2019-2020年高中數(shù)學 隨機變量及其分布列 版塊一 離散型隨機變量及其分布列2完整講義(學生版).doc
《2019-2020年高中數(shù)學 隨機變量及其分布列 版塊一 離散型隨機變量及其分布列2完整講義(學生版).doc》由會員分享,可在線閱讀,更多相關《2019-2020年高中數(shù)學 隨機變量及其分布列 版塊一 離散型隨機變量及其分布列2完整講義(學生版).doc(14頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學 隨機變量及其分布列 版塊一 離散型隨機變量及其分布列2完整講義(學生版) 知識內容 1. 離散型隨機變量及其分布列 ⑴離散型隨機變量 如果在試驗中,試驗可能出現(xiàn)的結果可以用一個變量來表示,并且是隨著試驗的結果的不同而變化的,我們把這樣的變量叫做一個隨機變量.隨機變量常用大寫字母表示. 如果隨機變量的所有可能的取值都能一一列舉出來,則稱為離散型隨機變量. ⑵離散型隨機變量的分布列 將離散型隨機變量所有可能的取值與該取值對應的概率列表表示: … … … … 我們稱這個表為離散型隨機變量的概率分布,或稱為離散型隨機變量的分布列. 2.幾類典型的隨機分布 ⑴兩點分布 如果隨機變量的分布列為 其中,,則稱離散型隨機變量服從參數(shù)為的二點分布. 二點分布舉例:某次抽查活動中,一件產品合格記為,不合格記為,已知產品的合格率為,隨機變量為任意抽取一件產品得到的結果,則的分布列滿足二點分布. 兩點分布又稱分布,由于只有兩個可能結果的隨機試驗叫做伯努利試驗,所以這種分布又稱為伯努利分布. ⑵超幾何分布 一般地,設有總數(shù)為件的兩類物品,其中一類有件,從所有物品中任取件,這件中所含這類物品件數(shù)是一個離散型隨機變量,它取值為時的概率為 ,為和中較小的一個. 我們稱離散型隨機變量的這種形式的概率分布為超幾何分布,也稱服從參數(shù)為,,的超幾何分布.在超幾何分布中,只要知道,和,就可以根據(jù)公式求出取不同值時的概率,從而列出的分布列. ⑶二項分布 1.獨立重復試驗 如果每次試驗,只考慮有兩個可能的結果及,并且事件發(fā)生的概率相同.在相同的條件下,重復地做次試驗,各次試驗的結果相互獨立,那么一般就稱它們?yōu)榇为毩⒅貜驮囼灒为毩⒅貜驮囼炛?,事件恰好發(fā)生次的概率為. 2.二項分布 若將事件發(fā)生的次數(shù)設為,事件不發(fā)生的概率為,那么在次獨立重復試驗中,事件恰好發(fā)生次的概率是,其中.于是得到的分布列 … … … … 由于表中的第二行恰好是二項展開式 各對應項的值,所以稱這樣的散型隨機變量服從參數(shù)為,的二項分布, 記作. 二項分布的均值與方差: 若離散型隨機變量服從參數(shù)為和的二項分布,則 ,. ⑷正態(tài)分布 1. 概率密度曲線:樣本數(shù)據(jù)的頻率分布直方圖,在樣本容量越來越大時, 直方圖上面的折線所接近的曲線.在隨機變量中,如果把樣本中的任一數(shù)據(jù)看作隨機變量,則這條曲線稱為的概率密度曲線. 曲線位于橫軸的上方,它與橫軸一起所圍成的面積是,而隨機變量落在指定的兩個數(shù)之間的概率就是對應的曲邊梯形的面積. 2.正態(tài)分布 ⑴定義:如果隨機現(xiàn)象是由一些互相獨立的偶然因素所引起的,而且每一個偶然因素在總體的變化中都只是起著均勻、微小的作用,則表示這樣的隨機現(xiàn)象的隨機變量的概率分布近似服從正態(tài)分布. 服從正態(tài)分布的隨機變量叫做正態(tài)隨機變量,簡稱正態(tài)變量. 正態(tài)變量概率密度曲線的函數(shù)表達式為,,其中,是參數(shù),且,. 