《高考數學二輪復習 題型練4 大題專項2 文-人教版高三數學試題》由會員分享,可在線閱讀,更多相關《高考數學二輪復習 題型練4 大題專項2 文-人教版高三數學試題(7頁珍藏版)》請在裝配圖網上搜索。
1、題型練4 大題專項(二)
數列的通項、求和問題
1.(2019湖北4月調研,17)已知數列{an}滿足a2-a1=1,其前n項和為Sn,當n≥2時,Sn-1-1,Sn,Sn+1成等差數列.
(1)求證{an}為等差數列;
(2)若Sn=0,Sn+1=4,求n.
2.(2019吉林實驗中學檢測,17)已知等差數列{an}滿足a4=7,2a3+a5=19.
(1)求an;
(2)設{bn-an}是首項為2,公比為2的等比數列,求數列{bn}的通項公式及前n項和Tn.
3.設{an}是等差數列,且a1=ln 2,a2+a3=5ln 2.
(1
2、)求{an}的通項公式.
(2)求ea1+ea2+…+ean.
4.已知等差數列{an}的前n項和為Sn,公比為q的等比數列{bn}的首項是12,且a1+2q=3,a2+4b2=6,S5=40.
(1)求數列{an},{bn}的通項公式an,bn;
(2)求數列1anan+1+1bnbn+1的前n項和Tn.
5.已知函數f(x)=7x+5x+1,數列{an}滿足:2an+1-2an+an+1an=0,且anan+1≠0.在數列{bn}中,b1=f(0),且bn=f(an-1).
(1)求證:數列1an是等差數列;
(2)求數列{|bn|}的
3、前n項和Tn.
6.已知等比數列{an}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中項.數列{bn}滿足b1=1,數列{(bn+1-bn)an}的前n項和為2n2+n.
(1)求q的值;
(2)求數列{bn}的通項公式.
題型練4 大題專項(二)
數列的通項、求和問題
1.(1)證明當n≥2時,由Sn-1-1,Sn,Sn+1成等差數列,可知2Sn=Sn-1-1+Sn+1,
即Sn-Sn-1=-1+Sn+1-Sn,
即an=-1+an+1(n≥2),則an+1-an=1(n≥2),
又a2-a1=1,故{an}是公差為1的等差數列.
(
4、2)解由(1)知等差數列{an}的公差為1.
由Sn=0,Sn+1=4,得an+1=4,即a1+n=4.
由Sn=0,得na1+n(n-1)2=0,
即a1+n-12=0,解得n=7.
2.解(1)由題意得a1+3d=7,2(a1+2d)+a1+4d=19,解得a1=1,d=2.
∴an=1+2(n-1)=2n-1.
(2)由題意可知bn-an=2n,
∴bn=2n+2n-1,
∴Tn=(2+22+…+2n)+[1+3+…+(2n-1)],
∴Tn=2n+1+n2-2.
3.解(1)設等差數列{an}的公差為d,
∵a2+a3=5ln2.
∴2a1+3d=5ln2,
5、又a1=ln2,∴d=ln2.
∴an=a1+(n-1)d=nln2.
(2)由(1)知an=nln2.
∵ean=enln2=eln2n=2n,
∴{ean}是以2為首項,2為公比的等比數列.
∴ea1+ea2+…+ean
=2+22+…+2n
=2n+1-2.
∴ea1+ea2+…+ean=2n+1-2.
4.解(1)設{an}公差為d,由題意得a1+2d=8,a1+2q=3,a1+d+2q=6,解得a1=2,d=3,q=12,故an=3n-1,bn=12n.
(2)∵1anan+1+1bnbn+1=131an-1an+1+1bnbn+1=131an-1an+1+22n
6、+1,
∴Tn=1312-15+15-18+…+13n-1-13n+2+8(1-4n)1-4=1312-13n+2+13(22n+3-8)=1322n+3-13n+2?52.
5.(1)證明∵2an+1-2an+an+1an=0,∴1an+1?1an=12,
故數列1an是以12為公差的等差數列.
(2)解∵b1=f(0)=5,
∴7(a1-1)+5a1-1+1=5,7a1-2=5a1,
∴a1=1,1an=1+(n-1)·12,
∴an=2n+1,bn=7an-2an=7-(n+1)=6-n.
當n≤6時,Tn=n2(5+6-n)=n(11-n)2;
當n≥7時,Tn=15
7、+n-62(1+n-6)=n2-11n+602.故Tn=n(11-n)2,n≤6,n2-11n+602,n≥7.
6.解(1)由a4+2是a3,a5的等差中項,得a3+a5=2a4+4,所以a3+a4+a5=3a4+4=28,解得a4=8.
由a3+a5=20,得8q+1q=20,
解得q=2或q=12,
因為q>1,所以q=2.
(2)設cn=(bn+1-bn)an,數列{cn}前n項和為Sn,
由cn=S1,n=1,Sn-Sn-1,n≥2,解得cn=4n-1.
由(1)可知an=2n-1,
所以bn+1-bn=(4n-1)·12n-1.
故bn-bn-1=(4n-5)·12n-2,n≥2,
bn-b1=(bn-bn-1)+(bn-1-bn-2)+…+(b3-b2)+(b2-b1)
=(4n-5)·12n-2+(4n-9)·12n-3+…+7·12+3.
設Tn=3+7·12+11·122+…+(4n-5)·12n-2,n≥2,
12Tn=3·12+7·122+…+(4n-9)·12n-2+(4n-5)·12n-1,
所以12Tn=3+4·12+4·122+…+4·12n-2-(4n-5)·12n-1,
因此Tn=14-(4n+3)·12n-2,n≥2,
又b1=1,所以bn=15-(4n+3)·12n-2.