【溫馨提示】 dwg后綴的文件為CAD圖,可編輯,無水印,高清圖,,壓縮包內(nèi)文檔可直接點開預(yù)覽,需要原稿請自助充值下載,請見壓縮包內(nèi)的文件及預(yù)覽,所見才能所得,請細心查看有疑問可以咨詢QQ:414951605或1304139763
發(fā)動機軸承設(shè)計的發(fā)展
F.A.馬丁
一些關(guān)于發(fā)動機的重要軸承設(shè)計技術(shù)的最新發(fā)現(xiàn)被突出了。但增加的計算能力的可用性,使軸承的條件被認為是更現(xiàn)實的假設(shè)。這些包括供油特性、油膜的歷史,非圓軸承、慣性,由于期刊的影響,提高了預(yù)測中心的運動主要軸承載荷、靈活的軸承座和特殊軸承。這些參考文獻進步了,連同他們?nèi)绾斡绊戭A(yù)測插圖軸承性能。實驗證據(jù)也正在得到,這有助于驗證,并給予信任的分析預(yù)測。
關(guān)鍵詞:滑動軸承,軸承設(shè)計,流體動力潤滑,軸承的壓力,軸承座,油槽
從發(fā)動機的機械配置石油電影流體力學(xué)看來,發(fā)動機軸承性能取決于許多依賴因素。這個文件強調(diào)了更重要的考慮因素,并且與他們最近的進展,發(fā)表和未發(fā)表的,遍布世界各地。在審查試圖引用不只是這些進步,而是想說明他們?nèi)绾窝娱L性能預(yù)測,實驗驗證和特種軸承設(shè)計領(lǐng)域。從歷史上看,在動態(tài)加載軸承設(shè)計的最初嘗試,是根據(jù)特定的最大允許負荷(如適用從預(yù)測的最大承載面積除以負載定義),這仍然是一個有價值的參數(shù)。隨著技術(shù)的圖形和數(shù)字。雖然仍高度簡化的解決水動力軸承模型,精干的到來,最小油膜厚度可作出估計,并作為判斷一個比較新的發(fā)動機上使用的問題的可能性。對那些早先的預(yù)測方法的綜合研究可以發(fā)現(xiàn),在1967年由坎貝爾審查文件等我;作為案例,這曾經(jīng)是一個拉斯頓和Hornsby VEB的谷三600馬力,600轉(zhuǎn)/分柴油機大端軸承。近二十預(yù)測和各種來源的實驗軌道雜志,其中以一,機械量討論。大腸桿菌的法律程序中所包含的文件,同樣的研究案例至今仍在使用的工人在這一領(lǐng)域今日(極性負荷圖,圖1(a)條;完整的數(shù)據(jù),參考文獻1)。它已經(jīng)被用于在本次審查的預(yù)測能力,說明在隨后提出了一些。在早期的預(yù)測方法所用的主要假設(shè),許多人肯定不太現(xiàn)實,但作為權(quán)宜之計用于獲取一個數(shù)學(xué)模型,可以在有限的計算能力,然后提供解決。這些假設(shè)包括圓形剛性軸承和一個'完美'的isoviscous牛頓石油供應(yīng)。在許多情況下,軸承表面被假定為在發(fā)達地區(qū)供油油膜壓力的特點和外部的關(guān)系不受干擾,主軸承載荷計算沒有采取任何曲軸和曲軸箱的剛度帳戶。在過去十年中增加計算能力,這就意味著那些早期的許多假設(shè)不再需要工作已進行了2'3對軸承形狀彈性連桿軸承4,供油特性s'6,油膜歷史7,更現(xiàn)實的主軸承負荷分擔(dān)8'9。這一點,在保持雖然有點晚了,與1967年的預(yù)言,從坎貝爾,其中指出:'這是作者的相信,通過持續(xù)不斷的計算方法,并與強大的設(shè)計技術(shù)的迅速發(fā)展而日益認識正成為可用,在未來十年將顯示進度,甚至比這本文試圖描述'更大。在設(shè)計技術(shù)作為改進的計算能力和更嚴格的方法結(jié)果的進步,開辟了一體化工作,將直接有利于更廣泛領(lǐng)域的設(shè)計師。這包括:
考慮更現(xiàn)實的條件瞄準(zhǔn)>二少假設(shè)
數(shù)據(jù)表示理解,以便更好地結(jié)果
經(jīng)營狀況較好的預(yù)測(負載共享,熱平衡)
實驗驗證
在這些類別各自的發(fā)展進程是非常重要的,每個部分補充了其他。
由于需要節(jié)約能源和燃油經(jīng)濟性的大問題,許多引擎現(xiàn)在正在設(shè)計具有較高的功率重量比。對軸承的影響,減少由此產(chǎn)生的軸承尺寸,高比負荷和使用低粘度油。所有這些變化帶來接近設(shè)計極限的軸承工作條件,從而把一個更大的重要性,不僅上材料和潤滑劑的選擇,但我也切合實際承載能力的預(yù)測。改進的水動力計算簡化和快速的方法許多數(shù)據(jù)編制方法顯示在此文件;有關(guān)VEB的大頭釘,搵工時使用的短軸承的移動解決方案。在流動的概念已成功應(yīng)用于在過去15年,是在其他地方詳細解釋。其強大的吸引力是它的方式分裂成兩個部分期刊擠壓和旋轉(zhuǎn),這使富力軌道計算并在每個時間步?jīng)]有反復(fù)計算非常迅速的運動。為了完整的短軸承VEB的軸頸中心的軌道是在新的調(diào)查,包括在圖2a(參考我在補充者)自動對焦的軌道,并在不同時期的變化新生力量最小油膜厚度各地。負載周期(由曲柄角度定義)如圖3。這本書的作者的工作的第二部分是電影制作間隙圓壓分布圖12給出的最大動水壓力比在任何特定負載點間隙圓。在圖4插入的圖表顯示了與VEB的間隙循環(huán)軌道疊加膜壓力圖。請注意,這個軌道是不繪制相對空間 -傳統(tǒng)的方法- 但在清關(guān)的地圖,實際上是被一個角無動于衷整個周期,這樣,應(yīng)用負載方向始終向下。這是一個重要和寶貴的技術(shù),當(dāng)使用移動方法。最小油膜壓力是從這些關(guān)系,并在整個負載周期變化的圖4所示的主要部分。里奇在英國通用電力公司開發(fā)出一種新的半雜志為中心的軌道預(yù)測分析方法;它采用短軸承容易得到優(yōu)化的解決方案,已經(jīng)改善了短軸承的標(biāo)準(zhǔn)方法,在高偏心率準(zhǔn)確性的VEB的大端軸承軌道如圖2(b)項。這看起來非常類似于一個普通軸承有限的軌道,顯然只發(fā)生在一個IBM 145分之370計算機(前幾年)16秒運行。最低油0.0033毫米(0.00013英寸)薄膜厚度比較表1與其他來源(包括有限的全球環(huán)境變化影響使用'存儲的數(shù)據(jù)'的做法方案的結(jié)果見下一節(jié))值。它被認為是在較嚴格的方法分布帶軸承有限,但仍保持了快速解決方案的優(yōu)勢。油中的最小完整的運作周期膜厚度是最重要的參數(shù)來判斷軸承的表現(xiàn)之一。它通常用來作為比較,代表了在有關(guān)預(yù)測與現(xiàn)有的類似經(jīng)驗型發(fā)動機軸承性能的主要因素。這是很難給出精確值最小油膜厚度的軸承損壞時可能出現(xiàn)的諸如高的軸承溫度,不對中,供油不足,安排和不利的環(huán)境條件等因素都會產(chǎn)生效果。布克會給予一定的薄膜厚度對危險水平連桿軸承(適用于短軸承預(yù)測方法的使用)的指導(dǎo)。
有限軸承理論
用有限元法(有限元)解決有限軸承理論,通用汽車公司研究實驗室2有能力考慮有不同的形狀和也讓在場的開槽。對于一個普通的圓軸承通用軸承從他們的有限元模型成功地曲線擬合的基本數(shù)據(jù),并以此來建立一個快速的方法,通常計算時間從數(shù)小時縮短到數(shù)秒。這兩intermain種方法已應(yīng)用于馬丁發(fā)動機軸承設(shè)計。拉斯頓VEB的大底,圖2(c)和(d)顯示了有限元程序和曲線擬合程序分別軸頸中心的軌道。這兩個軌道上看起來非常相似,雖然有一個對曲線擬合程序顯著節(jié)省計算時間。薄膜厚度比和我的兩個最大油膜壓力,部門首長進行了比較,圖5(a)和(b)項。還要注意的是,從短軸承理論(圖4)薄膜壓力非常類似從有限的軸承有限元理論(圖5b)這一點?,F(xiàn)在有許多機構(gòu)或有限差分有限元的2 - D解決方案,使供油特性上動水壓力的能力產(chǎn)生影響。在'標(biāo)準(zhǔn)'VEB的案例,結(jié)合它的圓周凹槽,是不是說明了這樣的效果適合,而不是一個1.8升汽油發(fā)動機intermain軸承將被使用。開頭的圖如圖6所示,并進一步行動組可發(fā)現(xiàn)引用6和7。在圖7的軌道上圖顯示了薄膜的厚度減少作為一個石油洞的存在而在本體。但是應(yīng)當(dāng)指出,在周期的最小油膜厚度不一定受到損害。