式中的參數(shù)和分別為正態(tài)變量的數(shù)學期望和標準差.期望為、標準差為的正態(tài)分布通常記作. 正態(tài)變量的概率密度函數(shù)的圖象叫做正態(tài)曲線. ⑵標準正態(tài)分布:我們把數(shù)學期望為,標準差為的正態(tài)分布叫做標準正態(tài)分布. ⑶重要結論: ①正態(tài)變量在區(qū)間,,內,取值的概率分別是,,. ②正態(tài)變量在內的取值的概率為,在區(qū)間之外的取值的概率是,故正態(tài)變量的取值幾乎都在距三倍標準差之內,這就是正態(tài)分布的原則. ⑷若,為其概率密度函數(shù),則稱為概率分布函數(shù),特別的,,稱為標準正態(tài)分布函數(shù). . 標準正態(tài)分布的值可以通過標準正態(tài)分布表查得. 分布函數(shù)新課標不作要求,適當了解以加深對密度曲線的理解即可. 3.離散型隨機變量的期望與方差 1.離散型隨機變量的數(shù)學期望 定義:一般地,設一個離散型隨機變量所有可能的取的值是,,…,,這些值對應的概率是,,…,,則,叫做這個離散型隨機變量的均值或數(shù)學期望(簡稱期望). 離散型隨機變量的數(shù)學期望刻畫了這個離散型隨機變量的平均取值水平. 2.離散型隨機變量的方差 一般地,設一個離散型隨機變量所有可能取的值是,,…,,這些值對應的概率是,,…,,則叫做這個離散型隨機變量的方差. 離散型隨機變量的方差反映了離散隨機變量的取值相對于期望的平均波動的大?。x散程度). 的算術平方根叫做離散型隨機變量的標準差,它也是一個衡量離散型隨機變量波動大小的量. 3.為隨機變量,為常數(shù),則; 4. 典型分布的期望與方差: ⑴二點分布:在一次二點分布試驗中,離散型隨機變量的期望取值為,在次二點分布試驗中,離散型隨機變量的期望取值為. ⑵二項分布:若離散型隨機變量服從參數(shù)為和的二項分布,則,. ⑶超幾何分布:若離散型隨機變量服從參數(shù)為的超幾何分布, 則,. 4.事件的獨立性 如果事件是否發(fā)生對事件發(fā)生的概率沒有影響,即, 這時,我們稱兩個事件,相互獨立,并把這兩個事件叫做相互獨立事件. 如果事件,,…,相互獨立,那么這個事件都發(fā)生的概率,等于每個事件發(fā)生的概率的積,即,并且上式中任意多個事件換成其對立事件后等式仍成立. 5.條件概率 對于任何兩個事件和,在已知事件發(fā)生的條件下,事件發(fā)生的概率叫做條件概率,用符號“”來表示.把由事件與的交(或積),記做(或). 典例分析 離散型隨機分布列的性質 【例1】 袋中有大小相同的5個球,分別標有1,2,3,4,5五個號碼,現(xiàn)在在有放回抽取的條件下依次取出兩個球,設兩個球號碼之和為隨機變量,則所有可能取值的個數(shù)是( ) A.5 B.9 C.10 D.25 【例2】 下列表中能成為隨機變量的分布列的是 A. -1 0 1 0.3 0.4 0.4 B. 1 2 3 0.4 0.7 -0.1 C. -1 0 1 0.3 0.4 0.3 D. 1 2 3 0.3 0.4 0.4 【例3】 設離散型隨機變量的分布列為 0 1 2 3 4 0.2 0.1 0.1 0.3 0.3 求⑴的分布列;⑵的分布列. 【例4】 已知隨機變量的分布列為: 分別求出隨機變量的分布列. 【例5】 袋中有個大小規(guī)格相同的球,其中含有個紅球,從中任取個球,求取出的個球中紅球個數(shù)的概率分布. 【例6】 某人參加一次英語口語考試,已知在備選的10道試題中,能答對其中的6道題,規(guī)定每次考試都從備選題中隨機抽出3道題進行測試,求答對試題數(shù)的概率分布. 