葵花脫粒機的設(shè)計【葵瓜子脫粒機設(shè)計】
葵花脫粒機的設(shè)計【葵瓜子脫粒機設(shè)計】,葵瓜子脫粒機設(shè)計,葵花脫粒機的設(shè)計【葵瓜子脫粒機設(shè)計】,葵花,脫粒機,設(shè)計,瓜子
12 屆畢業(yè)論文
葵花脫粒機的設(shè)計
設(shè)計說明書
學(xué)生姓名 王冬梅
學(xué) 號 8031208138
所屬學(xué)院 機械電氣化工程學(xué)院
專 業(yè) 農(nóng)業(yè)機械化及其自動化專業(yè)
班 級 農(nóng)機12-1
指導(dǎo)教師 萬暢
日 期
目錄
前言 1
1緒論 3
1.1葵花的價值 3
1.2我國葵花種植區(qū)域及面積 3
1.3研究目的及意義 3
1.4國內(nèi)研究現(xiàn)狀及分析 4
1.5任務(wù)要求及實現(xiàn)預(yù)期目標的可行性分析 5
1.6完成本課題所必需的工作條件及主要任務(wù) 5
2 葵花脫粒機的總體結(jié)構(gòu)設(shè)計 6
2.1入料部分 6
2.2 脫粒部分 6
2.3 篩選部分 7
2.4 機體部分 7
2.5 葵花脫粒機的總體設(shè)計 7
3 葵花脫粒機的設(shè)計 8
3.1 配套動力的選擇 8
3.2軸的設(shè)計 8
3.3軸的校核 8
3.4 帶輪的設(shè)計 9
3.5軸承的選擇 9
4葵花脫粒機上的標準件的選擇 9
4.1 葵花脫粒機上的螺栓的選擇 9
4.2鍵的選擇 9
5葵花脫粒機安全操作規(guī)程注意事項 9
5.1 超速運轉(zhuǎn),機械“爆炸” 9
5.2 禁止過疲勞或酒后操作 9
5.3 注意事項 9
6 葵花脫粒機的安裝、調(diào)整和使用 9
6.1 葵花脫粒機與拖拉機的連接 9
6.2 調(diào)整 9
6.3試運轉(zhuǎn) 9
6.4田間工作 9
7 葵花脫粒機的保養(yǎng)與維修 9
7.1使用中的保養(yǎng) 9
7.2入庫停放前的保養(yǎng) 9
總結(jié) 9
致 謝 9
參考文獻 9
前言
畢業(yè)設(shè)計是大學(xué)本科教育培養(yǎng)目標實現(xiàn)的重要階段,是畢業(yè)前的綜合學(xué)習(xí)階段,是深化、拓寬、綜合教與學(xué)的重要過程,是對大學(xué)期間所學(xué)專業(yè)知識的全面綜合和總結(jié)。
在畢業(yè)設(shè)計過程中,經(jīng)過資料查閱、設(shè)計計算、說明書的編寫,加深了對新規(guī)范、規(guī)程、手冊等專業(yè)技術(shù)相關(guān)內(nèi)容的新認識和理解,畢業(yè)設(shè)計順利的完成與導(dǎo)師的認真詳細指導(dǎo)分不開。本次設(shè)計鞏固了我的專業(yè)知識、提高了綜合分析、解決問題的能力。在進行制圖時,主要應(yīng)用了CAD設(shè)計軟件,對其有了更深一步的了解。從不同方面達到了畢業(yè)設(shè)計的目的及要求。
本設(shè)計說明書要闡述葵花脫粒機的結(jié)構(gòu)與工作原理,著重對葵花脫粒機的核心脫粒部件進行了大量工作與分析。通過對大量參考文獻的閱讀與分析,對葵花脫粒機的國內(nèi)發(fā)展現(xiàn)狀有了一定了解,對結(jié)構(gòu)和參數(shù)進行了優(yōu)化,盡可能使葵花脫粒機的結(jié)構(gòu)更合理、參數(shù)更準確、工作更快捷,經(jīng)濟使用性更好。
機械,在我國廣大農(nóng)村使用十分廣泛。脫粒機在我國生產(chǎn)使用已有數(shù)十年的歷史,將葵花籽(谷物)從作物的穗頭上分離下來所使用的機具,稱為脫粒機具。質(zhì)量合格的脫粒機,應(yīng)該是堅固耐用的、故障少、使用保養(yǎng)方便、結(jié)構(gòu)簡單可靠。同時,還應(yīng)滿足以下的農(nóng)業(yè)技術(shù)要求:葵花籽應(yīng)當(dāng)從葵花盤上脫下來,脫粒要干凈。脫下的葵花籽不要破碎、情潔、不混其它葵花盤、雜物等脫粒時應(yīng)盡量減少葵花盤的損壞,以保證葵花籽的完整。脫粒機在一定程度上應(yīng)有一定的通用性,盡可能適用于托多種農(nóng)作物,從而以提高機具的利用率。所設(shè)計的脫粒機應(yīng)有較高的生產(chǎn)率,功率消耗少,即其造價低。脫粒系統(tǒng)是聯(lián)合收割機的核心,它決定著其他各部分的工作性能。研究脫??臻g內(nèi)谷物的運動規(guī)律是聯(lián)合收割機脫粒機理研究的關(guān)鍵內(nèi)容之一。
脫粒機生產(chǎn)在我國雖已有數(shù)十年歷史,但不少企業(yè)仍延襲十幾年以前的生產(chǎn)方式進行生產(chǎn)和管理,企業(yè)管理水平相對落后。全國200多家企業(yè)中,至今只有1家企業(yè)進行了質(zhì)量保證體系認證就足以說明這一問題。此外,產(chǎn)品品種單一,產(chǎn)品更新?lián)Q代適應(yīng)不了市場的需求,一些產(chǎn)品多年存在的性能問題,如風(fēng)扇型脫粒機存在的對作物干濕度適應(yīng)性差的問題一直得不到解決,原因就是多數(shù)企業(yè)經(jīng)濟效益欠佳,拿不出更多的資金和技術(shù)力量用于科研和開發(fā)新產(chǎn)品;也有的是由于企業(yè)領(lǐng)導(dǎo)急功近利,對開發(fā)新產(chǎn)品的重要性認識不足。然而產(chǎn)品更新?lián)Q代的越慢,越難占領(lǐng)市場,企業(yè)效益越差,從而使不少企業(yè)的生產(chǎn)陷入了惡性循壞。
目前脫粒機生產(chǎn)企業(yè)產(chǎn)量最大的為3萬多臺,最少的僅幾十臺,不少企業(yè)的生產(chǎn)未能形成適度的規(guī)模。這主要是因為脫粒機是季節(jié)性很強的產(chǎn)品,產(chǎn)品銷售往往僅在1個月或者十幾天的時間,資金周轉(zhuǎn)時間長,不少企業(yè)明知進行技術(shù)改造形成適度規(guī)模生產(chǎn)能降低成本,提高經(jīng)濟效益,但苦于流動資金不足或貸款困難,無力進行適度規(guī)模生產(chǎn),再加上近幾年脫粒機行業(yè)活動和信息交流不暢,不能根據(jù)市場變化及時調(diào)整生產(chǎn)結(jié)構(gòu)、產(chǎn)品品種及生產(chǎn)數(shù)量,從而導(dǎo)致經(jīng)濟效益不理想。因此,我們可以看出脫粒機目前仍有較大的存在空間,對脫粒機的改進設(shè)計,使其價格低廉、工作可靠、性能優(yōu)良、盡可能同時完成多項作業(yè)是時代的需要。