一個設(shè)計方法已經(jīng)制定了在冰川金屬有限公司允許,在一個更完整的方式,在軸承的feed功能的影響。它認為分為兩類這些法利效果。第一個問題涉及到發(fā)達國家的壓力過油養(yǎng)區(qū)(孔,槽等),軸承的傳遞地區(qū)產(chǎn)生不利影響。第二個涉及石油運輸軸承內(nèi)的其他投資收益電影的研究,并考慮到了有害的影響程度時,油膜耗盡而由于沒有足夠的石油可供菲力的承載軸承的面積。這第二類是有時被稱為“油膜歷史”。
油膜歷史
關(guān)于歷史和油膜軸承油膜的動態(tài)加載邊界的基礎(chǔ)性工作很多是率先在英國國家工程實驗室,由已故機管局米爾恩,他的早逝留了一個空缺在這個非常專業(yè)的知識領(lǐng)域。米爾恩的做法視為是不斷變化的模式和移動網(wǎng)相匹配的電影界。瓊斯在冰川開發(fā)的另一種方法考慮節(jié)間流通,使用每個節(jié)點控制周圍空間的邊界固定的有限差分網(wǎng)格。后一種方法是比較容易通過,并已用于在intermain軸承分析(一孔饋送)在1.8升發(fā)動機。正如圖7圖所示的右手,與電影的歷史軌跡形狀一般的預(yù)測有很大的不同,當(dāng)油膜史上的影響被忽略。盡管在最小的負載周期膜厚度的影響不大時,又是考慮油膜史,人們可以感知的案件(對于低供油壓力實例)在該雜志的額外中心徑向偏移可能會產(chǎn)生危險的小薄膜厚度。這強調(diào)了使用油膜史上節(jié)目中可能會遇到這些問題的重要性。同樣的原則也被應(yīng)用到VEB的大底承載力的研究和預(yù)測的情況下雜志和無油膜歷史的中心路徑顯示在圖2(e)和(f)分別。這個油膜史上降級為一個完全圓周槽軸承的影響不是一開始撰文預(yù)期。然而,效果相當(dāng)顯著的軌道上的右手邊看到,圖2(e)項和當(dāng)?shù)啬ず穸龋ㄒ姳?)。從0.0036毫米(0.00014英寸)降低到0.0023毫米(0.00009英寸),一個重要的數(shù)額。薄膜厚度在整個負載周期(比)不同的趨勢進行了比較,圖8。頂部圖顯示(由線條的粗細)之間的有限軸承預(yù)測從不同來源(包括珀金斯發(fā)動機有限公司17)相似。瓦圖中顯示從VEB的發(fā)動機,我的實驗結(jié)果,下圖顯示的預(yù)測考慮油膜歷史。標(biāo)記的點。甲,乙,丙幫助每個圖進行比較的趨勢。在這兩個電影史上的預(yù)測和在B點的峰值比在一個較高的實驗結(jié)果顯示,與傳統(tǒng)的方法(上圖),他們幾乎相同的高度。此外,隨著電影史上另一個高峰是在C顯然其中有與實驗一致。而所有這一切都給出了'電影的歷史模型,有一種思想流派,這可能是偶然的廣泛協(xié)議,因為軸承形狀各不相同,但在實踐中一直不斷在理論假設(shè)為剛性和循環(huán)支持。
慣性的影響
在蘇塞克斯大學(xué)的,有幾個動態(tài)加載的發(fā)動機軸承方案已經(jīng)開發(fā)了考慮對從軸心運動導(dǎo)致軸承間隙內(nèi)]裝載質(zhì)量加速度效應(yīng)。德德14的方案有所不同,較近期的油膜力,導(dǎo)出的方式?;痉桨刚J為,一個完整的2 - D溶液的雷諾方程和1.8升發(fā)動機軸承從這個結(jié)果非常相似,冰川(圖7,上圖)預(yù)測的。德德還制作了一個更快的方法,假設(shè)在軸向壓力分布是拋物線。此相關(guān)的方程代入,讓雷諾方程式二階常微分方程,可通過直接矩陣求逆解決。系數(shù)矩陣是一個三對角之一,解決的辦法是加速只用對角線,而不是所有的矩陣元素打交道了。這種方法只需要幾分鐘來計算。它不是像快速移動的方法,但大規(guī)模的慣性和槽影響,使一些優(yōu)勢。一個普通ungrooved軸承,一個完整的環(huán)形溝,或單洞(如狹窄的延長軸承寬度插槽充分考慮),可容納在這個快速1 - D溶液。對于一個完整的部分溝2 - D溶液必須使用。
表1比較實驗和理論之間的最小油膜厚度為6 VEB的- X的谷三連桿軸承。為1.8升引擎使用德德的快速解決方案軸承軸頸中心的路徑顯示在圖7左手圖。無論是使用理論,有限或快速的方法,預(yù)測之間的滑動軸承,并與供油特點之一差異非常相似。這本期刊的群眾運動關(guān)內(nèi)的空間效果似乎并不在1.8升發(fā)動機軸承具有重要意義。作為一個練習(xí),以顯示一個大期刊質(zhì)量的影響,選擇了極端值(不一定意圖]信息研究所)表示趨勢。較低的圖7下雪的極端情況下,軌道的形狀是完全改變了右手圖。與載荷的是相反的方向旋轉(zhuǎn)的軌道部分相關(guān)期刊似乎是受影響最嚴重,雖然最小油膜厚度維持不變。德德還審議了VEB的研究個案,并承擔(dān)了有效的質(zhì)量對應(yīng)于連桿的旋轉(zhuǎn)質(zhì)量的組成部分。由此產(chǎn)生的雜志從二維有限軸承解決方案和更迅速的一維解決方案中心的軌道都顯示在圖2(g)和2(高)分別。在圖2(h)的軌道大多數(shù)似乎是由大眾的慣性作用影響,雖然通常尖點,在反方向的軌道階段的開始,已完全消失,它聲稱,大眾慣性的影響軸承間隙內(nèi)的空間日志可能會顯著毗鄰主軸承飛輪。
徐州工程學(xué)院畢業(yè)設(shè)計(論文)
畢業(yè)設(shè)計(論文)
校園電動車設(shè)計
DESIGN OF SCHOOL ELECTRIC VEHICLE
學(xué)生姓名
學(xué)院名稱
專業(yè)名稱
指導(dǎo)教師
20**年
5月
27日
29
徐州工程學(xué)院畢業(yè)設(shè)計(論文)
摘要
校園電動車是近幾年出現(xiàn)的一種新興交通工具。校園電動車有著節(jié)能,環(huán)保,便捷等諸多的優(yōu)點。因此本課題具有很強的現(xiàn)實意義和接近實際水平的設(shè)計要求,尤其是對機械設(shè)計部分和電氣控制部分的設(shè)計。
本畢業(yè)設(shè)計主要進行了電動車的機械部分的分析和設(shè)計,包括電動車的減速器、差速器、軸承的選擇設(shè)計、各主要零部件的強度校核與計算、以及基本的機械傳動部分的實現(xiàn)等。通過所設(shè)計好機械各部分或者整體部分的結(jié)構(gòu)以及相關(guān)尺寸,利用制圖軟件CAD進行相關(guān)的配圖的繪制以及其他零件圖的繪制。
根據(jù)電動車前進、后退、制動等基本控制要求,給出電動機的電氣控制設(shè)計。
關(guān)鍵詞: 校園電動車;交通工具;強度校核;機械傳動
Abstract
Campus electric vehicle is the emergence of a new transport in recent years. Campus electric car has energy-saving, environmentally friendly, convenient, and many other advantages. Therefore, this issue has a strong practical and realistic level design requirement, especially the part of design for mechanical design and electrical control part.
The graduation project is mainly for the electric vehicle analysis and design of mechanical parts. Including electric reducer, differential, bearing choice design, the major components Strength check and calculation, and basic mechanical transmission part of the implementation and so on. Designed by a good mechanical parts or the whole part of the structure and related dimensions, Use graphics software related with CAD drawing and other component drawing.
According to electric cars forward, reverse, brake control and other basic requirements, electrical motor control design can be given.