【例7】 盒中的零件有9個正品和3個次品,每次取一個零件,如果取出的次品不放回,求在取得正品前已取出的次品數(shù)的概率分布. 【例8】 有六節(jié)電池,其中有2只沒電,4只有電,每次隨機抽取一個測試,不放回,直至分清楚有電沒電為止,所要測試的次數(shù)為隨機變量,求的分布列. 【例9】 在10件產品中有2件次品,連續(xù)抽3次,每次抽1件,求: ⑴不放回抽樣時,抽到次品數(shù)的分布列; ⑵放回抽樣時,抽到次品數(shù)的分布列. 【例10】 設隨機變量所有可能取值為,且已知概率與成正比,求的分布. 【例11】 某一隨機變量的概率分布如下表,且,則的值為( ) A. B. C. D. 0 1 2 3 【例12】 設隨機變量的分布列為,則的值為( ) A .1 B. C. D. 【例13】 設是一個離散型隨機變量,其分布列如下表,求的值 -1 0 1 【例14】 隨機變量的概率分布規(guī)律為,其中是常數(shù),則的值為( ) A. B. C. D. 【例15】 一批產品分為一、二、三級,其中一級品是二級品的兩倍,三級品為二級品的一半,從這批產品中隨機抽取一個檢驗,其級別為隨機變量,則( ) A. B. C. D. 【例16】 某一射手射擊所得的環(huán)數(shù)ξ的分布列如下: 4 5 6 7 8 9 10 0.02 0.04 0.06 0.09 0.28 0.29 0.22 求此射手“射擊一次命中環(huán)數(shù)”的概率________. 【例17】 設隨機變量X的分布列是 X 1 2 3 P 1/3 1/2 1/6 求⑴;⑵. 【例18】 隨機變量的分布列,為常數(shù),則( ) A. B. C. D. 【例19】 設隨機變量的概率分布列為,其中為常數(shù),則的值為( ) A. B. C. D. 【例20】 設隨機變量的分布列為,求的取值. 【例21】 已知為離散型隨機變量的概率分布,求的取值. 【例22】 若,,其中,則等于( ) A. B. C. D. 【例23】 甲乙兩名籃球運動員輪流投籃直至有人投中為止,設每次投籃甲投中的概率為,乙投中的概率為,而且每次不受其他次投籃結果的影響,甲投籃的次數(shù)為,若甲先投,則_________. 【例24】 某人的興趣小組中,有名三好生,現(xiàn)從中任意選人參加競賽,用表示這人中三好生的人數(shù),則________. 【例25】 設隨機變量的分布列如下: … … 求常數(shù)的值. 【例26】 設隨機變量等可能的取值,如果,那么( ) A. B. C. D. 【例27】 設隨機變量的概率分布列為,則的值是( ) A. B. C. D. 【例28】 已知隨機變量的分布列為,則 . 【例29】 設隨機變量的概率分布是,為常數(shù),,則( ) A. B. C. D. 離散型隨機分布列的計算 【例30】 在第路公共汽車都要依靠的一個站(假設這個站只能??恳惠v汽車),有一位乘客等候第路或第路汽車.假定當時各路汽車首先到站的可能性都是相等,則首先到站正好是這位乘客所需求的汽車的概率等于 . 【例31】 在個村莊中有個村莊交通不便,現(xiàn)從中任意選取個村莊,其中有個村莊交通不便,下列概率中等于的是( ) A. B. C. D. 【例32】 已知隨機量服從正態(tài)分布,且,則( ) A. B. C. D. 【例33】 某校設計了一個實驗學科的實驗考查方案:考生從6道備選題中一次性隨機抽取3題,按照題目要求獨立完成全部實驗操作.規(guī)定:至少正確完成其中2題的便可提高通過.已知6道備選題中考生甲有4題能正確完成,2題不能完成;考生乙每題正確完成的概率都是,且每題正確完成與否互不影響.分別寫出甲、乙兩考生正確完成題數(shù)的概率分布列. 