隨著社會的進步,生活中的每一個角落都有機器的參與。農(nóng)業(yè)是我國的基礎(chǔ)經(jīng)濟、是國家發(fā)展的根本,機械化的普及,不僅使農(nóng)業(yè)加強了農(nóng)業(yè)化生產(chǎn),同時也減輕了農(nóng)民的勞動強度。據(jù)不完全統(tǒng)計,我國北方地區(qū)種植小麥、玉米等農(nóng)作物約占我國農(nóng)業(yè)經(jīng)濟的45%以上,同年出口量北方地區(qū)占全國達20%左右。因此我國北方地區(qū)更需要實現(xiàn)農(nóng)業(yè)機械化生產(chǎn),從而提高農(nóng)業(yè)的勞動生產(chǎn)率。如今我國北方大部分地區(qū)基本上從種到收到入倉,實現(xiàn)了機械化作業(yè),更值得慶幸的是每種機械的開發(fā)和利用都有相當(dāng)可觀的市場,科技的創(chuàng)新更很好的開闊了市場。這里僅對一種葵花脫粒機視為課題討論研究,葵花脫粒機是葵花砍下后,經(jīng)過一 段時間的風(fēng)干,然后將葵花利用脫粒機使葵花籽和葵花盤分開,這種機械就是葵花脫粒機。
葵花脫粒機工作原理是:葵花脫粒機在進行葵花脫粒時,利用脫粒軸體回轉(zhuǎn)運動的齒條與底篩之間的間隙相配合,使葵花粒拖下(脫粒軸體上的齒條和底篩之間的揉搓作用,將葵花籽脫離葵花盤,并借助其他的機械機構(gòu)將葵花籽和葵花盤分別從兩個不同的出口排出機體之外,循環(huán)脫粒,不斷的進行填入---脫粒---排出機體。
1緒論
1.1 葵花的價值
瓜子在人們生活中是不可缺少的零食,葵花子更是瓜子中的佼佼者。葵花子不但可以作為零食,而且還可以作為制作糕點的原料。同時,由于葵花子是植物的種子,含有大量的油脂,而葵花子油又是近幾年來深受營養(yǎng)學(xué)界推崇的高檔健康油脂,故其還是重要的榨油原料。
對于葵花子所具有的營養(yǎng)價值以及其食用的普遍性,有如下闡述。
???????一、營養(yǎng)分析
?????? 1. 葵花子含豐富的不飽和脂肪酸、優(yōu)質(zhì)蛋白、鉀、磷、鈣、鎂、硒元素及維生素E、維生素B1等營養(yǎng)元素;
???????2. 其所含豐富的鉀元素對保護心臟功能,預(yù)防高血壓頗多裨益;
????? 3. 葵花子含有豐富的維生素E,有防止衰老、提高免疫力、預(yù)防心血管疾病的作用;
????? 4. 葵花子中所含植物固醇和磷脂,能夠抑制人體內(nèi)膽固醇的合成,防止血漿膽固醇過多,可防止動脈硬化;
???????5. 葵花子還有調(diào)節(jié)腦細胞代謝,改善其抑制機能的作用,故可用于催眠。
??????二、相關(guān)人群
??????一般人群均可食用
???????1. 適宜癌癥患者食用;適宜高脂血癥,動脈硬化和高血壓之人食用;適宜神經(jīng)衰弱的失眠者食用;適宜蟯蟲病人食用;
???????2. 炒后性溫燥,多食易引起口干、口瘡、牙痛等“上火”癥狀。
???? 三、食療作用
葵花籽性平,味甘;有補虛損,降血脂,抗癌之功效。
1.2 我國葵花種植區(qū)域及面積
改革開放以來,我國的農(nóng)業(yè)生產(chǎn)和農(nóng)村經(jīng)濟發(fā)生了翻天覆地的變化。種植業(yè)內(nèi)部也形成了以糧食作物為主,經(jīng)濟作物和飼料作物為輔的三元結(jié)構(gòu)。作為經(jīng)濟作物之一的葵花產(chǎn)業(yè)也得到了長足的發(fā)展,油用葵花已成為四大油料作物之一,食用葵花的發(fā)展更快,在全國葵花種植面積中占70%以上[1]。我國的葵花多種植在北方冷涼地區(qū),從黑龍江一直到,且多分布在干旱瘠薄土地和鹽堿地上,是農(nóng)民增收的一個非常好的經(jīng)濟作物。
我國葵花種植面積約112.53 ,產(chǎn)量約1369kg/,我國葵花總產(chǎn)在亞洲是大國與印度處于同一水平,我國葵花的單產(chǎn)水平略高于世界的平均水平[2]。由于我國對葵花的需求量很大,從油料生產(chǎn)情況來看,我國葵花生產(chǎn)呈上升趨勢,葵花籽總產(chǎn)達170~190萬t,在所有油料生產(chǎn)中排位第五位。另外,隨著人民生活水平的日益提高對食葵的需求量也更大??ㄊ斋@后,首先需要將葵花脫粒,過去葵花脫?;旧鲜遣捎檬止っ摿#瑒诠姸却?,勞動效率低,剛收獲的葵花如果不及時進行脫粒,葵花盤就會腐爛,這樣就會給農(nóng)民造成很大的損失。為了降低勞動強度,提高勞動效率,我們應(yīng)開發(fā)采用機械脫粒。
1.3 研究目的及意義
當(dāng)前,北疆葵花種植區(qū)域主要生產(chǎn)體制實行的是以戶為單位的聯(lián)產(chǎn)承包制,經(jīng)營規(guī)模相對內(nèi)地大且集中。葵花脫粒機是許多葵花種植農(nóng)戶收獲的首選,因此也推動了我們對葵花脫粒機的研究。而且隨著人們生活水平的日益提高,瓜子也成了成活中必不可少的零食,葵花的種植面積也不會有所降低,在今后相當(dāng)長的時期內(nèi)葵花脫粒機有很大的市場需求。
現(xiàn)階段我國農(nóng)村經(jīng)濟收入從整體來說還比較低,購買力有限,盡管國家對購買部分大型農(nóng)機實行補貼政策,但一次購買十萬甚至幾十萬的高性能脫粒機還是有困難的,同時,高性能脫粒機技術(shù)復(fù)雜,對經(jīng)營者的經(jīng)營和管理水平有較高的要求,而小型脫粒機無論從購買和經(jīng)營使用方面對于一般農(nóng)民來說就容易的多了。
相對于其他脫粒機而言,設(shè)計的該葵花脫粒機機體體積小,質(zhì)量輕,生產(chǎn)成本低,省錢省料,而且生產(chǎn)率較高,脫粒效果好,較好的實現(xiàn)了“又好(生產(chǎn)效率高,脫粒效果好)”、“又?。ㄊ″X、省料)”的設(shè)計理念,符合當(dāng)今建設(shè)資源節(jié)約型社會的要求。
1.4 國內(nèi)研究現(xiàn)狀及分析
脫粒機是用于對小麥、水稻、玉米、高粱、大豆及其它雜糧等作物進行脫粒作業(yè)的重要收獲機械, 在我國廣大農(nóng)村使用十分廣泛。脫粒機在我國生產(chǎn)使用已有數(shù)十年的歷史, 目前據(jù)不完全統(tǒng)計, 我國生產(chǎn)各類脫粒機的企業(yè)約有200 余家, 年產(chǎn)量在30 萬臺左右。脫粒機是實施生產(chǎn)許可證的農(nóng)機產(chǎn)品之一, 截止1997 年底, 己領(lǐng)取生產(chǎn)許可證的企業(yè)數(shù)為146 家。生產(chǎn)企業(yè)遍布全國各地, 其中,以長江以北的麥類產(chǎn)區(qū)分布較多, 產(chǎn)量較大, 尤其山東、河南、河北、江蘇四省生產(chǎn)以脫麥為主的脫粒機企業(yè)較多, 每省有30 家左右。東北地區(qū)主要是生產(chǎn)以脫玉米、豆類及雜糧為主的脫粒機。在長江以南的地區(qū), 大都為生產(chǎn)人工踩踏或動力帶動的梳刷式水稻脫粒機。在西南、西北等地也有一些以生產(chǎn)水稻、小麥類脫粒機為主的企業(yè), 雜糧類脫粒機占有較小比例。生產(chǎn)脫粒機的企業(yè), 大都為中小型企業(yè),尤以小型企業(yè)所占比例較大, 其企業(yè)經(jīng)濟性質(zhì)多為國有和集體企業(yè),但鄉(xiāng)鎮(zhèn)和個體企業(yè)也為數(shù)不少,也有少數(shù)的大型生產(chǎn)企業(yè)生產(chǎn)脫粒機, 但脫粒機產(chǎn)品不是該企業(yè)主導(dǎo)產(chǎn)品。
