九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

高考數(shù)學(xué)二輪專題復(fù)習(xí)與策略 第1部分 專題1 三角函數(shù)與平面向量 突破點2 解三角形教師用書 理-人教版高三數(shù)學(xué)試題

上傳人:文*** 文檔編號:238067395 上傳時間:2023-12-26 格式:DOC 頁數(shù):18 大?。?05.50KB
收藏 版權(quán)申訴 舉報 下載
高考數(shù)學(xué)二輪專題復(fù)習(xí)與策略 第1部分 專題1 三角函數(shù)與平面向量 突破點2 解三角形教師用書 理-人教版高三數(shù)學(xué)試題_第1頁
第1頁 / 共18頁
高考數(shù)學(xué)二輪專題復(fù)習(xí)與策略 第1部分 專題1 三角函數(shù)與平面向量 突破點2 解三角形教師用書 理-人教版高三數(shù)學(xué)試題_第2頁
第2頁 / 共18頁
高考數(shù)學(xué)二輪專題復(fù)習(xí)與策略 第1部分 專題1 三角函數(shù)與平面向量 突破點2 解三角形教師用書 理-人教版高三數(shù)學(xué)試題_第3頁
第3頁 / 共18頁

本資源只提供3頁預(yù)覽,全部文檔請下載后查看!喜歡就下載吧,查找使用更方便

10 積分

下載資源

資源描述:

《高考數(shù)學(xué)二輪專題復(fù)習(xí)與策略 第1部分 專題1 三角函數(shù)與平面向量 突破點2 解三角形教師用書 理-人教版高三數(shù)學(xué)試題》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)二輪專題復(fù)習(xí)與策略 第1部分 專題1 三角函數(shù)與平面向量 突破點2 解三角形教師用書 理-人教版高三數(shù)學(xué)試題(18頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、突破點2 解三角形 (對應(yīng)學(xué)生用書第167頁) 提煉1 常見解三角形的題型及解法 (1)已知兩角及一邊,利用正弦定理求解. (2)已知兩邊及一邊的對角,利用正弦定理或余弦定理求解,解的情況可能不唯一. (3)已知兩邊及其夾角,利用余弦定理求解. (4)已知三邊,利用余弦定理求解. 提煉2 三角形形狀的判斷 (1)從邊出發(fā),全部轉(zhuǎn)化為邊之間的關(guān)系進行判斷. (2)從角出發(fā),全部轉(zhuǎn)化為角之間的關(guān)系,然后進行恒等變形,再判斷. 注意:要靈活選用正弦定理或余弦定理,且在變形的時候要注意方程的同解性,如方程兩邊同除以一個數(shù)時要注意該數(shù)是否為零,避免漏解. 提煉3 三角

2、形的常用面積公式 設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c ,其面積為S. (1)S=aha=bhb=chc(ha,hb,hc分別表示a,b,c邊上的高). (2)S=absin C=bcsin A=casin B. (3)S=r(a+b+c)(r為三角形ABC內(nèi)切圓的半徑). 回訪1 正、余弦定理的應(yīng)用 1.(2016·山東高考)△ABC中,角A,B,C的對邊分別是a,b,c.已知b=c,a2=2b2(1-sin A),則A=(  ) A.    B.    C.    D. C [∵b=c,∴B=C. 又由A+B+C=π得B=-. 由正弦定理及a2=2b2

3、(1-sin A)得 sin2A=2sin2B(1-sin A), 即sin2A=2sin2(1-sin A), 即sin2A=2cos2(1-sin A), 即4sin2cos2=2cos2(1-sin A), 整理得cos2=0, 即cos2(cos A-sin A)=0. ∵0