Keywords: campus electric vehicles; transport; strength check; mechanical transmission
目 錄
1緒論 1
1.1概述 1
1.2電動車的優(yōu)勢與發(fā)展 2
1.3本設(shè)計的主要任務(wù) 3
2 機械部分設(shè)計 4
2.1概述 4
2.1.1基本要求 4
2.1.2 基本數(shù)據(jù) 4
2.2 傳動部分設(shè)計 5
2.2.1減速器傳動比計算 5
2.2.2 齒型選擇 6
2.2.3 載荷計算 6
2.2.4 齒輪材料選擇 7
2.2.5 齒輪強度計算 8
2.3 差速器設(shè)計 12
2.3.1 對稱式圓錐行星齒輪差速器原理 12
2.3.2 對稱式圓錐行星齒輪差速器結(jié)構(gòu) 14
2.3.3 差速器齒輪基本參數(shù)選擇 14
2.3.4 差速器齒輪強度計算 17
2.4 軸承選擇與校核 18
2.4.1 概述 18
2.4.2 滾動軸承類型及代號 19
2.4.3 滾動軸承選擇 21
2.4.4 滾動軸承約束設(shè)計 22
3電動車電氣控制設(shè)計 24
3.1主電路 24
3.1.1 H型雙極模式PWM控制 24
3.1.2控制電路 25
3.1.3 SG3525的內(nèi)部電路和參數(shù) 26
3.2電動車電池設(shè)計方案 27
3.2.1 電池槽 27
結(jié)論 28
致謝 29
參考文獻 30
1緒論
1.1概述
校園電動車是近幾年出現(xiàn)的并且不斷發(fā)展日益增多的小范圍內(nèi)使用的交通工具,它的出現(xiàn)和廣泛應(yīng)用為校園內(nèi)的師生提供了更為便利的交通,還可以作為校區(qū)的旅游和觀光工具,目前在各大景區(qū)已經(jīng)廣泛使用。它有著諸多的優(yōu)點,例如:首先,環(huán)保,電動車行駛零排放,不污染大氣,是節(jié)能、環(huán)保的典范; 第二,需求量大,一輛電動自行車一次充電能行駛30-50公里,有較大的市場需求; 第三,操作簡單,車速不高,每小時20公里左右,不會對其他人力自行車和行人構(gòu)成威脅和安全問題; 第四,維修簡單;第五,用戶白天使用,夜晚充電,續(xù)航能力很強,也不影響日常的工作和生活。該設(shè)計集機械和電力電子技術(shù)于一體,充分體現(xiàn)了節(jié)能、環(huán)保和方便實用等特點。通過對其的設(shè)計,能夠使自身綜合能力與設(shè)計創(chuàng)新的思維得到很好的鍛煉。
電池電動車的歷史。世界上第一輛電動汽車于1881年誕生,發(fā)明人為法國工程師古斯塔夫·特魯夫,這是一輛用鉛酸電池為動力的三輪車,而在1873年,由英國人羅伯特·戴維森用一 次電池作動力發(fā)明的電動汽車,并沒有列入國際的確認范圍。后來就出現(xiàn)了鉛酸、鎳鎘、鎳氫電池,鋰離子電池,燃料電池作為電力。電動車-行業(yè)前景 電動車行業(yè)在中國崛起僅僅幾年時間,在這短短的幾年內(nèi),電動車行業(yè)由無到有,由零星分布到大范圍普及,取得了高速的發(fā)展和長足的進步。由于不需要核心技術(shù),進入門檻低,贏利空間大,短時間內(nèi)大量企業(yè)將目光鎖住電動車這個新興行業(yè)。電動車產(chǎn)業(yè)的發(fā)展具有較強的地域性,一方面表現(xiàn)在生產(chǎn),一方面表現(xiàn)在消費領(lǐng)域,而且這也是一個漸進的過程。 經(jīng)過十余年的發(fā)展,中國電動車行業(yè)從小到大,已經(jīng)形成一個規(guī)模龐大的產(chǎn)業(yè)群,尤其是進入二十一世紀以后,整個產(chǎn)業(yè)呈現(xiàn)高速發(fā)展態(tài)勢。2004年,中國電動車行業(yè)已有1000多家生產(chǎn)廠,年產(chǎn)量達675萬輛。2005年,中國的電動車年產(chǎn)量達960萬輛,市場保有量在1500萬輛以上。2006年國內(nèi)電動車產(chǎn)量達到近2000萬輛,比上年增幅60%以上。2010年,中國輕型電動車的產(chǎn)銷量將可能達到3000萬輛,出口量將可能達500萬-600萬輛,實現(xiàn)工業(yè)產(chǎn)值700億元,包括上下游帶動產(chǎn)值的產(chǎn)業(yè)總體規(guī)模,將達1300億元。 我們在為這個行業(yè)快速發(fā)展而欣喜的同時也應(yīng)看到,目前電動車行業(yè)的整體發(fā)展質(zhì)量并不高,主要表現(xiàn)在廠家雖多但質(zhì)量不佳。具有自主研發(fā)能力、上規(guī)模的大品牌很少,而大多數(shù)是一些靠模仿拼裝、以低價運作的廠家,有些小廠甚至幾個人、幾把螺絲刀就能組裝銷售。
電動車簡而言之就是以電力為驅(qū)動。以電力為能源的車子。電動車分類電動車按類型分可分為電動自行車,電動摩托車,電動汽車,電動三輪車,燃油助力兩用電動車。按電力提供的方式可以分成兩大類,一是連接外部電力線來獲得電力,另外就是用電池作為電力.也可以利用太陽,風(fēng)或一切可利用的能量轉(zhuǎn)換成電能供車使用。 其他分類:電動高爾夫球車、電動觀光車、電動巡邏車、電動貨運車、電動拉坯車、電動裝窯車。 這種類型的電動車適用范圍比較窄,一般景區(qū)、工業(yè)園、公園、碼頭、景區(qū)、步行街等場所用。酒店和展覽中心也可用來做接待車。 我國最新《電動摩托車和電動輕便摩托車通用技術(shù)條件》的出臺,將40公斤以上、時速20公里以上的電動車,稱之為電動輕便摩托車或電動摩托車,劃入機動車范疇。40公斤以下、時速不超過20公里的,列為非機動車范疇。
1.2電動車的優(yōu)勢與發(fā)展
電動車行業(yè)在中國崛起僅僅幾年時間,在這短短的幾年內(nèi),電動車行業(yè)由無到有,由零星分布到大范圍普及,取得了高速的發(fā)展和長足的進步。由于不需要核心技術(shù),進入門檻低,贏利空間大,短時間內(nèi)大量企業(yè)將目光鎖住電動車這個新興行業(yè)。電動車產(chǎn)業(yè)的發(fā)展具有較強的地域性,一方面表現(xiàn)在生產(chǎn),一方面表現(xiàn)在消費領(lǐng)域,而且這也是一個漸進的過程。經(jīng)過十余年的發(fā)展,中國電動車行業(yè)從小到大,已經(jīng)形成一個規(guī)模龐大的產(chǎn)業(yè)群,尤其是進入二十一世紀以后,整個產(chǎn)業(yè)呈現(xiàn)高速發(fā)展態(tài)勢。2004年,中國電動車行業(yè)已有1000多家生產(chǎn)廠,年產(chǎn)量達675萬輛。2005年,中國的電動車年產(chǎn)量達960萬輛,市場保有量在1500萬輛以上。2006年國內(nèi)電動車產(chǎn)量達到近2000萬輛,比上年增幅60%以上。2010年,中國輕型電動車的產(chǎn)銷量將可能達到3000萬輛,出口量將可能達500萬-600萬輛,實現(xiàn)工業(yè)產(chǎn)值700億元,包括上下游帶動產(chǎn)值的產(chǎn)業(yè)總體規(guī)模,將達1300億元。
哥本哈根召開的聯(lián)合國氣候大會,引起了全球關(guān)注,冰川融化,海平面上升,沙塵暴肆虐……環(huán)境變化正威脅著人類賴以生存的自然環(huán)境。作為碳排放大戶的傳統(tǒng)汽車工業(yè),將面臨巨大挑戰(zhàn),節(jié)能減排已成為未來發(fā)展的大趨勢。 中國首次量化了溫室氣體減排目標(biāo),到2020年國內(nèi)二氧化碳排放將比2005年下降40%-45%??萍疾壳安痪靡脖硎?低碳技術(shù)將納入“十二五”科技發(fā)展規(guī)劃。這讓車市對明年即將發(fā)布的節(jié)能減排政策充滿期待。甚至有人大膽預(yù)測1.6L購置稅減征政策將成為長期政策;“限大揚小”將成為汽車發(fā)展的主流趨勢;未來新能源車,政府扶持力度將更突出。