脫粒機屬于收獲后處理類農(nóng)業(yè)機械產(chǎn)品,主要用于水稻、玉米等谷物收獲后的脫粒處理作業(yè),由于脫粒機傳動機構(gòu)比較復(fù)雜,高速轉(zhuǎn)動部件較多,容易導(dǎo)致人身傷害,所以國家將其納入工業(yè)產(chǎn)品生產(chǎn)許證目錄管理范疇,嚴格要求該產(chǎn)品的質(zhì)量安全。脫粒機按喂入方式分為全喂入式和半喂入式,葵花脫粒機屬于全喂入式,水稻脫粒機屬于半喂入式。
在我國北方很多地區(qū)大面積種植經(jīng)濟作物葵花,每到收獲的季節(jié),農(nóng)民最急需解決的問題就是脫離問題,現(xiàn)有的脫粒裝置一般由滾筒和凹板組成,其種類和形式很多,主要用于谷物脫粒。目前市面上雖然有專用于葵花的脫粒機,但由于破籽率高,對葵花籽傷害大,因此收獲時大部分靠人力敲打脫粒,效率極低。剛采摘的濕葵如不能及時脫粒,葵花盤很快會發(fā)熱腐爛,尤其遇到陰雨腐爛的更快,給種植戶造成很大的損失。從已經(jīng)公開的有關(guān)葵花脫粒機的專利申請文件看,大部分結(jié)構(gòu)較為復(fù)雜,操作比較麻煩,有些設(shè)備采用螺旋推進器送料,葵花盤被打碎與籽?;旌显谝黄?,不易篩選分離。
1988年內(nèi)蒙工學(xué)院原機械系為了解決葵花收獲時農(nóng)民勞動強度大、收獲期長、損失大的問題研制了5KT-0.5型葵花脫粒機[3]。該機由8.8KW(12馬力)小四輪拖拉機拖動,工作過程是,葵花盤在入口處被高速滾動的滾筒卷入滾筒和柵板弧形間隙中。此時它受到彎曲、擠壓,開始有部分籽粒被脫掉。此后,在葵花盤前進過程中此作用仍在繼續(xù),并伴有摩擦、碰撞、沖擊等作用,特別是鋼絲扣的揉搓作用,使葵花盤上的葵籽從入口到出口的移動中逐漸被脫凈。脫凈的葵花盤從出口由離心力作用飛出,葵籽從集籽斗流出。
1991年吉林省白城地區(qū)農(nóng)牧機械化研究所和長嶺縣農(nóng)具廠研制的5TK-900型葵花脫粒機,5TK-900型葵花脫粒機是根據(jù)葵花的物理特性和脫粒特點設(shè)計的[4]。該機可與小四輪拖拉機配套,也可以用大于2.0KW的動力機械帶動作業(yè)。它采用復(fù)式滾筒,巧妙地將沖擊碾壓、摩擦、剝落、叩打等作用融為一體, 脫粒速度快、脫凈率高、破損少。成熟的葵花,干濕都能脫,脫后基本保持了葵花盤的完整,清潔率高,易于風(fēng)選和晾曬。
5TK-2.0型葵花脫粒機,該機由吉林省通榆縣農(nóng)機推廣站和通榆縣機電修造廠共同研制產(chǎn)生[5]。作業(yè)時葵花頭整體喂入,可一次完成推進、打擊、揉搓和分離等工序。具有使用方便、脫粒性能好、含雜率低、損失少和效率高等特點。該機外形尺寸(長、寬、高)為1419mm,1000mm、1100mm,配套動力15kw,滾筒轉(zhuǎn)速500~600r/min,工作效率800kg/h,整體質(zhì)量142kg。
1.5 任務(wù)要求及實現(xiàn)預(yù)期目標的可行性分析
本課題主要是研究葵花脫粒機的結(jié)構(gòu)及工作原理,目前對葵花脫粒機的需求量很大,生產(chǎn)前景廣闊。近年來國內(nèi)很多企業(yè)加入了生產(chǎn)行列,使得競爭加劇。隨著競爭的進一步加劇,產(chǎn)品開發(fā)手段的完善和創(chuàng)新設(shè)計能力的提升,必然成為企業(yè)競爭的核心內(nèi)容,也是企業(yè)做大的做強的一個重要法寶。
以往企業(yè)企業(yè)在設(shè)計葵花脫粒時往往靠經(jīng)驗積累,其特點是適用性不廣,而且有時往往不可靠。在使用中,現(xiàn)有的葵花脫粒機普遍存在脫粒效率低,碎籽率高等現(xiàn)象,造成了人工成本高及可靠性低這一結(jié)果,也沒有為廣大葵花農(nóng)戶帶來更多收益。在設(shè)計方面,由于設(shè)計手段限制,整個葵花脫粒機結(jié)構(gòu)不合理,可靠性比較低,維護不方便。要解決這些問題,需要對葵花脫粒機設(shè)計過程中的關(guān)鍵技術(shù)進行深入研究。
1.6 完成本課題所必需的工作條件及主要任務(wù)
完成課題必須深入調(diào)查研究,收集、查閱和閱讀中外文獻資料;綜合運用專業(yè)理論與知識分析解決實際問題;制定方案,對數(shù)據(jù)進行計算與分析處理;具備設(shè)計、計算與繪圖能力,包括使用計算機部分繪圖;邏輯思維與形象思維相結(jié)合的文字及口頭表達能力。要對本專業(yè)在國內(nèi)外的發(fā)展現(xiàn)狀、技術(shù)水平有所了解。
本設(shè)計主要研究葵花脫粒的方法和工藝,對葵花脫粒機進行整體結(jié)構(gòu)設(shè)計,并依據(jù)相關(guān)機械設(shè)計理論來完成零部件的設(shè)計。主要組成部件:動力傳動裝置,進料出料部件,脫粒部件,篩分裝置等。
2 葵花脫粒機的總體結(jié)構(gòu)設(shè)計
葵花脫粒機主要組成部分:入料口、上蓋、脫粒軸體、底篩、機體、傳動軸等部分組成。整體組成如圖所示
圖一 葵花脫粒機總體結(jié)構(gòu)
2.1入料部分
入料口與葵花脫粒機的上蓋部分相連,它是利用0.5厚的鐵板制成,入料部位與脫粒軸體部位相切,將葵花盤從入料口進入,下滑到脫粒部位,即軸體和底篩之間,進行脫粒。
圖二 入料口
2.2 脫粒部分
脫粒部分主要是由脫粒軸體、底篩、半圓型上蓋組成。葵花盤在脫粒滾筒和底篩之間進行脫粒,將已脫下的葵花粒從底篩的縫隙漏下,落到下滑板,由倉口排出機體之外,空盤借助于滾筒上的螺旋排列的脫粒齒的螺旋推力和螺旋導(dǎo)向作用,由入料口的另一端(即出料口)排出機體之外。
圖三 葵花脫粒軸體
2.3 篩選部分
篩選部分主要是由底篩完成,無論是工作時還是安裝時,底篩是固定不動的??摿V?,再將葵花籽經(jīng)過底篩,從底篩的縫隙漏出,順著斜滑板滑出機體之外,目的是將葵花盤和葵花籽分開。
圖四 脫粒機底篩
2.4 機體部分
機體是由左機架、右機架、出料口、下滑板及穩(wěn)定結(jié)實的主機梁組成,機體是葵花脫粒機的主要支撐,他承擔(dān)著脫粒機的主要重量和動力、負載和力矩,因此它的設(shè)計是許強不許弱的部分。機架的兩部分要各自穩(wěn)定,而且相對固定,以便做到機械在運轉(zhuǎn)過程中不會產(chǎn)生晃動、歪斜,造成人身危險,因此為了機架的堅固,此葵花脫粒機的設(shè)計采用三毫米厚的角鐵制成。
圖五 機架
2.5 葵花脫粒機的總體設(shè)計
為了優(yōu)化葵花脫離機的機型和結(jié)構(gòu)設(shè)計,此葵花脫粒機采用馬18馬力—25馬力小四輪拖動,葵花脫粒機和拖拉機為后三點懸掛式連接,將葵花脫粒機的兩個上牽引點,一個上牽引點分別和拖拉機的下牽引板、上牽引拉桿連接起來。調(diào)整上牽引拉桿使葵花脫粒機處于水平??摿C從入料到脫粒到分離葵花籽和葵花盤,最后將葵花籽和葵花空盤排出機體之外,是葵花脫粒機一體完成的,它最大的優(yōu)點是在短時間內(nèi)可以完成幾個人的勞動強度,從而提高了工作效率,節(jié)省了勞動時間。此葵花脫粒機有這些優(yōu)點之外,還有安全性能高、效率高、堅固耐用、結(jié)構(gòu)簡單便于維修和保管。
3 葵花脫粒機的設(shè)計