4、=, ∴=. ∵A為三角形的內(nèi)角,∴sin A≠0, ∴cos A=. 又0<A<π,∴A=,∴B=2A=. ∴C=π-A-B=,∴△ABC為直角三角形. 由勾股定理得c==2.] 3.(2016·全國甲卷)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若cos A=,cos C=,a=1,則b=________.  [在△ABC中,∵cos A=,cos C=, ∴sin A=,sin C=,∴sin B=sin(A+C)=sin Acos C+cos Asin C=×+×=. 又∵=,∴b===.] 回訪2 三角形的面積問題 4.(2014·全國卷Ⅱ)鈍角三角形A

5、BC的面積是,AB=1,BC=,則AC=(  ) A.5 B. C.2 D.1 B [∵S=AB·BCsin B=×1×sin B=, ∴sin B=,∴B=或. 當B=時,根據(jù)余弦定理有AC2=AB2+BC2-2AB·BCcos B=1+2+2=5,∴AC=,此時△ABC為鈍角三角形,符合題意; 當B=時,根據(jù)余弦定理有AC2=AB2+BC2-2AB·BCcos B=1+2-2=1,∴AC=1,此時AB2+AC2=BC2,△ABC為直角三角形,不符合題意.故AC=.] 5.(2014·全國卷Ⅰ)已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,a=2,且(2+b)(si

6、n A-sin B)=(c-b)sin C,則△ABC面積的最大值為________.  [∵===2R,a=2, 又(2+b)(sin A-sin B)=(c-b)sin C可化為 (a+b)(a-b)=(c-b)·c, ∴a2-b2=c2-bc,∴b2+c2-a2=bc. ∴===cos A,∴∠A=60°. ∵△ABC中,4=a2=b2+c2-2bc·cos 60°=b2+c2-bc≥2bc-bc=bc(“=”當且僅當b=c時取得), ∴S△ABC=·bc·sin A≤×4×=.] 回訪3 正、余弦定理的實際應(yīng)用 6.(2014·全國卷Ⅰ)如圖2-1,為測量山高MN,選

7、擇A和另一座山的山頂C為測量觀測點.從A點測得M點的仰角∠MAN=60°,C點的仰角∠CAB=45°以及∠MAC=75°;從C點測得∠MCA=60°.已知山高BC=100 m,則山高MN=________m. 圖2-1 150 [根據(jù)圖示,AC=100 m. 在△MAC中,∠CMA=180°-75°-60°=45°. 由正弦定理得=?AM=100 m. 在△AMN中,=sin 60°, ∴MN=100×=150(m).] (對應(yīng)學(xué)生用書第167頁) 熱點題型1 正、余弦定理的應(yīng)用 題型分析:利用正、余弦定理解題是歷年高考的熱點,也是必考點,求解的關(guān)鍵是合理應(yīng)用正、余弦

8、定理實現(xiàn)邊角的互化.  (2016·四川高考)在△ABC中,角A,B,C所對的邊分別是a,b,c,且+=. (1)證明:sin Asin B=sin C; (2)若b2+c2-a2=bc,求tan B. [解] (1)證明:根據(jù)正弦定理,可設(shè)===k(k>0). 則a=ksin A,b=ksin B,c=ksin C, 代入+=中,有 +=,2分 即sin Asin B=sin Acos B+cos Asin B=sin(A+B).4分 在△ABC中,由A+B+C=π, 有sin(A+B)=sin(π-C)=sin C, 所以sin Asin B=sin C.6分 (2

9、)由已知,b2+c2-a2=bc,根據(jù)余弦定理,有 cos A==,8分 所以sin A==.9分 由(1)知sin Asin B=sin Acos B+cos Asin B, 所以sin B=cos B+ sin B,11分 故tan B==4.12分 關(guān)于解三角形問題,一般要用到三角形的內(nèi)角和定理,正、余弦定理及有關(guān)三角形的性質(zhì),常見的三角變換方法和原則都適用,同時要注意“三統(tǒng)一”,即“統(tǒng)一角、統(tǒng)一函數(shù)、統(tǒng)一結(jié)構(gòu)”,這是使問題獲得解決的突破口. [變式訓(xùn)練1] (1)(2016·威海二模)已知等腰△ABC滿足AB=AC,BC=2AB,點D為BC邊上一點且AD=BD,則