發(fā)展電動汽車產(chǎn)業(yè)早已成為國家高科技研究發(fā)展計劃(863計劃)的主攻方向之一。美國、日本、歐盟等汽車產(chǎn)業(yè)大國對電動車的發(fā)展也尤為重視,不僅每年劃撥巨額資金,同時還為購買電動車的消費者減免稅賦,給予車補等。2010年至2012年將成為電動汽車發(fā)展的重要時期,日產(chǎn)Leaf、通用雪佛蘭Volt、豐田FT、三菱i-Mi等多款明星電動車將投放市場,它們將在車輛性能、乘坐舒適性、使用成本等方面與汽油車形成競爭。
電動車作為新型產(chǎn)品,能否被消費者接受,關(guān)鍵在兩方面。一是,電動車的成本與經(jīng)濟性,如果成本太高,超出消費者的預(yù)支太多,即使它的技術(shù)再先進,消費者也只能是望而卻步了。二是,汽車技術(shù)的可靠性和使用便利性。如果使用過程,經(jīng)常拋錨會令消費者質(zhì)疑它的安全性,甚至放大它的危險性。而充電設(shè)施、充電時間等便利與否,將直接影響到購買決意。
與其他國際品牌電動車相比,自主電動車更側(cè)重于從市場接受度出發(fā),重點發(fā)展微型和小型電動乘用車。目前,奇瑞、吉利、長安、比亞迪等電動車已正式或即將正式推出,各地電動汽車電池廠項目也紛紛上馬,為老百姓打造“買得起”的電動車是政府與自主車企共同的追求。未來,自主電動車將與合資電動車形成較明顯的產(chǎn)品差異,搶占不同的消費群體??颇釥柶囐Y訊公司曾預(yù)測,2020年中國市場純電動車將占到市場40%強,加上20%的混合動力汽車,新能源汽車比例將占市場2/3。電動車將成為汽車工業(yè)邁入“低碳”行列的重要功臣。
1.3本設(shè)計的主要任務(wù)
(1)分析研究導(dǎo)師發(fā)送的任務(wù)書,熟悉設(shè)計對象,充分利用網(wǎng)上資料、圖書館藏書,了解校園電動車相關(guān)設(shè)計手冊的大致內(nèi)容,為整個設(shè)計奠定基礎(chǔ),做最基本的準(zhǔn)備。
(2)在指導(dǎo)老師指導(dǎo)下深入研究設(shè)計對象,查找關(guān)鍵點,攻破難點,并提出個人的設(shè)計思路或想法。
(3)根據(jù)最大載重四人的負荷(500kg)以及最大速度(15Km/h)的基本條件,通過查詢電動車相關(guān)手冊以及其它資料,選擇電動車的電動機的型號和設(shè)計。依據(jù)電動車前進、后退、制動等基本控制要求,運用單片機,給出電動機的電氣控制設(shè)計。
(4)確定機械傳動機構(gòu),軸承設(shè)計與選擇,幾何參數(shù)。
(5)著手畫圖,裝配圖,零件圖的繪制要先繪制草圖,并逐漸修改錯誤。
(6)撰寫設(shè)計論文,闡述設(shè)計依據(jù),說明設(shè)計內(nèi)涵。根據(jù)已經(jīng)得到的設(shè)計結(jié)果,闡述其中的設(shè)計方法和依據(jù),整理成文。設(shè)計說明書要明確設(shè)計過程的計算,原理和一些必要的細節(jié)。
2 機械部分設(shè)計
2.1概述
2.1.1基本要求
電動車驅(qū)動橋位于傳動系的末端。其基本功用是增扭、降速和改變轉(zhuǎn)矩的傳遞方向,即增大由傳動軸或直接從變速器傳來的轉(zhuǎn)矩,并將轉(zhuǎn)矩合理的分配給左右驅(qū)動車輪;其次,驅(qū)動橋還要承受作用于路面或車身之間的垂直力,縱向力和橫向力,以及制動力矩和反作用力矩等。驅(qū)動橋一般由主減速器,差速器,車輪傳動裝置和橋殼組成。
設(shè)計驅(qū)動橋時應(yīng)當(dāng)滿足如下基本要求:
(1)選擇適當(dāng)?shù)闹鳒p速比,以保證電動車在給定的條件下具有最佳的動力性。
(2)外廓尺寸小,保證電動車具有足夠的離地間隙,以滿足通過性的要求。
(3)齒輪及其它傳動件工作平穩(wěn),噪聲小。
(4)在各種載荷和轉(zhuǎn)速工況下有較高的傳動效率。
(5)具有足夠的強度和剛度,以承受和傳遞作用于路面和車架或車身間的各種力和力矩;在此條件下,盡可能降低質(zhì)量,減少不平路面的沖擊載荷,提高電動車的平順性。
(6)與懸架導(dǎo)向機構(gòu)運動協(xié)調(diào)。
(7)結(jié)構(gòu)簡單,加工工藝性好,制造容易,維修,調(diào)整方便。
2.1.2 基本數(shù)據(jù)
該設(shè)計的基本數(shù)據(jù)要求如下:
(1)車型:校園電動車;
(2)額定乘員:4個
(3)外形尺寸(mm)(長×寬×高):4930×3390×1800
(4)空載質(zhì)量:780kg
(5)滿載質(zhì)量:1230kg
(6)前:516kg 后:714kg;
(7)輪距:前:1230mm 后:1200mm;
(8)最小離地間隙(mm):205
(9)最高車速:33km/h;最大爬坡度(滿載):大于25%;
(10)主減速器傳動比:10:1;
(11)額定功率:4kw(最高車速時3265r/min時);
(12)額定轉(zhuǎn)矩:19.6Nm;T=9549×P/n
(13)輪胎規(guī)格:145/80R12真空輪胎;
(14)輪胎半徑=0.145×80%+12×2.54/100/2=0.2684m
2.2 傳動部分設(shè)計
由于要求設(shè)計的是校園電動車的后驅(qū)動橋,要設(shè)計這樣一個級別的驅(qū)動橋,一般選用非斷開式驅(qū)動橋以與非獨立懸架相適應(yīng)。對比轎車的后橋,電動車后橋的主要特點是傳動路徑不一樣,輸入軸與半軸是平行的。其他的結(jié)構(gòu)組成基本一致。
2.2.1減速器傳動比計算
主減速器的傳動比:
式(2.1)
式中: rr—車輪的滾動半徑,m;
np—最大功率時的電動機的轉(zhuǎn)速,r/min;
va max—電動車的最高車速,km/h;
igH—變速器最高擋傳動比,通常為1;
主減速器的結(jié)構(gòu)形式主要是根據(jù)其齒輪的類型,主動齒輪和從動齒輪的安置方法以及減速形式的不同而異。
驅(qū)動橋中主減速器、差速器設(shè)計應(yīng)滿足如下基本要求:
(1)所選擇的主減速比應(yīng)能保證電動車既有最佳的動力性。
(2)外型尺寸要小,保證有必要的離地間隙;齒輪其它傳動件工作平穩(wěn),噪音小。
(3)在各種轉(zhuǎn)速和載荷下具有高的傳動效率;與懸架導(dǎo)向機構(gòu)與動協(xié)調(diào)。
(4)在保證足夠的強度、剛度條件下,應(yīng)力求質(zhì)量小,以改善電動車平順性。
(5)結(jié)構(gòu)簡單,加工工藝性好,制造容易,拆裝、調(diào)整方便。
按主減速器的類型分,驅(qū)動橋的結(jié)構(gòu)形式有多種,基本形式有三種如下:
(1)中央單級減速器。(主減速比i0≤7.6)
(2)中央雙級主減速器。由于上述中央雙級減速橋均是在中央單級橋的速比超出一定數(shù)值或牽引總質(zhì)量較大時(傳動比在7.6<i0≤12)
(3)中央單級、輪邊減速器。(i0>12)
綜上所述,應(yīng)該選用中央雙級主減速器,分析如下:
該后橋減速器的傳動比為10,傳動比7.6<i0≤12,超出了單級減速器的最大傳動比,所以必須使用二級減速器。
所以此設(shè)計采用二級減速驅(qū)動橋,再配以鑄造整體式橋殼。
2.2.2 齒型選擇
主減速器的齒輪有弧齒錐齒輪,雙曲面齒輪,圓柱齒輪和蝸輪蝸桿等形式。借鑒東風(fēng)EQ8081電動車,其后橋的布置形式不同于一般電動車,電動機的輸入軸與后橋半軸是平行的,不需對齒輪的傳動方向改變90°,因此主減速器選用圓柱齒輪傳動。所以該主減速器應(yīng)該選用雙級圓柱齒輪傳動的減速器。
2.2.3 載荷計算
(1)按電動機最大轉(zhuǎn)矩和最低擋傳動比確定從動齒輪的轉(zhuǎn)矩(Tce、Tjφ),其中較小者為計算載荷:
式(2-2) 式(2-3)
式中:
—電動機最大轉(zhuǎn)矩;
iTL—由電動機至所計算的主減速器從動齒輪之間的傳動系最低擋傳動比,in=10;