有關(guān)葵花脫粒機5QK—400型的相關(guān)設(shè)計的參考數(shù)據(jù):配套動力18馬力—25馬力小四輪拖拉機,動力傳動軸轉(zhuǎn)速530—560r/min,運輸間隙≥200,平均生產(chǎn)率≥350kg/h,最高生產(chǎn)率600kg/h,脫離滾筒直徑70cm,長度154cm,在主軸上焊接有成規(guī)律性形狀的圓鋼,總共12個圓鋼齒條呈螺旋均勻安裝,以便葵花盤隨螺旋齒條的螺旋作用排出機體之外。
3.1 配套動力的選擇
配套拖拉機的動力P=14.7kw(20馬力),動力輸出軸轉(zhuǎn)速為n=560r/min,由實際可知,拖拉機動力輸出軸的功率為= (3-1)
拖拉機輸出轉(zhuǎn)矩:
T== (3-2)
式中:為拖拉機輸出功率,
為動力輸出軸轉(zhuǎn)速
3.2 軸的設(shè)計
設(shè)計的軸長為1850mm,軸分為4段。第一段軸與皮帶輪連接,其直徑為35mm;第二段軸用來裝軸承的,還需要設(shè)計一個軸肩,用來固定軸承:第三段是裝脫粒滾筒的,其直徑40mm。第四段軸裝軸承。
軸的材料:軸的材料主要是碳剛和合金剛。由于碳剛比合金剛價格便宜,對應(yīng)力集中的敏感性較低,同時也可以用熱處理或化學(xué)熱處理的辦法提高其耐磨性和抗疲勞強度,所以本設(shè)計采用45號剛作為軸的材料。調(diào)制處理。第三段軸軸表面淬火,增加其表面的耐磨性能。
3.3 軸的校核
經(jīng)過分析,軸的軸向力是主要的,因此,對軸進行扭矩校核。
(1)軸的扭矩計算
由式(3-2)知拖拉機輸出轉(zhuǎn)矩為150.4NM
主軸輸入轉(zhuǎn)矩:
(3-3)
其中:為皮帶輪的傳動效率根據(jù)設(shè)計指導(dǎo)書參考表1初選
為軸承的傳動效率初選
為軸承的傳動效率初選
根據(jù)要求,軸要滿足下列條件
(2)軸的強度條件:
式中:為軸的切應(yīng)力,Mpa;T為轉(zhuǎn)矩,N.mm;為抗扭截面系數(shù),;為許用扭切應(yīng)力,MPa.
表3-1 常用材料的值和C值
軸的材料
Q235,20
35
45
40Cr,35SiMn
12-20
20-30
30-40
40-52
C
160-135
135-118
118-107
107-98
該軸的材料為45號鋼,則滿足強度條件,軸是安全的。
(3)軸的計算簡圖
圖六 主軸受力圖
根據(jù)軸的計算簡圖作出軸的彎矩圖
F為脫粒滾筒的平均阻力,F(xiàn)=380N
(其中 F為脫粒滾筒的平均阻力) (3-4)
經(jīng)計算F1=F2=190N
由此可知
=0 (3-5)
可得總彎扭矩圖:
圖七 總彎矩圖
圖八 總扭矩圖
由總彎矩圖可知軸承處是危險截面。
按彎矩合成應(yīng)力校核軸的強度
進行校核時,通常只校核軸上承受最大彎矩和扭矩的截面的強度。則由《機械設(shè)計基礎(chǔ)》P-245可得
其中,M為總彎矩;d為直徑
前已選定軸的材料為45鋼,調(diào)質(zhì)處理,由《機械設(shè)計基礎(chǔ)》P-246表14-3查得。
因為
所以主軸符合強度要求
3.4 帶輪的設(shè)計
根據(jù)葵花脫粒機的具體傳動要求,可選取拖拉機和主軸之間用V帶輪的傳動方式傳動,因為在脫粒機的工作工程中,傳動件V帶是一個撓性件,它賦有彈性,能緩和沖擊,吸收震動,因而使脫粒機平穩(wěn)工作,噪音小等優(yōu)點。雖然在傳動過程中V帶與帶輪之間存在著一些摩擦,導(dǎo)致兩者的相對滑動,使傳動比不精確但不會影響脫粒機的傳動,因為葵花脫粒機不需要精確的傳動比,只要傳動比比較精準就可以滿足要求,而且,V帶的彈性滑動對脫粒機的一些重要部件是一種過載保護,不會造成機體部件的嚴重損壞,還有V帶及帶輪的結(jié)構(gòu)簡單、制造成本地、容易維修和保養(yǎng)、便于安裝,所以,在拖拉機和葵花脫粒機之間選用V帶輪的傳動配合是很合理的。
表3-2 帶輪參數(shù)
槽型
直徑
孔徑基準
L
槽數(shù)
Z
35
100
70
70 104 4
帶輪材料選灰鑄鐵HT200.
3.5 軸承的選擇
根據(jù)軸受力和軸徑的不同,本設(shè)計選用的軸承是:深溝球軸承
已知此處軸徑為30mm,所以選內(nèi)徑為30mm的軸承,在機械設(shè)計手冊中選擇深溝球軸承;查表6-1,選擇型號為6007 GB/T276—94的軸承。另一處已知軸徑為30mm,所以選內(nèi)徑也為30mm的軸承,選擇型號也為6007 GB/T276—94的軸承。所選的軸承基本參數(shù)如下:[10]
軸承外徑: b=30mm;D=62mm;B=14mm
基本額定動載荷:C=16.2KN
基本額定靜載荷:C=10.5KN
4 葵花脫粒機上的標準件的選擇
4.1 葵花脫粒機上的螺栓的選擇
應(yīng)用在葵花脫粒機上的螺栓是機械設(shè)計的標準件,螺栓的選擇可以根據(jù)《機械設(shè)計手冊》查取。在本脫粒機上選擇的螺栓為:公稱直徑為M8,長度為八厘米和五厘米,葵花脫粒機應(yīng)用的螺栓是起連接作用,在機體的上蓋和機架應(yīng)用螺栓連接,應(yīng)用公稱直徑為M8 的螺栓,就可以滿足葵花脫粒機的動力需要。
4.2 鍵的選擇
(1)鍵的尺寸、類型的確定
一般8級精度以上齒輪有定心精度要求,應(yīng)選用平鍵。一般圓頭普通平鍵應(yīng)用最廣。
根據(jù)d=35mm,從《機械設(shè)計手冊》P-53表4-1中查得鍵的截面尺寸為:寬度b=10mm,高度h=8mm。由輪轂寬度并參考鍵的長度系列,取鍵長L=45mm。
(2) 校核鍵聯(lián)接的強度
鍵、軸和輪轂的材料都是鋼,由《機械設(shè)計課程設(shè)計手冊》P-54表4-2查得許用擠壓應(yīng)力,取其平均值,。
鍵的工作長度l=L-b=35mm。
鍵與輪轂鍵槽的接觸高度k=0.5h=4mm。
由《機械設(shè)計基礎(chǔ)》P-158式(10--26)可得
故可見鍵合適安全。
5 葵花脫粒機安全操作規(guī)程注意事項
葵花脫粒機是解決葵花脫粒的問題,起目的是降低勞動者的勞動強度,提高工作效率,節(jié)省工作時間,同時在利用葵花脫粒機時,除了提高勞動效率之外更應(yīng)該注意安全問題,注意到葵花脫粒機的正確使用,可以避免應(yīng)用葵花脫粒機時造成人員傷害和脫粒機事故的發(fā)生。下面略述一些常見的事故和原因。
5.1 超速運轉(zhuǎn),機械“爆炸”
葵花脫粒機的主要工作部件,如脫粒軸體、底篩,軸等,這些零部件所能承受的力是有一定的限度的,當(dāng)脫粒軸體高速旋轉(zhuǎn)時,便會產(chǎn)生很大的離心力,如果脫粒軸體的轉(zhuǎn)速超過一定的范圍,和滾動軸承的老化及拖拉機的功率較高時,就有可能使運動的主軸和主軸上的齒條滾筒與機體相分離,或和葵花脫粒機的上蓋相撞,或和底篩相撞,可以產(chǎn)生很大的沖擊力,這種急速的沖擊會造成葵花脫粒機的爆炸,會危害到工作人員的身體安全,為了避免這種事故的發(fā)生,應(yīng)當(dāng)急時的更換機械重要部位零件,定時擰緊緊固螺栓,一提高工作安全系數(shù)。
5.2 禁止過疲勞或酒后操作
