2019-2020年高考數(shù)學 第九篇 第3講 直線與圓、圓與圓的位置關系限時訓練 新人教A版.doc
《2019-2020年高考數(shù)學 第九篇 第3講 直線與圓、圓與圓的位置關系限時訓練 新人教A版.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高考數(shù)學 第九篇 第3講 直線與圓、圓與圓的位置關系限時訓練 新人教A版.doc(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學 第九篇 第3講 直線與圓、圓與圓的位置關系限時訓練 新人教A版 一、選擇題(每小題5分,共20分) 1.(xx福建)直線x+y-2=0與圓x2+y2=4相交于A,B兩點,則弦AB的長度等于 ( ). A.2 B.2 C. D.1 解析 由題意作出圖象如圖,由圖可知圓心O到直線AB的距離d==1,故|AB|=2|BC|=2=2. 答案 B 2.(xx安徽)若直線x-y+1=0與圓(x-a)2+y2=2有公共點,則實數(shù)a的取值范圍是 ( ). A.[-3,-1] B.[-1,3] C.[-3,1] D.(-∞,-3]∪[1,+∞) 解析 由題意可得,圓的圓心為(a,0),半徑為, ∴≤,即|a+1|≤2,解得-3≤a≤1. 答案 C 3.(xx濰坊模擬)若圓x2+y2=r2(r>0)上僅有4個點到直線x-y-2=0的距離為1,則實數(shù)r的取值范圍是 ( ). A.(+1,+∞) B.(-1,+1) C.(0,-1) D.(0,+1) 解析 計算得圓心到直線l的距離為=>1,得到右邊草圖.直線l:x-y-2=0與圓相交,l1,l2與l平行,且與直線l的距離為1,故可以看出,圓的半徑應該大于圓心到直線l2的距離+1,故選A. 答案 A 4.(xx銀川一模)若圓C1:x2+y2+2ax+a2-4=0(a∈R)與圓C2:x2+y2-2by-1+b2=0(b∈R)恰有三條切線,則a+b的最大值為 ( ). A.-3 B.-3 C.3 D.3 解析 易知圓C1的圓心為C1(-a,0),半徑為r1=2; 圓C2的圓心為C2(0,b),半徑為r2=1. ∵兩圓恰有三條切線,∴兩圓外切, ∴|C1C2|=r1+r2,即a2+b2=9.∵2≤, ∴a+b≤3(當且僅當a=b=時取“=”), ∴a+b的最大值為3. 答案 D 二、填空題(每小題5分,共10分) 5.(xx北京)直線y=x被圓x2+(y-2)2=4截得的弦長為________. 解析 由題意得,圓x2+(y-2)2=4的圓心為(0,2),半徑為2,圓心到直線x-y=0的距離d==. 設截得的弦長為l,則由2+()2=22,得l=2. 答案 2 6.(xx江蘇)設集合A=(x,y)(x-2)2+y2≤m2,x,y∈R,B={(x,y)|2m≤x+y≤2m+1,x,y∈R},若A∩B=?,則實數(shù)m的取值范圍是________. 解析 ∵A∩B≠?,∴A≠?, ∴m2≥.∴m≥或m≤0.顯然B≠?. 要使A∩B≠?,只需圓(x-2)2+y2=m2(m≠0)與x+y=2m或x+y=2m+1有交點,即≤|m|或≤|m|,∴≤m≤2+. 又∵m≥或m≤0,∴≤m≤2+. 當m=0時,(2,0)不在0≤x+y≤1內(nèi). 綜上所述,滿足條件的m的取值范圍為. 答案 三、解答題(共25分) 7.(12分)已知:圓C:x2+y2-8y+12=0,直線l:ax+y+2a=0. (1)當a為何值時,直線l與圓C相切; (2)當直線l與圓C相交于A,B兩點,且|AB|=2時,求直線l的方程. 解 將圓C的方程x2+y2-8y+12=0化成標準方程為x2+(y-4)2=4,則此圓的圓心為(0,4),半徑為2. (1)若直線l與圓C相切,則有=2,解得a=-. (2)過圓心C作CD⊥AB,則根據(jù)題意和圓的性質(zhì), 得 解得a=-7或a=-1. 故所求直線方程為7x-y+14=0或x-y+2=0. 8.(13分)已知圓C經(jīng)過P(4,-2),Q(-1,3)兩點,且在y軸上截得的線段長為4,半徑小于5. (1)求直線PQ與圓C的方程; (2)若直線l∥PQ,且l與圓C交于點A,B且以線段AB為直徑的圓經(jīng)過坐標原點,求直線l的方程. 解 (1)直線PQ的方程為:x+y-2=0, 設圓心C(a,b)半徑為r, 由于線段PQ的垂直平分線的方程是y-=x-, 即y=x-1,所以b=a-1. ① 又由在y軸上截得的線段長為4,知r2=12+a2, 可得(a+1)2+(b-3)2=12+a2, ② 由①②得:a=1,b=0或a=5,b=4. 當a=1,b=0時,r2=13滿足題意, 當a=5,b=4時,r2=37不滿足題意, 故圓C的方程為(x-1)2+y2=13. (2)設直線l的方程為y=-x+m,A(x1,m-x1),B(x2,m-x2), 由題意可知OA⊥OB,即=0, ∴x1x2+(m-x1)(m-x2)=0, 化簡得2x1x2-m(x1+x2)+m2=0. ③ 由得2x2-2(m+1)x+m2-12=0, ∴x1+x2=m+1,x1x2=. 代入③式,得m2-m(1+m)+m2-12=0, ∴m=4或m=-3,經(jīng)檢驗都滿足判別式Δ>0, ∴y=-x+4或y=-x-3. B級 能力突破(時間:30分鐘 滿分:45分) 一、選擇題(每小題5分,共10分) 1.(xx南昌模擬)若曲線C1:x2+y2-2x=0與曲線C2:y(y-mx-m)=0有四個不同的交點,則實數(shù)m的取值范圍是 ( ). A. B.∪ C. D.∪ 解析 C1:(x-1)2+y2=1,C2:y=0或y=mx+m=m(x+1). 當m=0時,C2:y=0,此時C1與C2顯然只有兩個交點; 當m≠0時,要滿足題意,需圓(x-1)2+y2=1與直線y=m(x+1)有兩交點,當圓與直線相切時,m=,即直線處于兩切線之間時滿足題意, 則-- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高考數(shù)學 第九篇 第3講 直線與圓、圓與圓的位置關系限時訓練 新人教A版 2019 2020 年高 數(shù)學 第九 直線 位置 關系 限時 訓練 新人
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.szxfmmzy.com/p-2456185.html