ηT—傳動系上傳動部分的傳動效率,取ηT=0.99×0.99×0.99×0.99×0.97×0.97=0.90;
Kd—由于猛接離合器而產(chǎn)生的動載系數(shù),Kd=1;
n—電動車的驅(qū)動橋數(shù),n=1;
G2—電動車滿載時一個驅(qū)動橋給水平面的最大負荷,714×9.8=6997.2N;
φ—輪胎對地面的附著系數(shù),對于安裝一般輪胎的公路用電動車,取φ=0.85;
rr—車輪滾動半徑,0.2684m;
ηLB,iLB—分別由所計算的主減速器從動齒輪到驅(qū)動車輪之間的傳動效率和傳動比。ηLB取0.9,由于沒有輪邊減速器,所以取iLB=1;
由以上數(shù)據(jù)代入公式(2-2)、(2-3)計算得:
Tje=19.6×10×1×0.9/1=176.4Nm
Tjφ=6997.2×0.85×0.2684/(0.9×1)=1773.7Nm
(2)按電動車日常行駛平均轉(zhuǎn)矩確定從動齒輪的平均計算轉(zhuǎn)矩
對于公路車輛來說,使用條件較非公路車輛穩(wěn)定,其正常持續(xù)的轉(zhuǎn)矩根據(jù)所謂的平均牽引力的值來確定:
式(2-4)
式中:——電動車滿載時的總重量,12054N;
——所牽引的掛車滿載時總重量,N,但僅用于牽引車的計算;
——道路滾動阻力系數(shù),計算時對于電動車取0.010~0.015,在這我們?nèi)?.013
——電動車正常行駛時的平均爬坡能力系數(shù),對于轎車通常取0.08;
——電動車的性能系數(shù):時,??;
——主減速器主動齒輪到車輪之間的效率為0.9;
——主減速器從動齒輪到車輪之間的傳動比為1;
——驅(qū)動橋數(shù)為1。
——車輪的滾動半徑 為0.2684m
以上數(shù)據(jù)詳見參考文獻[9],把以上數(shù)據(jù)代入式(2-4)得:
==334.31
2.2.4 齒輪材料選擇
驅(qū)動橋齒輪的工作條件是相當(dāng)惡劣的,與傳動系其它齒輪相比,具有載荷大、作用時間長、變化多、有沖擊等特點。因此,傳動系中的主減速器齒輪是個薄弱環(huán)節(jié)。主減速器齒輪的材料應(yīng)滿足如下的要求:
(1)具有高的彎曲疲勞強度和表面接觸疲勞強度,齒面高的硬度以保證有高的耐磨性。
(2)齒輪芯部應(yīng)有適當(dāng)?shù)捻g性以適應(yīng)沖擊載荷,避免在沖擊載荷下齒根折斷。
(3)鍛造性能、切削加工性能以及熱處理性能良好,熱處理后變形小或變形規(guī)律易控制。
(4)選擇合金材料是,盡量少用含鎳、鉻呀的材料,而選用含錳、釩、硼、鈦、鉬、硅等元素的合金鋼。
電動車主減速器齒輪與差速器錐齒輪目前常用滲碳合金鋼制造,主要有20CrMnTi、20MnVB、20MnTiB、22CrNiMo和16SiMn2WMoV。滲碳合金鋼的優(yōu)點是表面可得到含碳量較高的硬化層(一般碳的質(zhì)量分數(shù)為0.8%~1.2%),具有相當(dāng)高的耐磨性和抗壓性,而芯部較軟,具有良好的韌性。因此,這類材料的彎曲強度、表面接觸強度和承受沖擊的能力均較好。由于鋼本身有較低的含碳量,使鍛造性能和切削加工性能較好。其主要缺點是熱處理費用較高,表面硬化層以下的基底較軟,在承受很大壓力時可能產(chǎn)生塑性變形,如果滲碳層與芯部的含碳量相差過多,便會引起表面硬化層的剝落。
為改善新齒輪的磨合,防止其在運行初期出現(xiàn)早期的磨損、擦傷、膠合或咬死,齒輪在熱處理以及精加工后,作厚度為0.005~0.020mm的磷化處理或鍍銅、鍍錫處理。對齒面進行應(yīng)力噴丸處理,可以提高其壽命。對于滑動速度高的齒輪,可進行滲硫處理以提高耐磨性。
2.2.5 齒輪強度計算
在選好主減速器齒輪的主要參數(shù)后,應(yīng)根據(jù)所選的齒形計算齒輪的幾何尺寸,對其強度進行計算,以保證其有足夠的強度和壽命。在進行強度計算之前應(yīng)首先了解齒輪的破壞形式及其影響因素。
(1)單位齒長圓周力
在電動車主減速器齒輪的表面耐磨性,常常用其在輪齒上的假定單位壓力即單位齒長圓周力來估算,根據(jù)參考文獻[9]得:
N/mm 式(2-5)
式中:P—作用在齒輪上的圓周力,按電動機最大轉(zhuǎn)矩Temax和最大附著力矩
F—從動齒輪的齒面寬,
第一級從動齒輪:根據(jù)參考文獻[5]得,=33/cos12=33.737mm. 第二級從動齒輪:b4=36.804mm
按電動機最大轉(zhuǎn)矩計算時:
N/mm 式 (2-6)
式中:根據(jù)參考文獻[10],并根據(jù)實際工作經(jīng)驗,初取數(shù)據(jù)如下,
—電動機輸出的最大轉(zhuǎn)矩,根據(jù)參考文獻[10],取19.6;
—計算齒輪之間的傳動比,根據(jù)參考文獻[10],取i12=2.529,i34=4.158;
—主動齒輪節(jié)圓直徑,參考參考文獻[10],取第一級:34.76mm;第二級:38.85mm
按式(3-6)得:
第一級圓周力: N/mm
第二級圓周力: N/mm
按最大附著力矩計算時:
N/mm 式(2-7)
式中:——電動車滿載時一個驅(qū)動橋給水平地面的最大負荷,對于后驅(qū)動橋還應(yīng)考慮電動車最大加速時的負荷增加量,在此取7140N;
——輪胎與地面的附著系數(shù),在此取0.85;
——輪胎的滾動半徑,在此取0.2684m;
d2——從動齒輪的節(jié)圓直徑,參考參考文獻[10],取第一軸: 87.92mm 第二周:161.53mm
按式(2-7)得
第一軸圓周力:=242.144 N/mm
第二軸圓周力: N/mm
在現(xiàn)代電動車的設(shè)計中,由于材質(zhì)及加工工藝等制造質(zhì)量的提高,單位齒長上的圓周力有時提高許用資料的20%~25%。經(jīng)驗算以上兩數(shù)據(jù)都在許用范圍內(nèi)。其中上述兩種方法計算用的許用單位齒長上的圓周力[p]都為893N/mm22,故滿足條件。
(2)齒輪彎曲強度
齒輪輪齒的齒根彎曲應(yīng)力為:
= N/mm2 式(2-8)
式中:
—齒輪輪齒的齒根彎曲應(yīng)力,N/mm2;
Tj—齒輪的計算轉(zhuǎn)矩,對從動齒輪,取中的較小值,為176.4N/m;
對第一級主動齒輪取為=176.4/(10.12×0.994×0.972)=19.286 Nm;第二級主動齒輪取為 N/m
k0—過載系數(shù),一般取1;
ks—尺寸系數(shù),當(dāng)斷面模數(shù)mTd≥1.6時,=0.5326;
km—齒面載荷分配系數(shù),一個齒輪騎馬式支承,km=1.25;
kv—質(zhì)量系數(shù),取1;
F—所計算的齒輪齒面寬;F=36mm
z—計算齒輪的齒數(shù);
J —齒輪的輪齒彎曲應(yīng)力綜合系數(shù), 取J=0.03;
m—端面模數(shù),mt=2.0447
對于第二級主動齒輪, T=73.339Nm;從動齒輪,T=176.4Nm;
將各參數(shù)代入式(2-11)得:
從動齒輪齒根彎曲應(yīng)力: = MPa;
主動齒輪齒根彎曲應(yīng)力: = MPa;
主減速器齒輪的許用彎曲應(yīng)力 []=700MPa,輪齒彎曲強度滿足要求。
(3)輪齒接觸強度
輪齒的齒面接觸應(yīng)力為:
σj= N/mm2 式(2-9)
式中:
Tjz—主動齒輪計算轉(zhuǎn)矩,
第一級主動齒輪取為=176.4/(10.12×0.994×0.972)=19.286 Nm;
第二級主動齒輪取為 Nm
σj—錐齒輪輪齒的齒面接觸應(yīng)力,MPa;
d—主動齒輪分度圓直徑,單位為mm;根據(jù)參考文獻[10],取d1=34.76mm,d2=38.85;
F—主、從動齒輪齒面寬較小值;根據(jù)參考文獻[10],取b1=33,b2=36mm;
Kf—表面質(zhì)量系數(shù),根據(jù)參考文獻[10],取1.0;
Cp—綜合彈性系數(shù),取232N1/2/mm;
ks—尺寸系數(shù),取1.0;
J—齒面接觸強度的綜合系數(shù),
