF與A1D所成角的余弦值為. (2)證明:易知=(1,2,1), =(-1,-,4),=(-1,,0), 于是=0,=0.因此,AF⊥EA1,AF⊥ED.又EA1∩ED=E,所以AF⊥平面A1ED. (3)設(shè)平面EFD的法向量u=(x,y,z), 不妨令x=1,可得u=(1,2,-1),由(2)可知,為平面A1ED的一個(gè)法向量. 于是cos〈u,〉==,從而sin〈u,〉=. 所以二面角A1-ED-F的正弦值為. 方法二:(1)設(shè)AB=1,可得AD=2,AA1=4,CF=1,CE=. 連接B1C,BC1,設(shè)B1C與BC1交于點(diǎn)M,易知A1D∥B1C.由==,可知EF∥BC1,故∠BMC是異面直線EF與A1D所成的角. 易知BM=CM=B1C=,所以cos∠BMC==. 所以異面直線EF與A1D所成角的余弦值為. (2)證明:連接AC,設(shè)AC與DE交于點(diǎn)N,因?yàn)椋剑?,所以Rt△DCE∽Rt△CBA.從而∠CDE=∠BCA. 又由于∠CDE+∠CED=90,所以∠BCA+∠CED=90.故AC⊥DE. 又因?yàn)镃C1⊥DE且CC1∩AC=C,所以DE⊥平面ACF.從而AF⊥DE. 連接BF,同理可證B1C⊥平面ABF.從而AF⊥B1C,所以AF⊥A1D. 因?yàn)镈E∩A1D=D,所以AF⊥平面A1ED. (3)連接A1N,F(xiàn)N.由(2)可知DE⊥平面ACF.又NF?平面ACF,A1N?平面ACF,所以DE⊥NF,DE⊥A1N.故∠A1NF為二面角A1-ED-F的平面角. 易知Rt△CNE∽Rt△CBA,所以=.又AC=,所以CN=. 在Rt△CNF中,NF==.在Rt△A1AN中,A1N==. 連接A1C1,A1F,在Rt△A1C1F中,A1F==. 在△A1NF中,cos∠A1NF==. 所以sin∠A1NF=. 所以二面角A1-ED-F的正弦值為. 【點(diǎn)撥】本題主要考查異面直線所成的角,直線與平面垂直,二面角等基礎(chǔ)知識,考查利用空間向量解決立體幾何問題的方法,考查空間想象能力,運(yùn)算能力和推理論證能力. 【變式訓(xùn)練1】已知二面角α-a-β的大小為θ(<θ<π),直線AB?α,CD?β,且AB⊥a,CD⊥a,若AB與CD所成的角為φ,則( ) A.φ=0 B.φ=θ- C.φ=θ+ D.φ=π-θ 【解析】選D. 題型二 求二面角 【例2】(xx北京模擬)如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=,CE=EF=1. (1)求證:AF∥平面BDE; (2)求證:CF⊥平面BDE; (3)求二面角A-BE-D的大小. 【解析】(1)設(shè)AC與BD交于點(diǎn)G,連接EG. 因?yàn)镋F∥AG,且EF=1,AG=AC=1. 所以四邊形AGEF為平行四邊形. 所以AF∥EG. 因?yàn)镋G?平面BDE,AF?平面BDE, 所以AF∥平面BDE. (2)因?yàn)檎叫蜛BCD和四邊形ACEF所在的平面互相垂直,且CE⊥AC,所以CE⊥平面ABCD. 如圖,以C為原點(diǎn),建立空間直角坐標(biāo)系C-xyz,則C(0,0,0),A(,,0),B(0,,0),D(,0,0),E(0,0,1),F(xiàn)(,,1).所以=(,,1),=(0,-,1),=(-,0,1).所以=0-1+1=0,=-1+0+1=0.所以CF⊥BE,CF⊥DE.所以CF⊥平面BDE. (3)由(2)知,=(,,1)是平面BDE的一個(gè)法向量. 設(shè)平面ABE的法向量n=(x,y,z),則n=0,n=0. 所以x=0,且z=y(tǒng).令y=1,則z=. 所以n=(0,1,).從而cos〈n,〉==. 因?yàn)槎娼茿-BE-D為銳角,所以二面角A-BE-D的大小為. 【點(diǎn)撥】(1)本小題主要考查直線與直線;直線與平面;平面與平面的位置關(guān)系,考查空間想象力推理論證能力,運(yùn)算求解能力,考查數(shù)形結(jié)合思想,化歸與轉(zhuǎn)化的思想. (2)空間的平行與垂直以及空間角是立體幾何中重點(diǎn)考查的內(nèi)容;利用平面的法向量的夾角求二面角的平面角是向量知識在立體幾何中的應(yīng)用,是求二面角常用方法. 【變式訓(xùn)練2】在四面體ABCD中,AB=1,AD=2,BC=3,CD=2,∠ABC=∠DCB=,則二面角A-BC-D的大小為( ) A. B. C. D. 【解析】選B. 題型三 求直線與平面所成的角 【例3】已知四棱錐P-ABCD的底面為等腰梯形,AB∥CD,AC⊥BD,垂足為H,PH是四棱錐的高,E為AD的中點(diǎn). (1)求證:PE⊥BC; (2)若∠APB=∠ADB=60,求直線PA與平面PEH所成角的正弦值. 【解析】以H為原點(diǎn),HA,HB,HP分別為x,y,z軸,線段HA的長為單位長,建立空間直角坐標(biāo)系如圖,則A(1,0,0),B(0,1,0). 設(shè)C(m,0,0),P(0,0,n)(m<0,n>0), 則D(0,m,0),E(,,0), 可得=(,,-n),=(m,-1,0), 因?yàn)椋剑?=0,所以PE⊥BC. (2)由已知條件得m=-,n=1, 故C(-,0,0),D(0,-,0),E(,-,0),P(0,0,1). 設(shè)n=(x,y,z)為平面PEH的法向量, 因此可以取n=(1,,0). 由=(1,0,-1),可得|cos〈,n〉|=. 所以直線PA與平面PEH所成角的正弦值為. 【點(diǎn)撥】利用空間向量法求解問題時(shí),適當(dāng)建立空間坐標(biāo)系是關(guān)鍵,建立坐標(biāo)系時(shí)要抓住三條互相垂直且相交于一點(diǎn)的直線. 【變式訓(xùn)練3】過正三棱錐S-ABC的側(cè)棱SB與底面中心O作截面SBO,已知截面是等腰三角形,則側(cè)面與底面所成角的余弦值為( ) A. B. C.或 D.或 【解析】選C.取AC中點(diǎn)E,分SB=BE和SE=BE兩種情況討論. 總結(jié)提高 1.求兩異面直線所成的角,一般用平移法;但若需要補(bǔ)形,則用向量法較好. 2.在求空間角的問題上,向量法和幾何法各有所長,應(yīng)斟酌使用.- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高考數(shù)學(xué)一輪總復(fù)習(xí) 10.7 空間角及其求法教案 新人教A版 2019 2020 年高 數(shù)學(xué) 一輪 復(fù)習(xí) 空間 及其 求法 教案 新人
鏈接地址:http://m.szxfmmzy.com/p-2658836.html