【例34】 一盒中放有大小相同的紅色、綠色、黃色三種小球,已知紅球個數(shù)是綠球個數(shù)的兩倍,黃球個數(shù)是綠球個數(shù)的一半.現(xiàn)從該盒中隨機取出一個球,若取出紅球得1分,取出黃球得0分,取出綠球得分,試寫出從該盒中取出一球所得分數(shù)的分布列,并求出所得分數(shù)不為0的概率. 【例35】 旅游公司為3個旅游團提供4條旅游線路,每個旅游團任選其中一條.求選擇甲線路旅游團數(shù)的分布列. 【例36】 甲、乙等五名奧運志愿者被隨機地分到四個不同的崗位服務,每個崗位至少有一名志愿者. ⑴ 求甲、乙兩人同時參加崗位服務的概率; ⑵ 求甲、乙兩人不在同一個崗位服務的概率; ⑶ 設隨機變量為這五名志愿者中參加崗位服務的人數(shù),求的分布列. 【例37】 某食品廠為了檢查一條自動包裝流水線的生產情況,隨機抽取該流水線上的件產品作為樣本稱出它們的重量(單位:克),重量的分組區(qū)間為,,……,,由此得到樣本的頻率分布直方圖,如圖4所示. ⑴ 根據(jù)頻率分布直方圖,求重量超過克的產品數(shù)量. ⑵ 在上述抽取的件產品中任取件,設為重量超過克的產品數(shù)量,求的分布列; ⑶ 從該流水線上任取件產品,求恰有件產品的重量超過克的概率. 【例38】 甲與乙兩人擲硬幣,甲用一枚硬幣擲次,記國徽面(記為正面)朝上的次數(shù)為隨機變量;乙用一枚硬幣擲次,記國徽面(記為正面)朝上的次數(shù)為隨機變量. ⑴求隨機變量與的分布列; ⑵求甲得到的正面朝上的次數(shù)不少于的概率. ⑶求甲與乙得到的正面朝上的次數(shù)之和為的概率; ⑷求甲得到的正面朝上的次數(shù)大于乙的概率. 【例39】 一袋中裝有編號為的個大小相同的球,現(xiàn)從中隨機取出個球,以表示取出的最大號碼. ⑴ 求的概率分布;⑵ 求的概率. 【例40】 袋中裝有黑球和白球共個,從中任取個球都是白球的概率為,現(xiàn)有甲、乙兩人從袋中輪流摸取球,甲先取,乙后取,然后甲再取……取后不放回,直到兩人中有一人取到白球時即終止,每個球在每一次被取出的機會是等可能的,用表示取球終止所需要的取球次數(shù). ⑴ 求袋中所有的白球的個數(shù); ⑵ 求隨機變量的概率分布; ⑶ 求甲取到白球的概率. 【例41】 一個袋中有個球,編號為,在其中同時取3個球,以表示取出的個球中的最大號碼,試求的概率分布列以及最大號碼不小于4的概率. 【例42】 對于正整數(shù),用表示關于的一元二次方程有實數(shù)根的有序數(shù)組的組數(shù),其中(和可以相等);對于隨機選取的(和可以相等),記為關于的一元二次方程有實數(shù)根的概率. ⑴求及;⑵求證:對任意正整數(shù),有. 【例43】 某種電子玩具按下按鈕后,會出現(xiàn)紅球或綠球,已知按鈕第一次按下后,出現(xiàn)紅球與綠球的概率都是,從按鈕第二次按下起,若前次出現(xiàn)紅球,則下一次出現(xiàn)紅球、綠球的概率分別為;若前次出現(xiàn)綠球,則下一次出現(xiàn)紅球、綠球的概率分別為;記 第次按下按鈕后出現(xiàn)紅球的概率為. ⑴求的值; ⑵當時,求用表示的表達式; ⑶求關于的表達式.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高中數(shù)學 隨機變量及其分布列 版塊一 離散型隨機變量及其分布列2完整講義學生版 2019 2020 年高 數(shù)學 隨機變量 及其 分布 版塊 離散 完整 講義 學生
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.szxfmmzy.com/p-2629802.html