第一級取0.11,第二級取0.142
k0、km、kv選擇同式(2-9)
將各參數(shù)代入式(2-9)得:
第一級齒輪齒面接觸應(yīng)力:
MPa
第二級齒輪齒面接觸應(yīng)力:
MPa
σw≤[σw]=2800MPa,輪齒接觸強度滿足要求。
2.3 差速器設(shè)計
電動車在行駛過程中左,右車輪在同一時間內(nèi)所滾過的路程往往不等。轉(zhuǎn)彎時內(nèi)、外兩側(cè)車輪行程顯然不同,外側(cè)車輪滾過的距離大于內(nèi)側(cè)的車輪;電動車在不平路面上行駛時,由于路面波形不同也會造成兩側(cè)車輪滾過的路程不等;即使在平直路面上行駛,由于輪胎氣壓、輪胎負荷、胎面磨損程度不同以及制造誤差等因素的影響,也會引起左、右車輪因滾動半徑的不同而使左、右車輪行程不等。如果驅(qū)動橋的左、右車輪剛性連接,則行駛時不可避免地會產(chǎn)生驅(qū)動輪在路面上的滑移或滑轉(zhuǎn)。這不僅會加劇輪胎的磨損與功率和燃料的消耗,而且可能導(dǎo)致轉(zhuǎn)向和操縱性能惡化。為了防止這些現(xiàn)象的發(fā)生,電動車左、右驅(qū)動輪間都裝有輪間差速器,從而保證了驅(qū)動橋兩側(cè)車輪在行程不等時具有不同的旋轉(zhuǎn)角速度,滿足了電動車行駛運動學(xué)要求。
差速器用來在兩輸出軸間分配轉(zhuǎn)矩,并保證兩輸出軸有可能以不同的角速度轉(zhuǎn)動。差速器有多種形式,在此設(shè)計普通對稱式圓錐行星齒輪差速器。電動車在拐彎時車輪的軌線是圓弧,如果電動車向左轉(zhuǎn)彎,圓弧的中心點在左側(cè),在相同的時間里,右側(cè)輪子走的弧線比左側(cè)輪子長,為了平衡這個差異,就要左邊輪子慢一點,右邊輪子快一點,用不同的轉(zhuǎn)速來彌補距離的差異。如果后輪軸做成一個整體,就無法做到兩側(cè)輪子的轉(zhuǎn)速差異,也就是做不到自動調(diào)整。但是差速器的這種調(diào)整是自動的 。
2.3.1 對稱式圓錐行星齒輪差速器原理
當(dāng)行星齒輪只是隨同行星架繞差速器旋轉(zhuǎn)軸線公轉(zhuǎn)時,顯然,處在同一半徑上的A、B、C三點的圓周速度都相等(圖2-1),其值為。于是==,即差速器不起差速作用,而半軸角速度等于差速器殼3的角速度。
圖2-1對稱式錐齒輪差速器結(jié)構(gòu)原理示意圖
圖2-1為對稱式錐齒輪差速器結(jié)構(gòu)原理示意圖。差速器殼3 與行星齒輪軸5 連成一體, 構(gòu)成行星架, 因它又與主減速器的從動齒輪6 固定連接, 故為主動件, 設(shè)其角速度為 半軸齒輪1 和2 為從動件, 設(shè)其角速度分別為 和 , 半軸齒輪中心孔有花鏈與半軸連接, 半軸又與兩側(cè)驅(qū)動輪固定連接在一起, 所以半軸和驅(qū)動輪也存從動件。A 、B 兩點分別為行星齒輪4 與左右半軸齒輪1 和2 的嚙合點, C 為星齒輪中心點,A 、B 、C 三點與左右半軸旋傳軸線的距離均為r。當(dāng)行星齒輪4除公轉(zhuǎn)外,還繞本身的軸5以角速度自轉(zhuǎn)時,嚙合點A的圓周速度為=+,嚙合點B的圓周速度為=-。于是
+=(+)+(-)
即 + =2 式(2-10)
若角速度以每分鐘轉(zhuǎn)數(shù)表示,則
式(2-11)
式(2-10)為兩半軸齒輪直徑相等的對稱式圓錐齒輪差速器的運動特征方程式,它表明左右兩側(cè)半軸齒輪的轉(zhuǎn)速之和等于差速器殼轉(zhuǎn)速的兩倍,而與行星齒輪轉(zhuǎn)速無關(guān)。因此在電動車轉(zhuǎn)彎行駛或其它行駛情況下,都可以借行星齒輪以相應(yīng)轉(zhuǎn)速自轉(zhuǎn),使兩側(cè)驅(qū)動車輪以不同轉(zhuǎn)速在地面上滾動而無滑動。
有式(2-10)還可以得知:當(dāng)任何一側(cè)半軸齒輪的轉(zhuǎn)速為零時,另一側(cè)半軸齒輪的轉(zhuǎn)速為差速器殼轉(zhuǎn)速的兩倍;當(dāng)差速器殼的轉(zhuǎn)速為零(例如中央制動器制動傳動軸時),若一側(cè)半軸齒輪受其它外來力矩而轉(zhuǎn)動,則另一側(cè)半軸齒輪即以相同的轉(zhuǎn)速反向轉(zhuǎn)動。
2.3.2 對稱式圓錐行星齒輪差速器結(jié)構(gòu)
普通的對稱式圓錐齒輪差速器由差速器左右殼,兩個半軸齒輪,四個行星齒輪,行星齒輪軸,半軸齒輪墊片及行星齒輪墊片等組成。如圖2-2所示。由于其具有結(jié)構(gòu)簡單、工作平穩(wěn)、制造方便、用于電動車上也很可靠等優(yōu)點,故廣泛用于各類車輛上。
圖2-2 對稱式圓錐行星齒輪差速器結(jié)構(gòu)圖
1-軸承;2-左外殼;3-墊片;4-半軸齒輪;5-墊圈;6-行星齒輪; 7-從動齒輪;
8-右外殼;9-十字軸;10-螺栓
當(dāng)左右驅(qū)動輪存在轉(zhuǎn)速差時,差速器分配給慢轉(zhuǎn)驅(qū)動輪的轉(zhuǎn)矩大于快轉(zhuǎn)驅(qū)動輪的轉(zhuǎn)矩。這種差速器轉(zhuǎn)矩均分特性能滿足校園電動車在良好路面上正常行駛。
2.3.3 差速器齒輪基本參數(shù)選擇
由于在差速器殼上裝著主減速器從動齒輪,所以在確定主減速器從動齒輪尺寸時,應(yīng)考慮差速器的安裝。差速器的輪廓尺寸也受到主減速器從動齒輪軸承支承座及主動齒輪導(dǎo)向軸承座的限制。
(1)行星齒輪數(shù)目的選擇
電動車一般采用2個行星齒輪。
(2)行星齒輪球面半徑的確定
圓錐行星齒輪差速器的結(jié)構(gòu)尺寸,通常取決于行星齒輪的背面的球面半徑,它就是行星齒輪的安裝尺寸,實際上代表了差速器圓錐齒輪的節(jié)錐距,因此在一定程度上也表征了差速器的強度。
球面半徑可按如下的經(jīng)驗公式確定:
mm 式(2-12)
式中:——行星齒輪球面半徑系數(shù),可取2.52~2.99,對于有2個行星齒輪的電動車取大值2.8;
Tj——計算轉(zhuǎn)矩,取Tce和Tcs的較小值,176.4 .
根據(jù)上式=15.703mm 所以預(yù)選其節(jié)錐距A0=20mm
(3)行星齒輪與半軸齒輪的選擇
選擇行星齒輪的齒數(shù)為Z1=10;半軸齒輪的齒數(shù)為Z2=16;
(4)差速器圓錐齒輪模數(shù)及半軸齒輪節(jié)圓直徑的初步確定
首先初步求出行星齒輪與半軸齒輪的節(jié)錐角,
==32.00° =90°-=58° 式(2-13)
再按下式初步求出圓錐齒輪的大端端面模數(shù)m
m===220/10×sin32°=2.119 式(2-14)
參照GB1357—87第一系列模數(shù)表,在此取m=2.5mm
得 d1=mz1=2.5×10=25mm
d2=mz2=2.5×16=40mm
表2-1差速器直齒錐齒輪的幾何尺寸計算用表 長度單位:mm
項目
計算公式
計算結(jié)果
行星齒輪齒數(shù)
≥10,應(yīng)盡量取最小值
=10
半軸齒輪齒數(shù)
=14~25
=16
模數(shù)
=2.5mm
齒面寬
F=(0.25~0.30)A;F≤10m
6mm
工作齒高
=4mm
全齒高
4.521
壓力角
22.5°
軸交角
=90°
節(jié)圓直徑
;
d1=25mm
d2=40mm
節(jié)錐角
,
=32°,
節(jié)錐距
=23.588mm
周節(jié)
=3.1416
=7.854mm
齒頂高
;
=2.564mm
=1.436mm
齒根高
=1.788-;=1.788-
=1.906mm;
=3.034mm
徑向間隙
=-=0.188+0.051
=0.521mm
齒根角
=;
=4.62°; =7.33°
面錐角
;
=39.33°,=62.62°
根錐角
;
=27.38°,=50.67°
外圓直徑
;
d01=29.35mm
d02=41.52mm
(5)行星齒輪安裝孔的直徑φ及深度L
行星齒輪的安裝孔的直徑φ與行星齒輪軸的名義尺寸相同,而行星齒輪的安裝孔的深度就是行星齒輪在其軸上的支承長度,通常?。?