10、sin∠ADB的值為(  ) 【導(dǎo)學(xué)號:67722013】 A.    B.    C.    D. C [如圖,設(shè)AB=AC=a,AD=BD=b, 由BC=2AB,得BC=a, 在△ABC中,由余弦定理得, cos∠ABC===. ∵AB=AC,∴∠ABC是銳角, 則sin∠ABC==, 在△ABD中,由余弦定理得AD2=AB2+BD2-2·AB·BD·cos∠ABD, ∴b2=a2+b2-2·a·b·,解得a=b, 由正弦定理得,=, ∴=,解得sin∠ADB=.] (2)在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且acos B+bcos(B+C)=

11、0. ①證明:△ABC為等腰三角形; ②若2(b2+c2-a2)=bc,求cos B+cos C的值. [解]?、僮C明:∵acos B+bcos (B+C)=0, ∴由正弦定理得sin Acos B+sin Bcos(π-A)=0, 即sin Acos B-sin Bcos A=0,3分 ∴sin(A-B)=0,∴A-B=kπ,k∈Z.4分 ∵A,B是△ABC的兩內(nèi)角, ∴A-B=0,即A=B,5分 ∴△ABC是等腰三角形.6分 ②由2(b2+c2-a2)=bc, 得=,7分 由余弦定理得cos A=,8分 cos C=cos(π-2A)=-cos 2A=1-2cos

12、2 A=.10分 ∵A=B,∴cos B=cos A=,11分 ∴cos B+cos C=+=.12分 熱點題型2 三角形面積的求解問題 題型分析:三角形面積的計算及與三角形面積有關(guān)的最值問題是解三角形的重要命題點之一,本質(zhì)上還是考查利用正、余弦定理解三角形,難度中等.  (2015·山東高考)設(shè)f(x)=sin xcos x-cos2. (1)求f(x)的單調(diào)區(qū)間; (2)在銳角△ABC中,角A,B,C的對邊分別為a,b,c.若f=0,a=1,求△ABC面積的最大值. 【解題指導(dǎo)】 (1) ―→ (2) [解] (1)由題意知 f(x)=- =-=sin 2x-

13、.2分 由-+2kπ≤2x≤+2kπ,k∈Z,可得-+kπ≤x≤+kπ,k∈Z.由+2kπ≤2x≤+2kπ,k∈Z,可得+kπ≤x≤+kπ,k∈Z.4分 所以f(x)的單調(diào)遞增區(qū)間是-+kπ,+kπ(k∈Z);單調(diào)遞減區(qū)間是(k∈Z).6分 (2)由f=sin A-=0,得sin A=,7分 由題意知A為銳角,所以cos A=.8分 由余弦定理a2=b2+c2-2bccos A,可得1+bc=b2+c2≥2bc,10分 即bc≤2+,當且僅當b=c時等號成立. 因此bcsin A≤, 所以△ABC面積的最大值為.12分 1.在研究三角函數(shù)的圖象與性質(zhì)時常先將函數(shù)的解析式利

14、用三角恒等變換轉(zhuǎn)化為y=Asin(ωx+φ)+B(或y=Acos(ωx+φ)+B,y=Atan(ωx+φ)+B)的形式,進而利用函數(shù)y=sin x(或y=cos x,y=tan x)的圖象與性質(zhì)解決問題. 2.在三角形中,正、余弦定理可以實現(xiàn)邊角互化,尤其在余弦定理a2=b2+c2-2bccos A中,有a2+c2和ac兩項,二者的關(guān)系a2+c2=(a+c)2-2ac經(jīng)常用到,有時還可利用基本不等式求最值. [變式訓(xùn)練2] (2016·淄博模擬)在△ABC中,角A,B,C的對邊分別為a,b,c,a+=4cos C,b=1. (1)若sin C=,求a,c; (2)若△ABC是直角三