葵花脫粒機的動力很大,雖然用機架和上蓋將齒條滾筒及主軸罩住,加在機體之間,起到安全作用,而且葵花脫粒機的入料口的設(shè)計也很合理,但是也同樣禁止過疲勞或酒后操作,主要是由于過疲勞或酒后造作人員的大腦很可能不由造作人員的控制,造成操作人員將身體的某個部位伸入機械,與主軸或齒條滾筒相接觸,由于釘齒滾筒的高速旋轉(zhuǎn),會使操作人員的錯誤操作行為造成不必要的傷害,危害到勞動者的安全。
因此,為了勞動者的安全,應(yīng)避免過疲勞或酒后操作。
5.3 注意事項
1.初次使用前,應(yīng)檢查機器上的安全標志、明確使用說明書中安全操作規(guī)程和危險部位安全標志提示的內(nèi)容。
2.使用機器前,應(yīng)檢查機器上的安全標志,操作指示牌和產(chǎn)品有無殘損,殘損時應(yīng)及時補全。
3.每個作業(yè)季節(jié)前,應(yīng)檢查脫離滾筒上的工作部件有無裂紋和變形。更換部件時,應(yīng)按使用說明書的要求或有經(jīng)驗的維修人員的知道下進行。
4.妨礙操作和影響機器安全的部位不應(yīng)該裝。
5.更換動力時,必須保證主軸轉(zhuǎn)速在使用說明中或機器明示標識所規(guī)定的范圍之內(nèi),外露的傳動部位必須有防護裝置。
7.機器作業(yè)前應(yīng)進行試運轉(zhuǎn),試運轉(zhuǎn)應(yīng)無碰擦、無異常聲響和震動。滾動旋向應(yīng)正確,轉(zhuǎn)速應(yīng)符合作用說明書中的規(guī)定,嚴禁超速工作。
8.啟動機器前應(yīng)給出信號,確認機器旁邊沒有人時可起動。
9.嚴禁酒后、孕婦、未成年人操作,操作人員工作時應(yīng)扎緊袖口,留長發(fā)時應(yīng)戴防護帽。
10.作業(yè)時緊將手伸入喂料口,出籽口以及其他危險運動部件內(nèi)。
11.排料口的正前方嚴禁站人。
12.作業(yè)時嚴禁將石頭、木頭、金屬等堅硬物喂入機內(nèi)。
13.作業(yè)時候發(fā)現(xiàn)堵塞其他異常應(yīng)立即停機,切斷動力后方可進行清理檢查。
14.軸承座和其他運動部件上的螺栓不得有松動現(xiàn)象,并按使用說明書的要求定期檢查。
6 葵花脫粒機的安裝、調(diào)整和使用
6.1 葵花脫粒機與拖拉機的連接
葵花脫粒機和拖拉機為后三點懸掛式連接,將葵花脫粒機的兩個上牽引點,一個上牽引點分別和拖拉機的下牽引板、上牽引拉桿連接起來。調(diào)整拖拉機下牽引拉板拉鏈使其經(jīng)緊,然后調(diào)整上牽引使葵花脫粒機處于水平。
當(dāng)和有氣泵皮帶小四輪拖拉機配套時,可將皮帶輪拆下,換上與葵花脫粒機要求相適應(yīng)的皮帶輪,掛接上相應(yīng)的皮帶輪即可。
當(dāng)和無氣泵皮帶輪的小四輪拖拉機配套時,把拖拉機皮帶防護罩卸下,將離全器三角皮帶卸下兩根,掛上隨機所配兩根皮帶。
6.2 調(diào)整
葵花脫粒機和拖拉機連接好以后,應(yīng)檢查皮帶是否平直,不正時請予以調(diào)整,以運轉(zhuǎn)時不掉皮帶為佳,傳動皮帶張緊度要調(diào)整適當(dāng),可通過張緊輪在機架上的不對位置來調(diào)整,調(diào)整合適后,緊固各個螺栓。
6.3 試運轉(zhuǎn)
機組連接好以后,分離離合器,啟動柴油機,以小油門把機組帶動起來,使機組空轉(zhuǎn)30秒,檢查有無摩擦及碰撞等異常聲音。
6.4 田間工作
在田間工作時,應(yīng)在葵花脫粒機的支腳下墊上長木板,以防機器下陷。盡可能使機器保持水平。在喂葵花時,要均勻喂入,不可整筐、整袋喂入,嚴謹將石子、鐵器等異物喂入機內(nèi),防止打壞機器。發(fā)現(xiàn)有堵塞現(xiàn)象時,立即進行清理。
清理排除故障時,首先將拖拉機熄火,嚴謹拖拉機未熄火時排除故障。
7 葵花脫粒機的保養(yǎng)與維修
7.1使用中的保養(yǎng)
1.每班作業(yè)完畢,及時清除機具上的雜物,以防銹蝕。
2.每班工作前,檢查各工作部件有無變形或損壞若發(fā)現(xiàn)問題及時予以校正或更換。
3.旋轉(zhuǎn)的部件,每班必須加注潤滑油、脂一次。
4.每工作3―5個班次,打開機器檢查,清除雜物。
5.長距離運輸前和每班作業(yè)后都應(yīng)全面檢查各緊固件的連接情況,如有松動,立即予以緊固。
7.2入庫停放前的保養(yǎng)
1.徹底清除機具表面及里面的雜物,并進行涂油防銹處理。
2.檢查機具的磨損、變形、損壞、缺件情況及軸承、軸套的間隙,及時調(diào)整、換件,或及時采購配件,使來年的工作有保證。
3.機具停放在庫房內(nèi),防日曬,防雨淋,最好罩上蓬蓋。
總結(jié)
本設(shè)計的研究就是為了解決農(nóng)民葵花脫粒難的問題,使脫粒機能在農(nóng)業(yè)方面有更大的作用。但由于本設(shè)計在國內(nèi)外研究還不夠成熟,所以在數(shù)據(jù)上還不能完全確定。例如葵花盤的的大小,葵花籽顆粒與葵花盤黏合的程度,在葵花水分達到什么程度時最易分離。
經(jīng)過計算和理論分析,箱體滿足強度要求,能夠承載各部件的重量和支撐各部件完成預(yù)定的工作要求。軸的設(shè)計計算,經(jīng)過理論的校核,滿足強度和剛度要求。軸承的選擇符合壽命要求。V帶輪的選擇,符合轉(zhuǎn)速和功率的要求。鍵的選用符合要求。此機型可以實現(xiàn)對葵花脫粒的要求。
畢業(yè)設(shè)計是高等學(xué)校本科教學(xué)計劃中非常重要的組成部分,是對學(xué)生在大學(xué)期間所學(xué)的專業(yè)基礎(chǔ)知識、研究能力、自學(xué)能力、創(chuàng)新能力及其他綜合能力的檢驗,是教學(xué)計劃中最后一個綜合性實踐教學(xué)環(huán)節(jié),也是高校開展綜合素質(zhì)教育和創(chuàng)新能力培養(yǎng)的重要途徑。鞏固和加強學(xué)生對多元學(xué)科理論、基礎(chǔ)知識與技能的綜合應(yīng)用能力的訓(xùn)練,培養(yǎng)學(xué)生創(chuàng)新意識、創(chuàng)新能力和科學(xué)研究能力,培養(yǎng)其嚴謹、求實的治學(xué)態(tài)度和刻苦鉆研、勇于探索的精神。
致 謝
首先衷心感謝我的指導(dǎo)老師萬暢!本設(shè)計是在萬暢老師的悉心指導(dǎo)下完成的。他無論是在資料的整理,還是在設(shè)計的畫圖等各個方面都給予了我大量的指導(dǎo)和幫助,在他的精心指導(dǎo)下,才使得我的設(shè)計一步一步的有序的完成,同時也學(xué)到了許多書本上學(xué)不到的知識,受益匪淺,特致以深深的感謝。同時也要感謝學(xué)科組每一位老師,不僅在“授業(yè)、傳道、解惑”方面給予了精心培養(yǎng)和指導(dǎo),也給我提供了充足完備的條件和寶貴的學(xué)習(xí)交流機會,而且在生活方面還給予我極大的關(guān)懷,學(xué)生深表謝意。
再次,感謝我的同學(xué)們,在畢業(yè)設(shè)計過程中得到了他們無私的幫助,以及許多啟發(fā)性的指導(dǎo)和建議。在此向所有支持、關(guān)心、幫助我的人表示由衷的感謝!祝他們永遠健康、幸福!