式(2-15)
式(2-16)
式(2-17)
式中:——差速器傳遞的轉(zhuǎn)矩,N·m;TO=19.6×0.994×0.973×10.517=186.3
——行星齒輪的數(shù)目;在此為2
——行星齒輪支承面中點至錐頂?shù)木嚯x,, ≈0.5d, d為半軸齒輪齒面寬中點處的直徑,而d≈0.8;
——支承面的許用擠壓應(yīng)力,在此取69
根據(jù)上式 d=0.8×40=32 =0.5×32=16
=8.758 84.375
2.3.4 差速器齒輪強度計算
差速器齒輪的尺寸受結(jié)構(gòu)限制,而且承受的載荷較大,它不像主減速器齒輪那樣經(jīng)常處于嚙合狀態(tài),只有當(dāng)電動車轉(zhuǎn)彎或左右輪行駛不同的路程時,或一側(cè)車輪打滑而滑轉(zhuǎn)時,差速器齒輪才能有嚙合傳動的相對運動。因此對于差速器齒輪主要應(yīng)進行彎曲強度校核。輪齒彎曲強度為
式(2-18)
式中:——差速器一個行星齒輪傳給一個半軸齒輪的轉(zhuǎn)矩,其計算式
在此為55.89N·m;
——差速器的行星齒輪數(shù)2;
——半軸齒輪齒數(shù)16;
、、——見式(2-18)下的說明;
J——計算電動車差速器齒輪彎曲應(yīng)力用的綜合系數(shù),根據(jù)參考文獻[10],取 =0.2175;
由以上數(shù)據(jù)代入(2-18)得:
MPa
電動車驅(qū)動橋齒輪許用應(yīng)力[σw]〈 980 MPa。所以,差速器齒輪滿足彎曲強度要求。
2.4 軸承選擇與校核
2.4.1 概述
該設(shè)計的校園電動車選用的圓錐滾子軸承。滾動軸承依靠其主要元件間的滾動接觸來支承轉(zhuǎn)動或擺動零件,其相對運動表面間的摩擦是滾動摩擦。滾動軸承的基本結(jié)構(gòu)如圖2-3所示,它由下列零件組成;
(1)帶有滾道的內(nèi)圈和外圈;
(2)滾動體(球或滾子);
(3)隔開并導(dǎo)引滾動體的保持架。
有些軸承可以少用一個套圈(內(nèi)圈或外圈),或者內(nèi)、外兩個套圈都不用,滾動體直接沿滾道滾動。
內(nèi)圈裝在軸頸上,外圈裝在軸承座中。通常內(nèi)圈隨軸回轉(zhuǎn),外圈固定,但也有外圈回轉(zhuǎn)而內(nèi)圈不動,或是內(nèi)、外圈同時回轉(zhuǎn)的場合。
常用的滾動體有球、圓柱滾子、滾針、圓錐滾子、球面滾子、非對稱球面滾子等幾種,如圖2-4所示。軸承內(nèi)、外圈上的滾道,有限制滾動體側(cè)向位移的作用。
圖2-3 滾動軸承的基本結(jié)構(gòu)
圖2-4 常用的滾動體
與滑動軸承相比,滾動軸承的主要優(yōu)點為:
(1)摩擦力矩和發(fā)熱較小。在通常的速度范圍內(nèi),摩擦力矩很少隨速度而改變。起動轉(zhuǎn)矩比滑動軸承要低得多(比后者小80~90%);
(2)維護比較方便,潤滑劑消耗較?。?
(3)軸承單位寬度的承載能力較大;
(4)大大地減少有色金屬的消耗。
滾動軸承的缺點是:
徑向外廓尺寸比滑動軸承大;接觸應(yīng)力高,承受沖擊載荷能力較差,高速重負荷下壽命較低;小批生產(chǎn)特殊的滾動軸承時成本較高;減振能力比滑動軸承低。
2.4.2 滾動軸承類型及代號
2.4.2.1 滾動軸承類型、性能與特點
按滾動體的形狀,滾動軸承可分為球軸承和滾子軸承。
按接觸角α的大小和所能承受載荷的方向,軸承可分為:
(1) 向心軸承:
公稱接觸角:0°≤α≤45°
(2)推力軸承:
公稱接觸角:45°≤α≤90°
按自動調(diào)心性能,軸承可分為自動調(diào)心軸承和非自動調(diào)心軸承。滾子軸承的類型很多,現(xiàn)將最常用的幾種滾動軸承的性能和特點作簡要介紹。
(3)圓錐滾子軸承
能承受較大的徑向載荷和單向的軸向載荷,極限轉(zhuǎn)速較低。 內(nèi)外圈可分離,故軸承游隙可在安裝時調(diào)整,通常成對使用,對稱安裝。適用于轉(zhuǎn)速不太高、軸的剛性較好的場合。
主要承受徑向載荷,也可同時承受少量雙向軸向載荷,工作時內(nèi)外圈軸線允許偏斜8′~16′。摩擦阻力小,極限轉(zhuǎn)速高,結(jié)構(gòu)簡單,價格便宜,應(yīng)用最廣泛。但承受沖擊載荷能力較差。適用于高速場合,在高速時,可能來代替推力球軸承。
圖2-5 圓錐滾子軸承
(4)圓柱滾子軸承
只能承受徑向載荷,不能承受軸向載荷。承受載荷能力比同尺寸的球軸承大,尤其是承受沖擊載荷能力強,極限轉(zhuǎn)速較高。
圖2-6 圓柱滾子軸承
(5)調(diào)心球軸承
用于承受徑向載荷,也能承受少量的雙向軸向載荷。外圈滾道為球面,具有調(diào)心性能,內(nèi)外圈軸線相對偏斜允許0.5°~2°,適用于多支點軸、彎曲剛度小的軸以及難于精確對中的支承。
圖2-7 調(diào)心球軸承
2.4.3 滾動軸承選擇
由于滾動軸承多為已標(biāo)準(zhǔn)化的外購件,因而,在機械設(shè)計中,設(shè)計滾動軸承部件時,只需:
正確選擇出能滿足約束條件的滾動軸承,包括:合理選擇軸承和校核所選出的軸承是否能滿足強度、轉(zhuǎn)速、經(jīng)濟等方面的約束;
進行滾動軸承部件的組合設(shè)計 滾動軸承的選擇包括:合理選擇軸承的類型、尺寸系列、內(nèi)徑以及諸如公差等級、特殊結(jié)構(gòu)等。
選用滾動軸承時,首先是選擇滾動軸承的類型。選擇軸承的類型,應(yīng)考慮軸承的工作條件、各類軸承的特點、價格等因素。和一般的零件設(shè)計一樣,軸承類型選擇的方案也不是唯一的,可以有多種選擇方案,選擇時,應(yīng)首先提出多種可行方案,經(jīng)深入分析比較后,再決定選用一種較優(yōu)的軸承類型。一般,選擇滾動軸承時應(yīng)考慮的問題主要有:
軸承所受載荷的大小、方向和性質(zhì)。這是選擇軸承類型的主要依據(jù)。
首先載荷的大小與性質(zhì)。通常,由于球軸承主要元件間的接觸是點接觸,適合于中小載荷及載荷波動較小的場合工作;滾子軸承主要元件間的接觸是線接觸,宜用于承受較大的載荷;若軸承承受純徑向載荷, 一般選用深溝球軸承、圓柱滾子軸承或滾針軸承;當(dāng)軸承在承受徑向載荷的同時,還承受不大的軸向載荷時,可選用深溝球軸承或接觸角不大的角接觸球軸承或圓錐滾子軸承,當(dāng)軸向載荷較大時,可選用接觸角較大的角接觸球軸承或圓錐滾子軸承,或者選用向心軸承和推力軸承組合在一起的結(jié)構(gòu),分別承擔(dān)徑向載荷和軸向載荷。
載荷較大或有沖擊載荷時,宜選用滾子軸承。 推力軸承的極限轉(zhuǎn)速很低。工作轉(zhuǎn)速較高時,若軸向載荷不很大,可采用角接觸球軸承承受軸向載荷。
當(dāng)軸的中心線與軸承座中心線不重合而有角度誤差時,或因軸受力彎曲或傾斜時,會造成軸承的內(nèi)、外圈軸線發(fā)生偏斜。這時,應(yīng)采用有一定調(diào)心性能的調(diào)心球軸承或調(diào)心滾子軸承。
對于支點跨距大、軸的彎曲變形大或多支點軸,也可考慮選用調(diào)心軸承。圓柱滾子軸承,滾針軸承以及圓錐滾子軸承對角度偏差敏感,宜用于軸孔能保證同心、軸的剛度較高的地方。值得注意的是,各類軸承內(nèi)圈軸線相對外圈軸線的傾斜角度是有限制的,超過限制角度,會使軸承壽命降低。
尺寸系列、內(nèi)徑等的選擇
尺寸系列包括直徑系列和寬(高)度系列。選擇軸承的尺寸系列時,主要考慮軸承承受載荷的大小,此外,也要考慮結(jié)構(gòu)的要求。就直徑系列而言,載荷很小時,一般可以選擇超輕或特輕系列;載荷很大時,可考慮選擇重系列;一般情況下,可先選用輕系列或中系列,待校核后再根據(jù)具體情況進行調(diào)整。對于寬度系,一般情況下可選用正常系列,若結(jié)構(gòu)上有特殊要求時,可根據(jù)具體情況選用其它系列。
軸承內(nèi)徑的大小與軸頸直徑有關(guān),一般可根據(jù)軸頸直徑初步確定。
公差等級,若無特殊要求,一般選用0級,若有特殊要求,可根據(jù)具體情況選用不同的公差等級。