15、角形,求△ABC的面積. [解] (1)∵sin C=,∴cos2C=1-sin2C=,cos C=.1分 ∵4cos C=a+, ∴=a+,解得a=或a=.3分 又+a=4cos C=4×=4×, ∴a2+1=2(a2+1-c2),即2c2=a2+1.5分 ∴當a=時,c=2;當a=時,c=.6分 (2)由(1)可知2c2=a2+1. 又△ABC為直角三角形,C不可能為直角. ①若角A為直角,則a2=b2+c2=c2+1, ∴2c2-1=c2+1, ∴c=,a=,8分 ∴S=bc=×1×=.9分 ②若角B為直角,則b2=a2+c2,a2+c2=1. ∴2c2=a2

16、+1=(1-c2)+1, ∴c2=,a2=,即c=,a=,11分 ∴S=ac=××=.12分 專題限時集訓(xùn)(二) 解三角形 [建議A、B組各用時:45分鐘] [A組 高考達標] 一、選擇題 1.(2016·煙臺模擬)在△ABC中,角A,B,C所對的邊分別為a,b,c,若=,則cos B=(  ) A.- B. C.- D. B [由正弦定理,得==,即sin B=cos B,∴tan B=.又0

17、722014】 A.    B.    C.2    D.4 C [由正弦定理得sin Bsin A-sin Acos B=0.∵sin A≠0,∴sin B-cos B=0,∴tan B=.又0<B<π,∴B=. 由余弦定理得b2=a2+c2-2accos B=a2+c2-ac,即b2=(a+c)2-3ac. 又b2=ac,∴4b2=(a+c)2,解得=2.故選C.] 3.(2016·臨沂模擬)在△ABC中,cos A=,3sin B=2sin C,且△ABC的面積為2,則邊BC的長度為(  ) A.2    B.3    C.2    D. B [由cos A=得sin

18、A=,由S△ABC=bcsin A=2, 得bc=6,又由3sin B=2sin C,得3b=2c. 解方程組得 由余弦定理得a2=b2+c2-2bccos A=22+32-2×6×=9, ∴a=3,即BC=3.] 4.(2016·河北武邑中學(xué)期中)在△ABC中,c=,b=1,∠B=,則△ABC的形狀為(  ) A.等腰直角三角形 B.直角三角形 C.等邊三角形 D.等腰三角形或直角三角形 D [根據(jù)余弦定理有1=a2+3-3a,解得a=1或a=2,當a=1時,三角形ABC為等腰三角形,當a=2時,三角形ABC為直角三角形,故選D.] 5.(2016·??谡{(diào)研)如圖2-2

19、,在△ABC中,C=,BC=4,點D在邊AC上,AD=DB,DE⊥AB,E為垂足.若DE=2,則cos A=(  ) 圖2-2 A.       B. C. D. C [∵DE=2,∴BD=AD==.∵∠BDC=2∠A,在△BCD中,由正弦定理得=,∴=×=,∴cos A=,故選C.] 二、填空題 6.(2016·石家莊一模)已知△ABC中,AC=4,BC=2,∠BAC=60°,AD⊥BC于點D,則的值為__________. 【導(dǎo)學(xué)號:67722015】 6 [在△ABC中,由余弦定理可得BC2=AC2+AB2-2AC·ABcos∠BAC,即28=16+AB2-4AB,解得

20、AB=6或AB=-2(舍),則cos ∠ABC==,BD=AB·cos∠ABC=6×=,CD=BC-BD=2-=,所以=6.] 7.(2016·湖北七州聯(lián)考)如圖2-3,為了估測某塔的高度,在同一水平面的A,B兩點處進行測量,在點A處測得塔頂C在西偏北20°的方向上,仰角為60°;在點B處測得塔頂C在東偏北40°的方向上,仰角為30°.若A,B兩點相距130 m,則塔的高度CD=__________m. 圖2-3 10 [分析題意可知,設(shè)CD=h,則AD=,BD=h,在△ADB中,∠ADB=180°-20°-40°=120°,由余弦定理AB2=BD2+AD2-2BD·AD·cos 1