值此論文完成之際,謹向所有關(guān)心、支持和幫助我的老師、同學(xué)和朋友表示最衷心的感謝!
參考文獻
1. 李志勇.我國向日葵成產(chǎn)存在的問題及發(fā)展對策 [M],河北種子站,2002.
2. 安玉麟.中國向日葵產(chǎn)業(yè)發(fā)展的問題與對策 [M],內(nèi)蒙古農(nóng)業(yè)科學(xué)院,內(nèi)蒙古,2004
3. 王繼良. 5KT-0.5型向日葵脫粒機[J],農(nóng)牧與食品機械,1992(3):32.
4. 姜明芝.5tk-900型葵花脫粒機 [J],吉林白城地區(qū)農(nóng)牧機械化研究所,1991
5. 鄭慶偉.新型場上作業(yè)機械 [M],產(chǎn)品世界,2000
6. 沈再春.農(nóng)產(chǎn)品加工機械與設(shè)備[M],北京:中國農(nóng)業(yè)出版社,1993.
7. 肖旭霖.食品加工技術(shù)裝備[M],北京:中國輕工業(yè)出版社,2007
8. 孫恒、陳作.機械原理(第七版)[M],北京:高等教育出版社,2007
9. 紀名剛、濮良貴.機械設(shè)計(第八版)[M],北京:高等教育出版社,2008
10. 吳宗澤、羅圣國.機械設(shè)計課程設(shè)計手冊(第三版)[M],北京:高等教育出版社,2007
11. 楊可楨、程光蘊、李忠生.機械設(shè)計基礎(chǔ)(第五版)[M],北京:高等教育出版社,2006
17
systems. assessing the example of three tractors of the same category, which are exploited in climatic and soil conditions 1. Introduction for agricultural agricultural recognized careful technical, predicting ofcropproduction.Nowadays,theexistingmathematicaloptimiza- tion methods, supported by the high-performance computers, can efficiently resolve the optimization problems (Dette Duffy et al., 1994; Mileusnic, 2007; etc.). The formation of an optimal technical system in order to produce cheaper food, highly impacted reliability of tractors, its maintainability, and the functionality of the system. rounding conditions. Although in the same spirit, some authors have defined effectiveness somewhat differently. In (Ebramhimipour maintainabilityascapacityofthe systemforpreventionandfindingfailuresanddamages,forrenewing operating ability and functionality through technical attending and repairs; and functionality as the degree of fulfilling the functional requirements, namely the adjustment to environment, or more pre- cisely to the conditions in which the system operates. In the case of monitoring reliability and maintainability it is common to monitor the time picture of state (Fig. 1) according to their working conditions is obtained. The model can be used as cri- teria for decision making related to any procedure in purchasing, operation or maintenance of the system, for prediction of repair and maintenance costs. Quality and functionality of the proposed model is shown in effectiveness determination of agricultural machinery, precisely tractors. R. Miodragovic et al./Expert Systems with Applications 39 (2012) 89408946 8941 which the functions of reliability and maintainability can be deter- mined, as well as the mean time in operation and the mean time in failure. The main problem that occurs in forming the time picture of state is data monitoring and recording. In real conditions the ma- chines should be connected to information system which would precisely record each failure, duration and procedure of repair. This is usually expensive and improvised monitoring of the machine performance, namely of its shut downs, is imprecise. Moreover, statistical data processing provided by the time picture of the state requires that all machines work under equal conditions, which is difficult to achieve. As for the functionality of the technical system, there is no common way for its measuring and quantification. This is the reason why in this paper, in order to assess the effectiveness, expertise judgments of the employed in the working process of the analyzed machines will be used. Application of expertise judgments has been largely used in literature, primarily for data processing and the assessment of the technical systems in terms of: risk (Li Wang, Yang, Tanasijevic, Ivezic, Ignjatovic, Zadeh, 1996). Application of fuzzy sets today represents one of the most frequently used tools for solving the problems in various areas of optimization (Huang, Gu, Liebowitz, 1988) in general is also used for solving the optimizations problems from area of agro machinery. In article (Rohani, Abbaspour-Fard, and fuzzy composition of men- tioned indicators into one synthesized. Fuzzy proposition is pro- cedure for representing the statement that includes linguistic variables based on available information about considered techni- cal system. In that sense it is necessary to define the names of lin- guistic variables that represent different grades of effectiveness of considered technical system and define the fuzzy sets that describe the mentioned variables. Composition is a model that provides structure of indicators influences to the effectiveness performance. 2.1. Fuzzy model of problem solving The first step in the creation of fuzzy model for effectiveness (E) assessment is defining linguistic variables related to itself and to reliability (R), maintainability (M) and functionality (F). Regarding number of linguistic variables, it can be found that seven is the maximal number of rationally recognizable expressions that hu- man can simultaneously identify (Wang et al., 1995). However, for identification of considered characteristics even the smaller number of variables can be useful because flexibility of fuzzy sets to include transition phenomena as experts judgments commonly is (Ivezic et al., 2008). According to the above, five linguistic vari- ables for representing effectiveness performances are included: poor, adequate, average, good and excellent. Form of these linguis- tic variables is given as appropriate triangular fuzzy sets (Klir .;l 5 R ; l M l 1 M ; .;l 5 M ; l F l 1 F ; .;l 5 F 1 In the next step, maxmin composition is performed on them. Max min composition, also called pessimistic, is often used in fuzzy alge- bra as a synthesis model (Ivezic et al., 2008; Tanasijevic et al., 2011; Wang et al., 1995; Wang 2000). The idea is to make overall assess- ment (E) equal to the partial virtual representative assessment. This assessment is identified as the best possible one between the worst partial grades expected (R, M or F). It can be concluded that all elements of (R, M and F) that make the E have equal influence on E, so that maxmin composition will be used, which in parallel way treats the partial ones onto the h time of planned shut down due to preventive maintenance. 