由于設(shè)計問題的復(fù)雜性,軸承的選擇不應(yīng)指望一次成功,必須在選擇、校核乃至結(jié)構(gòu)設(shè)計的全過程中,反復(fù)分析、比較和修改,才能選擇出符合設(shè)計要求的較好的
2.4.4 滾動軸承約束設(shè)計
根據(jù)設(shè)計的要求,得出校核計算過程如下。 如圖所示,軸上正裝一對圓錐滾子軸承,型號為30305,已知兩軸承的徑向載荷分別為R1=2500N,R2=5000N,外加軸向力FA=2000N,該軸承在常溫下工作,預(yù)期工作壽命為Lh ' =2000小時,載荷系數(shù)fp=1.5,轉(zhuǎn)速n=1000 r/min。試校核該對軸承是否滿足壽命要求。
圖2-8 軸承部件受載示意圖
在計算中,軸承的徑向載荷Fr用R 表示,軸向載荷Fa用A 表示。查軸承手冊得30305型軸承基本額定動載荷Cr=44800N,e=0.30,Y = 2。
(1).計算兩軸承的派生軸向力S
根據(jù)參考文獻[5],錐滾子軸承的派生軸向力為S=R/(2Y),則
(2).計算兩軸承的軸向載荷A1、A2,根據(jù)參考文獻[5],計算公式為:
S2+FA=1250+2000 = 3250 N,
∵ S2+FA> S1
∴ 軸承Ⅰ被"壓緊",軸承Ⅱ被"放松",故
A1=S2+FA=3250 N
A2=S2=1250 N
(3).計算兩軸承的當(dāng)量動載荷P,根據(jù)參考文獻[5],計算公式為:
軸承Ⅰ的當(dāng)量動載荷P1:
根據(jù)參考文獻[5],取X1 = 0.4,Y1 = 2
根據(jù)參考文獻[5],軸承Ⅱ的當(dāng)量動載荷P2,
取X2 = 1,Y2 = 0
驗算兩軸承的壽命
由于軸承是在正常溫度下工作,根據(jù)參考文獻[5],當(dāng)t <120℃時,取 ft =1;
滾子軸承的e=10/3,則軸承I的壽命
軸承Ⅱ的壽命
由此可見,軸承滿足壽命要求。
3電動車電氣控制設(shè)計
3.1主電路
3.1.1 H型雙極模式PWM控制
如圖3-1所示,H型雙極模式PWM控制一般由4個大功率可控開關(guān)管(V 1-4 )和4個續(xù)流二極管(VD 1-4 )組成H橋式電路。4個大功率可控開關(guān)管分為2組,V 1和V 4為一組,V 2和V 3為一組。同一組的兩個大功率可控開關(guān)管同時導(dǎo)通,同時關(guān)閉,兩組交替輪流導(dǎo)通和關(guān)閉,即驅(qū)動信號u 1 =u 4,u 2 =u 3 =-u 1,決定電動機附加功耗大小的因素主要是PWM的開關(guān)頻率,決定大功率可控開關(guān)管的動態(tài)功耗大小的因素主要是大功率可控開關(guān)管的開通關(guān)閉時間和PWM的開關(guān)頻率,開通關(guān)閉時間越長動態(tài)功耗就越大,PWM開關(guān)頻率越大動態(tài)功耗就越大。
主電路采用可逆PWM—M的雙極式H型電路。運用4個C2655晶體管和4個續(xù)流二極管組成的橋式電路,靠晶體管導(dǎo)通和關(guān)閉的占空比D來實現(xiàn)電動機調(diào)速的目的,輸出端的電位極性不同可以使電機正轉(zhuǎn)和反轉(zhuǎn)。應(yīng)用中應(yīng)盡量提高斬波頻率,減少電流的脈動。
圖3-1 電機正反轉(zhuǎn)控制電路
V1和VD1構(gòu)成降壓斬波電路,由電源向直流電動機供電,電動機為電動運行,工作于第1象限;
V2和VD2構(gòu)成升壓斬波電路,把直流電動機的動能轉(zhuǎn)變?yōu)殡娔芊答伒诫娫矗闺妱訖C作再生制動運行,工作于第2象限。
必須防止V1和V2同時導(dǎo)通而導(dǎo)致的電源短路;
在一個周期內(nèi),電樞電流沿正、負兩個方向流通,電流不斷,所以調(diào)速的響應(yīng)很快。
3.1.2控制電路
控制電路以SG3525為核心構(gòu)成,它采用恒頻脈寬調(diào)制控制方案,適合于各種開關(guān)電源,斬波器的控制。其內(nèi)部包含精密基準(zhǔn)源、鋸齒波振蕩器、誤差放大器、比較器、分頻器等,并含有欠壓鎖定電路,閉鎖控制電路和軟起動電路。SG3525外圍電路接線圖見 圖3-2。圖3-2 SG3525外圍電路接線圖LM1413是一種復(fù)合晶體管(達林頓電路)陣列驅(qū)動器,增益和耗散功率大,可靠性高。本電路中用它來放大SG3525第11,14引腳輸出到MOSFET的驅(qū)動信號并防止誤驅(qū)動。
圖3-2 控制電路圖
3.1.3 SG3525的內(nèi)部電路和參數(shù)
3.1.4 LM1413內(nèi)部電路和參數(shù)
3.2電動車電池設(shè)計方案
3.2.1 電池槽
目前電動車電池普遍采用外型尺寸為700mm ×182 mm × 160 mm 的電池槽。
結(jié)論
此次畢業(yè)設(shè)計主要完成了電動車的電器控制部分和機械工作部分的設(shè)計并進行了較為詳盡的計算設(shè)計。并根據(jù)實際中已經(jīng)存在的車輛進行了實際的考察和借鑒,通過自己的辛勤努力,最終完成了全部的設(shè)計工作。
通過借鑒了相關(guān)電動車的控制部分和機械設(shè)計部分的結(jié)構(gòu)及其相關(guān)參數(shù)、尺寸,對所設(shè)計的電動車進行結(jié)構(gòu)的選擇以及對所設(shè)計后驅(qū)動橋齒輪的相關(guān)參數(shù)進行預(yù)選,并結(jié)合大量的相關(guān)書籍,利用給定的載荷條件對所設(shè)計的齒輪的圓周力、彎曲強度以及接觸強度的校核。
通過所設(shè)計好機械各部分或者整體部分的結(jié)構(gòu)以及相關(guān)尺寸,利用制圖軟件CAD進行相關(guān)的配圖的繪制以及其他零件圖的繪制。
致謝
在張老師的悉心指導(dǎo)下我的論文終于完成了。張老師不僅指導(dǎo)了我的畢業(yè)設(shè)計,同時也非常關(guān)注我的就業(yè),并時常作為一名已經(jīng)工作了多年的前輩對我即將走向社會在工作生活中應(yīng)注意的問題給予了積極的指導(dǎo),使我在忙于找工作的同時能安下心來做畢業(yè)設(shè)計。在我即將走出大學(xué)校門之時,讓我以最誠摯的心情來感謝四年來所有教過我的老師們,謝謝你們給予我的指導(dǎo)和關(guān)懷;也讓我感謝四年來在一起學(xué)習(xí)、生活的同窗好友們,謝謝你們給予我的照顧。
在本次設(shè)計中,我還得到了我的好友和其他老師的熱心幫助,在此向他們表示衷心的感謝!
參考文獻
[1]趙明生.機械工程手冊.專用機械[M].機械工業(yè)出版社.1995: 77-89
[2]劉永波主編.電力電子技術(shù)[M].北京:機械工業(yè)出版社.2005: 34-42
[3]鄭堤、唐可洪主編.機電一體化設(shè)計基礎(chǔ)[M]. 北京:機械工業(yè)出版社,2006: 109-116
[4]周開勤. 機械零件手冊第五版[M]. 北京:高等教育出版社 .2001:50-63
[5]成大先.機械設(shè)計手冊·機械傳動[M].北京:化學(xué)工業(yè)出版社.2004:23-42
[6]成大先.機械設(shè)計手冊·機械制圖·極限與配合[M].北京:化學(xué)工業(yè)出版社.2004: 98-67
[7]席偉光、楊光、李波主編.機械設(shè)計課程設(shè)計[M].北京:高等教育出版社.2003:88-100
[8]章宏甲、黃誼主編.液壓傳動[M].機械工業(yè)出版社.2000.9:111 -132
[9]Jongsoo Lee. Passivity-based control of synchronous motors in mine hoist systems [J].Journal of Coal Science and Engineering.2001, 001(01):20-33
[10]ZHOU Xiuhua .Study in New Type Signaling Device for Mine Hoists [J].COAL MINE AUTOMATION, 2000,001(01):111-149