21、20°,可得1302=3h2+-2·h··,解得h=10,故塔的高度為10 m.] 8.(2016·合肥二模)如圖2-4,△ABC中,AB=4,BC=2,∠ABC=∠D=60°,若△ADC是銳角三角形,則DA+DC的取值范圍是__________. 圖2-4 (6,4] [在△ABC中,由余弦定理得AC2=AB2+BC2-2AB·BCcos∠ABC=12,即AC=2.設(shè)∠ACD=θ(30°<θ<90°),則在△ADC中,由正弦定理得==,則DA+DC=4[sin θ+sin(120°-θ)]=4=4sin(θ+30°),而60°<θ+30°<120°,4sin 60°

22、sin 90°,即6

23、 由c<a,得C<A,從而cos C=,8分 故sin B=sin(A+C)=sin Acos C+cos Asin C =×+×=,10分 所以△ABC的面積為S=acsin B=×××=(+).12分 10.(2016·東北三省四市聯(lián)考)在△ABC中,角A,B,C的對邊分別為a,b,c,已知=. (1)求的值; (2)若角A是鈍角,且c=3,求b的取值范圍. [解] (1)由題意及正弦定理得sin Ccos B-2sin Ccos A=2sin Acos C-sin Bcos C,1分 ∴sin Ccos B+sin Bcos C=2(sin Ccos A+sin A c

24、os C), ∴sin(B+C)=2sin(A+C).3分 ∵A+B+C=π,4分 ∴sin A=2sin B,∴=2.5分 (2)由余弦定理得cos A===<0, ∴b>.①8分 ∵b+c>a,即b+3>2b,∴b<3,②10分 由①②得b的取值范圍是(,3).12分 [B組 名校沖刺] 一、選擇題 1.(2016·濰坊模擬)已知△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且acos B+bcos A=3ccos C,則cos C的值為(  ) A.     B.     C.     D. B [由acos B+bcos A=3ccos C得sin Aco

25、s B+cos Asin B=3sin Ccos C, 即sin(A+B)=3sin Ccos C,即sin C=3sin Ccos C, 所以cos C=.] 2.(2016·全國丙卷)在△ABC中,B=,BC邊上的高等于BC,則cos A= (  ) A. B. C.- D.- C [法一:設(shè)△ABC中角A,B,C所對的邊分別為a,b,c, 則由題意得S△ABC=a·a=acsin B,∴c=a. 由余弦定理得b2=a2+c2-2accos B=a2+a2-2×a×a×=a2,∴b=a. ∴cos A===-.故選C. 法二:同法一得c=a. 由正弦定理得sin C

26、=sin A, 又B=,∴sin C=sin=sin A,即cos A+sin A=sin A,∴tan A=-3,∴A為鈍角. 又∵1+tan2A=,∴cos2A=, ∴cos A=-.故選C.] 3.設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.若三邊的長為連續(xù)的三個正整數(shù),且A>B>C,3b=20acos A,則sin A∶sin B∶sin C=(  ) A.4∶3∶2 B.5∶6∶7 C.5∶4∶3 D.6∶5∶4 D [∵A>B>C,∴a>b>c. 又∵a,b,c為連續(xù)的三個正整數(shù), ∴設(shè)a=n+1,b=n,c=n-1(n≥2,n∈N*). ∵3b=20ac