1995) and OR R M F If we tions that is (according to Fig. 2): with 39 (2012) 89408946 Further, for each outcome its values are calculated (X c ). The outcome which would suit the combination c, it would be calcu- lated following the equations: X c P R;M;E j hi c 3 3 Finally, all of these outcomes are treated with maxmin composi- tion, as follows: (i) For each outcome search for the MINimum value of l R,M,F in vector E c (2). The minimum which would suit the combina- tion o, it would be calculated following the equations: MIN 0 minfl j1;.;5 R ;l j1;.;5 M .;l j1;.;5 F g;for all o 1toO 4 (ii) Outcomes are grouped according to their values X c (3), namely the size of j. (iii) Find the MAXimum between previously identified mini- mums (i) for each group (ii) of outcomes. The maximum which would suit value of j, would be calculated following the equations: MAX j maxfMIN o g; for every j 5 E assessment of technical system is obtained in the form: l E This expression (Fig. 2 tion of to fuzzy cedure (d) between the E which d i E j ;H take into account only values if l j1;.;5 R;M;F 0, we get combina- are named outcomes (o =1toO, where O # C). in the process of synthesis, are also used. Precisely, if we look at three partial indicators, namely their membership function (1), it is possible to make C = j 3 =5 3 combina- tions of their membership functions. Each of these combinations represents one possible synthesis effectiveness assessment (E). E l j1;.;5 ;l j1;.;5 ; .;l j1;2;.5 hi ; for all c 1toC 2 maxmin compositions which by using operators AND provide an advantage to certain elements over the others synthetic indicator. In literature (Ivezic et al., 2008; Wang et al., Fig. 2. Effectiveness fuzzy sets. 8942 R. Miodragovic et al./Expert Systems MAX j1 ; .;MAX j5 l 1 E ; .;l 5 E 6 (6) is necessary to map back to the E fuzzy sets ). Best-fit (Wang et al., 1995), method is used for transforma- E description (6) to form that defines grade of membership sets: poor, adequate, average, good and excellent. This pro- is recognized as identification. Best-fit method uses distance E obtained by maxmin composition (6) and each of expressions (according to Fig. 2), to represent the degree to E is confirmed to each of fuzzy sets of effectiveness (Fig. 2). i X 5 j1 l j E C0l j H j 2 v u u t ; j 1; .;5;H i fexcellent;goodaverage;adequate;poorg7 E i fb i1 ;poor;b i2 ;adequate;b i3 ;good; b i4 ;average;b i5 ;excellentg 10 3. An illustrative example As an illustrative example of evaluation of agriculture machin- ery effectiveness, the comparative analysis of three tractors A 1 B 2 , and C 2 is given in this article. In tractor A a 7.146 l engine LO4V TCD 2013 is installed. Thanks to the reserves of torque from 35%, the tractor is able to meet all the requirements expected in the worst performing farming oper- ations in agriculture. Total tractor mass is 16,000 kg. According to OECD (CODE II) report maximum power measured at the PTO shaft is 243 kW at 2200 rpm with specific fuel consumption of 198 g/kW h (ECE-R24). Maximum engine torque is 1482 Nm at en- gine regime of 1450 rpm. Transmission gear is vario continious transmision. Linkage mechanism is a Category II/III with lifting force of 11,800 daN. In tractors B 2 and C 2 8.134 l engine 6081HRW37 JD is installed, with reserve torque of 40%, and this tractor was able to meet all the requirements expected in the worst performance of the farming operations in agriculture. Total tractor weight is 14,000 kg. Accord- ing to OECD (CODE II) report maximum power measured at the PTO shaft is 217 kW at 2002 rpm with specific fuel consumption of 193 g/kW h (ECE-R24). Maximum torque is 1320 Nm at engine revs of 1400 rpm. Transmission is AutoPower. Linkage mechanism is a Category II/III with lifting force of 10,790 daN. Both models have electronically controlled tractor engine and fuel supply system that meets the regulations on emissions. From the submitted technical characteristics of the tractor A, B and C it is seen that all three tractors are fully functional for l exc. = (0,0,0,0.25,1); l good = (0,0,0.25,1,0.25); l aver. = (0,0.25,1,0.25,0); l adeq. = (0.25,1,0.25,0,0); l poor = (1,0.25,0,0,0). The closer l E (6) is to the ith linguistic variable, the smaller d i is. Distance d i is equal to zero, if l E (6) is just the same as the ith expression in terms of the membership functions. In such a case, E should not be evaluated to other expressions at all, due to the exclusiveness of these expressions. Suppose d imin (i =1,.,5) is the smallest among the obtained distances for E j and leta 1 ,.,a 5 represent the reciprocals of the rel- ative distances (which is calculated as the ratio between corres- ponding distance d i (7) and the mentioned values d imin ). Then, a i can be defined as follows: a i 1 d i =d imin ; i 1; .;5 8 If d i = 0 it follows that a i = 1 and the others are equal to zero. Then, a i can be normalized by: b i a j P 5 m1 a im ; i 1; .;5 X 5 i1 b i 1 9 Each b i represents the extent to which E belongs to the ith defined E expressions. It can be noted that if E i completely belongs to the ith expression then b i is equal to 1 and the others are equal to 0. Thus b j could be viewed as a degree of confidence that E i belongs to the ith E expressions. Final expression for E performance at the level of tech- nical system, have been obtained in the form (10) where Applications 1 Tractor Fendt Vario 936. 2 Tractor John Deere 8520. performing difficult operations for different technologies of agri- cultural production. Tractors B and C have the same technical char- acteristics, and practice is the same type and model, except that the tractor B entered into operation in May 2007, a tractor C in June 2007. A tractor on the experimental farm, which is the technical documentation for the base model, comes into operation in July 2009. The main task of maintaining agricultural techniques is to provide functionality and reliability of machines. Maintenance of all three tractors is done by machine shop owned by the user up- grade option. Ten engineers (analysts) working on maintenance and opera- tion of tractors were interviewed. Their evaluation of R, D and F are given in Table 1. First, the effectiveness of tractor A is calculated. It can be seen that the reliability was assessed as excellent by six out of ten ana- lysts (6/10 = 0.6), as average by three (0.3) and as good by one (0.1). In this way the assessment R is obtained in the form (11): R 0:6=exc; 0:3=good; 0:1=aver; 0=adeq; 0=poor11 In the same way the assessments for M and F are obtained: M 0:4=exc; 0:4=good; 0:2=aver; 0=adeq; 0=poor F 0:5=exc; 0:5=good; 0=aver; 0=adeq; 0=poor In the next step, these assessments are mapped on fuzzy sets (Fig. 1) in order to obtain assessment in the form (1). For example, Reliabil- ity in this example is determined as (11), where it is to linguistic variable excellent joined weight 0.6. Thereby, fuzzy set excellent is defined as: R exc = (1/0, 2/0, 3/0, 4/0.25, 5/1.0) (according to Fig. 1). In this way the specific values of fuzzy set excellent R exc0.6 = (1/(0 C2 0.6), 2/(0 C2 0.6), 3/(0 C2 0.6), 4/(0.25 C2 0.6), 5/(1.0 C2 0.6) are obtained. The remaining four linguistic variables are treated in the same way. In the end for each j =1,.,5 specific membership functions (last row, Table 2) are added into the final fuzzy form (1) of tractor A reliability: l RA 0;0:025;0:175;0:475;0:675 In the same way, based on the questionnaire (Table 1) values for maintainability and functionality are obtained: l MA 0;0:05;0:3;0:55;0:5; l FA 0;0;0:125;0:625;0:62512 These fuzzificated assessments (11) and (12) are necessary to syn- thesize into assessment of effectiveness, using maxmin logics. In this case it is possible