27、os A,∴=cos A, ∴=, =, 即=, 化簡得7n2-27n-40=0,(n-5)(7n+8)=0, ∴n=5. 又∵==, ∴sin A∶sin B∶sin C=a∶b∶c=6∶5∶4. 故選D.] 4.在△ABC中,角A,B,C所對的邊長分別為a,b,c,且滿足csin A=acos C,則sin A+sin B的最大值是(  ) A.1 B. C.3 D. D [∵csin A=acos C,∴sin Csin A=sin Acos C. ∵sin A≠0,∴tan C=, ∵0<C<π,∴C=, ∴sin A+sin B=sin A+sin=si

28、n A+cos A=sin. ∵0<A<,∴<A+<, ∴<sin≤, ∴sin A+sin B的最大值為.故選D.] 二、填空題 5.(2016·忻州聯(lián)考)已知在△ABC中,B=2A,∠ACB的平分線CD把三角形分成面積比為4∶3的兩部分,則cos A=__________.  [由題意可知S△ACD∶S△BCD=4∶3, ∴AD∶DB=4∶3,AC∶BC=4∶3,在△ABC中,由正弦定理得 sin B=sin A, 又B=2A,∴sin 2A=sin A,∴cos A=.] 6.(2016·太原二模)在△ABC中,角A,B,C的對邊分別是a,b,c,若∠B=∠C,且7a

29、2+b2+c2=4,則△ABC面積的最大值為__________. 【導(dǎo)學(xué)號:67722016】  [法一:由∠B=∠C得b=c,代入7a2+b2+c2=4,得7a2+2b2=4,則2b2=4-7a2,由余弦定理得cos C==,所以sin C===,則△ABC的面積為S=absin C=ab×==≤×=×4=,當且僅當a2=時取等號,則△ABC的面積的最大值為. 法二:由∠B=∠C得b=c,所以7a2+b2+c2=4,即為7a2+2c2=4,則△ABC面積為a =≤×=,所以最大值為.] 三、解答題 7.(2016·威海二模)已知f(x)=cos x(λsin x-cos x)+

30、cos2+1(λ>0)的最大值為3. (1)求函數(shù)f(x)的對稱軸; (2)在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且=,若不等式f(B)<m恒成立,求實數(shù)m的取值范圍. [解] (1)f(x)=cos x(λsin x-cos x)+cos2+1 =λsin xcos x-cos2x+sin2x+1=λsin 2x-cos 2x+1 ≤+1.2分 由題意知:+1=3,λ2=12. ∵λ>0,∴λ=2,4分 ∴f(x)=sin 2x-cos 2x+1=2sin+1.5分 令2x-=+kπ,解得x=+(k∈Z), ∴函數(shù)f(x)的對稱軸為x=+(k∈Z).6分

31、(2)∵=,由正弦定理得,=, 可變形得,sin(A+B)=2cos Asin C,即sin C=2cos Asin C.8分 ∵sin C≠0,∴cos A=,又0<A<π,∴A=,9分 ∴f(B)=2sin+1,只需f(B)max<m. ∵0<B<,∴-<2B-<,10分 ∴-<sin≤1,即0<f(B)≤3,11分 ∴m>3.12分 8.(2016·福州模擬)在△ABC中,角A,B,C的對邊分別為a,b,c,滿足(2b-c)cos A=acos C. (1)求角A的大小; (2)若a=3,求△ABC周長的最大值. [解] (1)由(2b-c)cos A=acos C及正弦定理, 得(2sin B-sin C)cos A=sin Acos C,3分 ∴2sin Bcos A=sin Ccos A+sin Acos C, ∴2sin Bcos A=sin(C+A)=sin B. ∵B∈(0,π),∴sin B≠0. ∵A∈(0,π),cos A=,∴A=.6分 (2)由(1)得A=,由正弦定理得====2, ∴b=2sin B,c=2sin C. △ABC的周長l=3+2sinB+2sin9分 =3+2sinB+2 =3+3sin B+3cos B =3+6sin. ∵B∈,∴當B=時,△ABC的周長取得最大值為9.12分

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!