to make C =5 3 = 125 combinations, out of which the 48 outcomes. First outcome would be for combination 2-2-3: E 2-2-3 = 0.025,0.05,0.125, where is X 2-2-3 = (2 + 2 + 3)/3 = 2 (rounded as integer). Smallest value among the membership func- tions of this outcome is 0.025. Other outcomes and corresponding values of X c are shown in Table 3. All these outcomes can be grouped around sizes X = 2, 3, 4 and 5. For example, for outcome X = 5 it can be written: E 4C05C05 0:475;0:5;0:625C138;E 5C04C05 0:675;0:55;0:625C138;E 5C05C04 0:675;0:5;0:625C138;E 5C05C05 0:675;0:5;0:625C138 Further, for each of them, minimum between membership function is sought: Table 1 Results of questionnaire. Average x x xx x xx x R. Miodragovic et al./Expert Systems with Applications 39 (2012) 89408946 8943 Analyst Linguistic variables Tractor A Tractor B Excellent Good Average Adequate Poor Excellent Good 1R x x Mx x Fxxx 2R x Mx x Fx 3R x x Mx Fx 4R x x Mx Fx x 5R x x Mx Fxxx 6R x x Mx Fx x 7R x Mx Fx 8R x x Mx x Fx x 9R x x Mx x Fx x 10 R x x Mx x Fx x Tractor C Adequate Poor Excellent Good Average Adequate Poor x x x x x x x x x x x xx x x x x x x x x x with Table 2 Calculation of specific values of fuzzy sets. 12345 0.6/exc. 0 C2 0.6 0 C2 0.6 0 C2 0.6 0.25 C2 0.6 1.0 C2 0.6 0.3/good 0 C2 0.3 0 C2 0.3 0.25 C2 0.3 1.0 C2 0.3 0.25 C2 0.3 8944 R. Miodragovic et al./Expert Systems MINE 4C05C05 minf0:475;0:5;0:625g0:475;MINE 5C04C05 0:55;MINE 5C05C04 0:5;MINE 5C05C05 0:5 Between these minimums, in the end it seeks maximum: MAXX d5 maxf0:475;0:55;0:5;0:5g0:55 Also for other values: X: MAX X =2 = 0.025; MAX X =3 = 0.175; MAX X =4 = 0.55 (Table 1.) 0.1/aver. 0 C2 0.1 0.25 C2 0.1 1.0 C2 0.1 0.25 C2 0.1 0 C2 0.1 0/adeq. 0.25 C2 0 1.0 C2 0 0.25 C2 00C2 00C2 0 0/poor 1.0 C2 0 0.25 C2 00C2 C2 C2 0 P R 0 0.025 0.175 0.475 0.675 Table 3 Structure of MAXMIN composition. Comb. X l MIN 2345 2-2-3 2 0.025,0.05,0.125 0.025 2-2-4 3 0.025,0.05,0.625 0.025 2-2-5 3 0.025,0.05,0.625 0.025 2-3-3 3 0.025,0.3,0.125 0.025 2-3-4 3 0.025,0.3,0.625 0.025 2-3-5 3 0.025,0.3,0.625 0.025 2-4-3 3 0.025,0.55,0.125 0.025 2-4-4 3 0.025,0.55,0.625 0.025 2-4-5 4 0.025,0.55,0.625 0.025 2-5-3 3 0.025,0.5,0.125 0.025 2-5-4 4 0.025,0.5,0.625 0.025 2-5-5 4 0.025,0.5,0.625 0.025 3-2-3 3 0.175,0.05,0.125 0.05 3-2-4 3 0.175,0.05,0.625 0.05 3-2-5 3 0.175,0.05,0.625 0.05 3-3-3 3 0.175,0.3,0.125 0.125 3-3-4 3 0.175,0.3,0.625 0.175 3-3-5 4 0.175,0.3,0.625 0 0.175 3-4-3 3 0.175,0.55,0.125 0.125 3-4-4 4 0.175,0.55,0.625 0.175 3-4-5 4 0.175,0.55,0.625 0.175 3-5-3 4 0.175,0.5,0.125 0.125 3-5-4 4 0.175,0.5,0.625 0.175 3-5-5 4 0.175,0.5,0.625 0.175 4-2-3 3 0.475,0.05,0.125 0.05 4-2-4 3 0.475,0.05,0.625 0.05 4-2-5 4 0.475,0.05,0.625 0.05 4-3-3 3 0.475,0.3,0.125 0.125 4-3-4 4 0.475,0.3,0.625 0.3 4-3-5 4 0.475,0.3,0.625 0.3 4-4-3 4 0.475,0.55,0.125 0.125 4-4-4 4 0.475,0.55,0.625 0.475 4-4-5 4 0.475,0.55,0.625 0.475 4-5-3 4 0.475,0.5,0.125 0.125 4-5-4 4 0.475,0.5,0.625 0.475 4-5-5 5 0.475,0.5,0.625 0.475 5-2-3 3 0.675,0.05,0.125 0.05 5-2-4 4 0.675,0.05,0.625 0.05 5-2-5 4 0.675,0.05,0.625 0.05 5-3-3 4 0.675,0.3,0.125 0.125 5-3-4 4 0.675,0.3,0.625 0.3 5-3-5 4 0.675,0.3,0.625 0.3 5-4-3 4 0.675,0.55,0.125 0.125 5-4-4 4 0.675,0.55,0.625 0.55 5-4-5 5 0.675,0.55,0.625 0.55 5-5-3 4 0.675,0.5,0.125 0.125 5-5-4 5 0.675,0.5,0.625 0.5 5-5-5 5 0.675,0.5,0.625 0.5 MAX 0.025 0.175 0.55 0.55 Finally, we get expression for membership function of effective- ness of tractor A: l EA 0;0:025;0:175;0:55;0:55 Best-fit method (79) and proposed E fuzzy set (Fig. 1) give the final effectiveness assessment for the tractor A: d 1 E;exc X 5 j1 l j E C0l j exc 2 v u u t 0C00 2 0:025C00 2 0:175C00 2 0:55C00:25 2 0:55C01 2 q 0:56899 where is : l E 0;0:025;0:175;0:55;0:55 l exc 0;0;0;0:25;1 For other fuzzy sets: d 2 (E, good) = 0.54658, d 3 (E, aver) = 1.06007, d 4 (E, adeq) = 1.27426, d 5 (E, poor) = 1.29856. for d min d 2 : a 1 1 d 1 =d 2 1 0:56899=0:54658 0:96061; a 2 1:00000;a 3 0:51561;a 4 0:42894;a 5 0:42091: b 1 a 1 P 5 i1 a i 0:96901 0:96901 1 0:51561 0:42894 0:42091 0:28881; b 2 0:30065;b 3 0:15502;b 4 0:12896;b 5 0:12655: Finally, we get the assessment of effectiveness of tractor A, in form (10): E A =(b 1 , excellent), (b 2 , good), (b 3 , average), (b 4 , ade- quate), (b 5 , poor) = (0.28881, excellent), (0.30065, good), (0.15502, average), (0.12896, adequate), (0.12655, poor) In the same way, we get the assessments for other two tractors B and C: E B = (0.23793, excellent), (0.27538, good), (0.20635, aver- age), (0.14693, adequate), (0.13342, poor) E C = (0.17507, excellent), (0.25092, good), (0.25468, aver- age), (0.17633, adequate), (0.14300, poor). Tractor A is in great extent of 0.30065 (in relation to 30 %) as- sessed as good, tractor B in great extent of 0.27538 (27.5%) as- Applications 39 (2012) 89408946 sessed as good, while tractor C is in great extent of 0.25468 (25.5%) assessed as average. It can be concluded that C is the worst, while tractor A is only somewhat better than B, especially if we see with that A is assessed as excellent in the extent of 28.8% while B in the extent of 23.8%. Effectiveness of analyzed tractors can be presented as in Fig. 3., where it can be more clearly seen that tractor A has the biggest effectiveness. If this assessment (E A , E B , E C ) is defuzzificated by center of mass point calculation Z (Bowles if calculated on 10,000 moto-hours, Fig. 3. Relationship of effectiveness of observed tractors. R. Miodragovic et al./Expert Systems it would spend in work 9244 moto-hours. As of the tractor B, out of 10,004 available moto-hours, it spent 9069 moto-hours in work, and tractor C out of 9981 available moto-hours spent 9045 in work. The experiment showed that the more reliable and efficient tractors are the less frequent are delays. In part, this initial advan- tage wiped out worse logistics of delivery of spare parts when it comes to tractor A. in 1100 moto-hours work of the tractor, due to poor logistics in maintaining hoped to eight working days, and it greatly influenced the decline in benefits of maintainability of a given tractor and thus the decline in total exploitation of the same efficiency (Internal technical documentation PKB). 4. Conclusion This paper presents a model for effectiveness assessment of technical systems, precisely agricultural machinery, based on fuzzy sets theory. Effectiveness performance has been adopted as overall indicator of systems quality of service, i.e. as entire measure of technical system availability. Reliability, maintainability and func- tionality performances have been recognized as effectiveness parameters or indicators. Linguistic form can be appointed as the References Bowles, J. B., & Pelaez, C. E. (1995). Fuzzy logic prioritization of failures in a system failure mode, effects and criticality analysis. Reliability Engineering and System Safety, 50(2), 203213. Cai, K. Y. (1996).
收藏